
Summary

A newly discovered reservoir needs to undergo a development study phase. Many
development scenarios have to be evaluated to determine the scenario, which yields the
maximum profit. A research has been carried out by a PhD student under the research
center Subsea production and processing (SUBPRO) to develop an automated decision
support methodology. The methodology includes integrating the production and economic
elements of the field, mathematical optimization, and uncertainty analysis to decide upon
the best strategy. González et al. (2020) and Angga (2019) had previously implemented
this methodology on synthetic reservoirs consisting of simplified reservoir models having
identical well performances. This thesis aims to develop the automated decision support
methodology by taking into account the separate performances of each well in the reser-
voirs: oil production rates, Gas Oil Ratio (GOR), and Water Cut (WC) profiles.

There are three main stages of this work. The first stage was the problem formula-
tion of Net Present Value (NPV) optimization as a Mixed Integer Linear Programming
(MILP). The decision variables of the optimization were the production potential and
drilling schedule. The optimization used production potential as the proxy model of the
entire production system and cost proxy model to estimate the development cost. The cost
proxy model was modeled as a linear function based on the available data. Since every well
had distinct performance, the potentials oil rates were modeled as a non-linear function of
cumulative oil productions and well status: active or inactive. Multidimensional Piece-
wise Linear (PWL) approximation was implemented to represent the non-linear behavior
of the production potential imposing the Special Order Set (SOS)1/SOS2 constraints. The
second stage was to develop a method to quantify the uncertainty of GOR and WC of the
reservoir based on the individual well GOR and WC. Several optimization routines were
formulated and performed to generate the new cumulative water and gas production curves
by adjusting the well production schedule. Afterward, the NPV optimization routine was
performed by employing these new curves to determine which curves have the highest and
lowest NPV. The last stage is the uncertainty analysis study to quantify the uncertainties
of the optimization result. Five parameters were considered: Initial Oil In Place (IOIP),
water-gas profiles, cost figures, production potential, and oil price. The technique used in
the study was a probability tree.

Based on the NPV optimization, changing the well status and drilling schedule through-
out the production years had increased the NPV compared to the optimization with a fixed
drilling schedule. Six extreme water and gas profiles were successfully generated to cap-
ture all the possible highest or lowest production of water and gas. From the NPV opti-
mization, considering high production, both water and gas productions had lowered the
NPV significantly from the base case. From the uncertainty analysis, the effect of the
uncertainty was quantified in NPV, the optimal oil rates, and the optimal number of well.
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Chapter 1
Introduction

1.1 Background

A company recently found reservoirs located in the Barents sea. At present, the newly
discovered field undergoes development study phase to decide upon the best exploitation
plan. Initially, the development team needs to determine every possible development strat-
egy subject to the challenges related to reservoir characteristics, economic, and regional
constraints. As the study progresses, the strategies are narrowed down according to the
stakeholder’s preference. Generally, the aim is to obtain maximum financial benefits while
preserving the environment.

Many key components are included in the planning, e.g., the production and well
scheduling, well placement, topside facilities, and the types of offshore structure. Each
of these critical units does not stand alone, but interrelated. Haldorsen (1996) described
how increasing oil production rates could deliver two contradictive outcomes, i.e., higher
revenue or higher capital expense. The field development study is accountable for finding
the optimum equilibrium between these components. Furthermore, some elements in the
oil and gas industry (e.g., oil price) are globally affected by social and political issues,
making the situation relatively dynamic and rather uncertain throughout the field lifetime.
It is essential to evaluate all of the development plannings while taking account of the
associated uncertainties.

Despite that, it is often impossible to evaluate all the scenarios, considering many
possible combinations. It demands extensive inter-discipline human resources to build
every aspect of the model, possibly leading to iterative modifications. Consequently, many
of these scenarios have left unstudied due to time constraints (Hoffmann et al., 2019).

A research center called Subsea Production and Processing, SUBPRO (2020), has re-
search related to an automated decision support method for early field development. In
a project led by Diana Gonzalez, the best development strategy was determined by em-
ploying an integrated modeling, mathematical optimization, and uncertainty analysis. The
procedure is portrayed in Figure 1.1. The methodology applies proxy models to reduce
the computation time during the mathematical optimization while providing a presentable
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Chapter 1. Introduction

portrayal of the actual systems: integrated production system and cost figures. Further-
more, uncertainty analysis for different elements is carried out to measure its impacts on
decision making.

Figure 1.1: The Workflow of Automated Decision Support Methodology developed by SUBPRO
(2020)

Several works had tested this methodology to optimize the Net Present Value (NPV)
on synthetic fields consisting of a simplified reservoir model (tank) and production net-
work. González et al. (2020) had utilized it on a synthetic reservoir based on the Wisting
Field data. In this work, the optimization decision variables are the production profile
and drilling schedule for a single reservoir. Another work by Angga (2019) used this ap-
proach on a more complex synthetic field, called ’Safari’ with three separate reservoirs.
The objective was to find the best configuration of the production schedule, drilling and in-
jection schedule, and recovery mechanism, that gave the highest NPV and longest plateau
duration.

In this work, the methodology was implemented and expanded in the new field dis-
covered in the Barents Sea. It was expected to help in finding the optimum field devel-
opment plan. Previously, the specialization project had generated the production system
proxy model of this field (Alkindira, 2019). The production potential curves were derived
from production data, instead of using models to compute production potential. The new
production potential curves captured the changes in active wells by scaling the base case
curves. The proxy model was validated against a more realistic reservoir model to mimic
the complexity of the reservoir performance. This was demonstrated to be a good approxi-
mation. Thus, this thesis will continue the early development study shown by utilizing the
production potential generated in Alkindira (2019).

2



1.2 Objective

1.2 Objective
This thesis’s main objective is to improve the automated decision support methodology
developed by SUBPRO. González et al. (2020) and Angga (2019) had optimized NPV
by using production potentials that assumed all wells have identical performance. In this
work, the methodology is improved by employing the potential production curves with
different well performances during the optimization: production, Gas Oil Ratio (GOR),
and Water Cut (WC) profiles. The work is segmented into several parts:

1. Generate the proxy model for cost figures.

2. Develop a mathematical optimization problem to maximize the NPV by configur-
ing the drilling and production schedule. The production potential from Alkindira
(2019) is employed in the optimization as the reservoir proxy model. The optimiza-
tion would be formulated to predict the production profiles when well scheduling
changes and the wells have different performance.

3. Perform NPV optimization by taking into account the possible changes in water and
gas production profiles. This is to quantify the uncertainty in the producing water
cut and GOR behavior of the reservoir based on the individual well GOR and WC
profile.

4. Evaluate the effect of uncertainties in Initial Oil in Place (IOIP), water and gas pro-
duction profiles, cost figures, production potential, and oil price. The analysis is
carried out using the probability tree technique.

1.3 Field Overview
Due to confidentiality clauses, the field in this study was called ’Field X’. The field was an
offshore field located at the Loppa High area. Figure 1.2 points out the location of Loppa
high in the southern part of the Barents sea. Field X consisted of two non-communicating
reservoirs: reservoir X1 and reservoir X2. The distance between the two reservoirs was
approximately 20 km away.

The reservoirs were saturated oil reservoirs with the presence of a gas cap. Reservoir
X1 was considered the more significant reservoir with higher recoverable reserves of ap-
proximately 15.6 M Sm3, and heavier oil with a lower solution gas-oil ratio. It will use
a water-gas injection system to maintain reservoir pressure. All the wells are going to be
drilled horizontally and installed with the gas-lift system. On the other hand, Reservoir
X2 had smaller recoverable reserves of 6.5 M Sm3, and higher solution gas-oil ratio. The
reservoir pressure will be supported using the gas reinjection system. The wells are also
drilled horizontally, but without any artificial lift installed.

The production from reservoir X1 and X2 will be commingled at the separator located
at the Floating Production Storage and Offloading (FPSO). The water depth for this field
was 390 m above the seabed. The location of the FPSO is set to be closer to reservoir X1
with a distance of about 500 m away. In the initial design, there are pipelines to transport
production from reservoir X2 and riser to flow the production from reservoir X1. The

3



Chapter 1. Introduction

Figure 1.2: Location of Loppa high at the Barents Sea (retrieved from NPD (2019))

production for this field is expected to start in 2025 and was scheduled for abandonment
in 2045.

1.4 Structure of The Report
Chapter 1 introduced the background and objective of the thesis. A simple overview of
the field, including the reservoirs, was provided. The chapter finished with a description
of the report structure.

Chapter 2 described the basic theory for this project. It included the concepts of pro-
duction potential and mathematical optimization.

Chapter 3 encompassed the methodology to achieve the objective. The methodology
consisted of building the cost proxy model, the formulation for NPV optimization, gener-
ating several water and gas production profiles as a function of cumulative oil production,
and performing the uncertainty analysis.

Chapter 4 mainly discussed the derived cost proxy model from the data figures, the
result comparison of NPV optimization with different settings, the generated water and gas
production profile, the result of NPV optimization using these new profiles, and, finally,
the result of uncertainty study.

Chapter 5 concluded this report.
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Chapter 2
Literature Review

2.1 Production Potential
This section has been reproduced from the specialization project of Alkindira (2019) and
serves as a brief introduction to the following literature used in the thesis.

2.1.1 Concept of production potential
Production potential may be interpreted as the maximum unique rate of a field at a partic-
ular time (Stanko, 2020). This rate is reached when the field is operated in its optimum
condition within a given constraint (e.g., at a fully open choke, maximum gas-lift injec-
tion rate, and maximum water injection rate). A reasonable limitation is that the field is
not able to deliver a rate higher than the production potential. However, the rate can be
lowered by controlling the adjustable components such as choke (Stanko, 2020).

The production potential is determined from the intersection between Inflow Perfor-
mance Relationship (IPR) and Tubing Performance Relationship (TPR). Therefore, the
deliverability of the reservoir and production system affect production potential behav-
ior. IPR and TPR behaviors differ during production due to the changes in production
instruments or reservoir properties. The reservoir deliverability declines with time as the
consequence of fluid being produced from the reservoir. Accordingly, the reservoir de-
liverability also depends on cumulative oil production. It can be said that the production
potential at a given time, qpp(t), is also dependent on the total oil production, Np(t).
(Stanko, 2020).

Equation 2.1 represents the relationship between the production potential and cumula-
tive production when the field is produced at its potential.

Np(t) =

∫ t

0

qpp(t)dt (2.1)

Coupled reservoir-production network simulation is run to yield the maximum oil pro-
duction rate over time. Then, the production potential curve is generated by plotting the
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cumulative production, from equation (2.1) against the production potential, as illustrated
in Figure 2.1.

Figure 2.1: Production potential curve is constructed by plotting the qpp at particular time t with its
cumulative production Np(t)

2.1.2 Production planning using production potential curve

The objective of production scheduling is to predict how much the field will produce with
time. There are two types of production schemes used in the field: plateau mode and
decline mode.

During plateau mode, the field production rate is maintained as constant at the de-
sired rate until it is equal to the potential production rate. As discussed in section 2.1.1,
production potential is a function of cumulative production and declines as more oil is
withdrawn. Afterward, the field enters the decline mode because the production cannot
keep the plateau rate. In decline mode, the field produces as much as possible. The pro-
duction rate usually reaches production potential. Thus, it follows the same trend as the
potential.

The production potential curve is used to estimate the plateau and decline mode of the
field. The cumulative production Np(ti) at time ti from equation (2.1) is approximated by
discretizing the time using rectangular integration as the following:

Np(ti) = q(ti−1) · (ti − ti−1) +Np(ti−1) (2.2)

where Np(ti−1) is cumulative production at previous time step ti−1, q(ti) is produc-
tion rate at current time step ti.

During the plateau duration, the oil production rate has to satisfy the following condi-
tion:

qpp(Np(ti)) ≥ qplateau(ti) (2.3)

where qpp(Np(ti)) is the production potential after a certain cumulative production at
time t and qplateau(ti) is the plateau rate at time t.
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2.1 Production Potential

(a) Planning the q1(t1)

(b) Planning the q2(t2)

Figure 2.2: Production planning with production potential approach

Graphically, the plateau length can be determined by dividing the production potential
curve’s cumulative production by the production rate. Suppose the field is produced with
several plateau periods, the time when k period ends, tk, can be calculated mathematically
by reformulating equation (2.2) into:

tk = tk−1 +
Np(tk)−Np(tk−1)

qplateau(tk)
(2.4)

During the post-plateau period or in decline mode, the condition in equation (2.3) is
violated. Therefore, the field production rate, q(ti), should be equal to the production
potential. It can be expressed as:

q(ti) = f(Np(ti)) (2.5)

With the production potential curve, q(ti) can be obtained by interpolating Np(ti) to
qpp in the curve. Therefore, Np(ti) and q(ti) need to be determined concurrently for every
time step.

An illustration of the application of the production potential is provided in Figure 2.2.
In the beginning (Figure 2.2a), t = 0, there is still no oil production. The production rate
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can be chosen between 0 - 8000 Sm3/d. Suppose that the first plateau rate, q1(t1) is 6000
Sm3/d, the first plateau duration, t1 can be estimated using equation (2.4) and by referring
to production potential on the left.

Once t1 is surpassed (Figure 2.2b), q1(t1) cannot be maintained anymore. Afterward,
by referring to production potential, it is known that the q1(t1) decline after reaching Np

=1.2 M Sm3. Now, the production rate can only be ranged between 0 - 6000 Sm3/d. Thus,
q2(t2) is selected to be 4000 Sm3/d, and then t2 is calculated. After t2 is reached, a new
plateau rate can be chosen by the same procedure. Otherwise, the production rate will
produce at its potential and deplete, starting from the last plateau rate.

2.1.3 Remarks about the production potential

The characteristics of production potential concept discussed by other works from Stanko
(2020) and Angga (2019) are as follow:

1. The production potential curve shows discontinuity if there are abrupt modifications
to a production system or reservoir. Such modifications on production system can
involve drilling a new well and changing separator pressure, while the adjustments
applied to reservoir cover pressure maintenance, stimulation activities or Enhanced
Oil Recovery (EOR)

2. Reservoir pressure, Water Cut (WC), production GOR, and injection-production ra-
tio can be defined as a function of cumulative production. However, this concept is
only applicable to the reservoir with cumulative oil production as an input (e.g., ma-
terial balance model). The curve representing the relationship between these prop-
erties and cumulative production needs to be generated from the same simulation
scenario as the corresponding production potential curve.

3. The field production potential consisting of one reservoir is unique for given field
cumulative production. If the field has several wells, the wells’ production potentials
are dependent on the accumulation of all well productions.

4. If all wells in the field are identical and produced from the same reservoir, the field
production potential can be estimated by multiplying the number of wells with the
production potential of a single well.

5. If the field has two or more reservoirs tied at a fixed pressure, the field production
potential is not unique and depends on each reservoir’s production schedule. How-
ever, the production potential of a reservoir is independent of other reservoirs and
only dependent on its cumulative production.

6. If the field has two or more reservoirs tied at a non-fixed pressure node (e.g., junc-
tion), each reservoir’s production potential depends on the production of other reser-
voirs.
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2.2 Mathematical programming

2.2.1 Linear Programming

Linear programming model is an optimization technique to solve a linear objective func-
tion subject to a system of linear equality and inequality constraints. Mathematically, a
linear programming model is expressed as (Van Roy and Mason, 2005):

maximize cTx

subject to Ax ≤ b
x ≥ 0

(2.6)

Where the vector x ∈ RN is a set of decision variables, c ∈ RN is the vector values for
each xi, and the matrix x ∈ RMxN and the vector b ∈ RM is the inequality constraints.
A set of decision variables that fulfills all of the constraints is called a feasible solution.
An optimal solution refers to a feasible solution reaching the desired maximum value. If
no solution satisfies all the constraints, the problem becomes infeasible. Also, there is
an unbounded problem which refers to a feasible problem with infinite objective value
(Vanderbei, 2020). This condition happens if the problem does not have an upper bound;
thus, it is unsolvable.

Feasible region and optimal solution

In linear programming, the set of all feasible solutions is a feasible polytope. The term
refers to the approach to find the solution based on the intersections of the linear con-
straints. The boundaries of the two-dimensional problems are line segments, while three-
dimension problems have the boundaries of flat planes. The feasible polytope is convex,
such that any convex combination of two-element within the polytope stays inside. One of
the linear programming theorems states that a feasible convex region has the optimal value
at one of its extreme points (Luenberger et al., 1984). The extreme points are the points
that do not connect the other two points in the feasible set. For instance, a triangle has the
extreme points located at its vertices.

To have clearer illustration, let consider the two dimensional problem below:

minimize −2x1 − x2 = z

subject to x1 +
8

3
x2 ≤ 4

x1 + x2 ≤ 2

2x1 ≤ 3

x1, x2 ≥ 0

(2.7)

An illustration of the example above is depicted in Figure 2.3. The feasible region of this
problem is the area inside the bold lines. The objective function lines are parallel to each
other, and it shifts to search for the optimal solution within the region. The red dot denotes
the location of the optimal solution attained at the extreme point of feasible region.

9



Chapter 2. Literature Review

1 2
0

1

2

x1

x2

x1 + 8
3
x2 = 4

x1 + x2 = 2 2x1 = 3

z = −1 z = −3 1
2

z = −2 1
2

Figure 2.3: Illustration of the two dimension example solution. The extreme points of ( 3
2
, 1
2
) yields

the optimal objective value of z = −3 1
2

(adapted from Luenberger et al. (1984))

2.2.2 Mixed Integer Linear Programming

Mixed Integer Linear Programming (MILP) is a branch of Linear Programming that re-
stricts some of the decision variables to be integers. If all the decision variables are integer,
it is called Integer Programming (IP). Such programming can be stated as:

maximize cTx

subject to Ax ≤ b
x = (xi, xj) ≥ 0

xi ∈ Zm

xj ∈ RN−m

(2.8)

Linear Programming (LP) Relaxation

Having integer variables increases the complexity of the optimization model. For any
MILP or IP problem, linear programming (LP) relaxation can be performed by switching
the integer restriction with a continuous constraint. This changes the IP problem into an
LP problem.

Let consider an example below:
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maximize 5x1 + 8x2 = z

subject to x1 + x2 ≤ 6

5x1 + 9x2 ≤ 45

x1, x2 ≥ 0

x1, x2 ∈ Z

(2.9)

Figure 2.4 shows the graphical solution to the problem. The optimal solution of LP
relaxation gives greater or equal value to the optimal integer solution since its feasible
region is bigger than the IP problem. In other words, the solution from LP relaxation acts
as the upper bound. In this example, the optimal solution of LP relaxation is attained at a
blue point ( 94 ,

15
4 ). Rounding off this point does not necessarily give the optimal integer

solution, and in this case, the point is infeasible. The nearest integer point also has a lower
solution than the LP solution and the optimum integer solution. Therefore, the optimum
solution is not determined by simply rounding the points or picking the nearest point.

1 2 3 4 5 60

1

2

3

4

5

6

x1

x2

z = 41.25

x1 + x2 = 6

5x1 + 9x2 = 45

Integer optimal solution z = 40

Round off point

Nearest integer point, z = 34

Figure 2.4: Illustration of the Integer Programming example. The LP relaxation obtains the optimal
solution of z = 41.25 at point ( 9

4
, 15

4
). The integer optimal solution is lower, which is z = 40 at

point (0, 5) (adapted from Bradley et al. (1977))

2.2.3 Methods to Solve (Mixed) Integer Programming
Numbers algorithms have been developed for solving the integer problem. Two of them
are introduced in this section.

Cutting Plane

The cutting plane method was first proposed by Gomory (1958). The idea of the cutting
plane method is to generate new inequality constraints into the IP problem. These new
constraints narrow the feasible region until the integer solution is obtained. The inequality
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constraint has to be valid that it does not violate any feasible integer solution (Mitchell,
2009).

The same example from the previous section is used to discuss this method. Suppose
two new constraints are introduced:

C1 : 4x1 + 7x2 ≤ 35

C2 : 2x1 + 3x2 ≤ 15

As shown in Figure 2.5, adding theC1 andC2 into the problem reduced the area of feasible
region. There is no integer solution being removed; both constraints are valid. The IP
problem can be solved by linear relaxation, and it shall have the solution attained at the
integer point. In practice, this method cuts a small section of the region in each iteration.
First, add C1. This still does not lead to an optimal solution. Only after C2 is added that
the optimal solution can be found.

1 2 3 4 5 60

1

2

3

4

5

6

x1

x2

C1

C2

Figure 2.5: Illustration of the cutting plane method (adapted from Bradley et al. (1977))

Branch and Bound

The branch-and-bound method partitions the problem into subdivisions and solves them
to find a better integer solution. In the maximization problem, the optimal value of LP
relaxation is the upper bound of the IP problem. The objective value of a feasible integer
solution is the lower bound. The branch and bound continues to divide the problem until
it finds the feasible integer solution with a value close to the upper bond. Considering the
same example as the previous section, initially, the problem P0 is not decomposed and
solved directly using the LP relaxation. The objective value from the relaxation, z0, is
considered the upper bound of the maximization problem. The z0 has both variables as
non-integer. Subsequently, the problem is divided into two sub-problems (SPk) to change
the variables to be an integer. The value of x2 lies between x2 = 3 and x2 = 4, therefore
the subproblems are assigned to be x2 ≤ 3 and x2 ≥ 4 .
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Figure 2.6: The first subdividing of the problem. One of the subproblems obtains an integer solution,
while the other still has a continuous variable. However, the branching can be continued because the
z is larger than the lower bound (adapted from Bradley et al. (1977))

If one of the subproblems obtains integer solution, its objective value would be the
lower bound, z. The z keeps updated every time new integer solution is found to be
greater than current z. See enumeration stored in Figure 2.6. First, let consider the branch
from SP1. The value of z = 39. For the next steps, the only considered solution is when
39 ≤ z ≤ 41.25.

The next step is to consider the branch SP2. As shown in Figure 2.7, the solution
in this branch is neither integer nor feasible until it reaches SP5 and SP6. If the SP5 is
computed first, the solution is feasible but not optimal with lower z = 39. Accordingly,
the solution from this subproblem is discarded. New optimal solution is disclosed in SP6

with higher z = 40, thus the new bound is set to be 40 ≤ z ≤ 41.25. The SPk is not
efficiently solvable, if either of the following conditions is met:

1. The (SPk) is infeasible

2. The (SPk) has integer feasible solution

3. The solution of (SPk) is worse than the current z.

To improve problem-solving efficiency, the algorithm discards SPk with any of these
conditions. Note that the SP4 is no longer decomposed because it is infeasible. The same
termination is found in SP1, SP5, and SP6 because those subproblems have found an
integer solution. Therefore, the optimal integer solution is determined by SP6.

2.3 Piecewise Linear Approximation
Piecewise Linear (PWL) approximation is one of the approaches to reformulate a non-
linear function into a linear function. PWL reshapes the non-linear function as a sequence
of linear segments translated into linear functions.

Let f(x) be a 1D non linear function. PWL approximation generates new linear func-
tions g(x) to estimate f(x) by selecting some breakpoints in its domain. The general form
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Figure 2.7: The final enumeration tree of the branch-and-bound method (adapted from Bradley et al.
(1977))

of 1D PWL function are defined as:

g(x) =

n∑
i=1

λi · f(xi)

x =

n∑
i=1

λi · xi

1 =

n∑
i=1

λi

(2.10)

with n as the number of breakpoints and λi is the non-negative weighting factor of breakpoint-
i.

Special Order Set (SOS) Formulation

There are two types of SOS models:

1. SOS1: a set of variables with only one element be a non-zero value

2. SOS2: a set of variables with at most two consecutive elements be a non-zero value

In PWL, the λi is set to be SOS1/SOS2 in order to limit the number of non-zero values
in the breakpoints set. If SOS1 is used, the approximation must only select one point from
the set. If SOS2 is used, the algorithm includes two points in the approximation.
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Illustration

The illustration of the f(x) and PWL approximation g(x) is depicted in Figure 2.8. Sup-
pose a set of breakpoints {x1, x2, x3, x4}. The PWL approximation of this non-linear
function is found to be:

g(x) =


g1(x) x ∈ {x1, x2}.
g2(x) x ∈ {x2, x3}.
g3(x) x ∈ {x3, x4}.

(2.11)

By looking at the expression above and applying λ as SOS2, one only need to use
g2(x), x2 and x3 to approximate f(a). Then, they are defined as:

g2(a) = λ2 · f(x2) + λ3 · f(x3)

a = λ2 · x2 + λ3 · x3
(2.12)

The sum of λi has to be equal to one, with the value of λ1 and λ2 equal to zero.

1 2 3 4 5 6

−1

0

1

x

f(x)

(x1, f(x1))

(x2, f(x2))

(x3, f(x3))

(x4, f(x4))

a

Figure 2.8: 1D PWL approximation of f(x). The dashed lines are the linear functions g(x) esti-
mating the non-linear function in solid line

2.3.1 Piecewise Linear Approximation in Multidimension

The PWL has been applied in research works for multivariate problems. Kosmidis et al.
(2005) formulated an MILP of the gas lift well with two variables; manifold pressure
and the gas injection rate; into a MILP using the PWL. Silva and Camponogara (2014)
performed a comparison study on several multidimensional PWL formulation of a gas-
lifted oil field. Similarly, as the previous section, only the PWL using the SOS formulation
is discussed.

Let f(x, y) be a 2D non linear function and g(x, y) be its PWL approximation. A
set of breakpoints in both x and y direction need to be introduced to construct g(x). The
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general form of 2D PWL function are (Silva and Camponogara, 2014; Hoffmann, 2014):

g(x, y) =

Nx∑
i=1

Ny∑
i=1

λi,j · f(xi, yj)

x =

Nx∑
i=1

Ny∑
i=1

λi,j · xi

y =

Nx∑
i=1

Ny∑
i=1

λi,j · yi

1 =

Nx∑
i=1

Ny∑
i=1

λi,j

ηx,i =

Ny∑
i=1

λi,j ∀i ∈ 1, 2..Nx

ηy,j =

Nx∑
i=1

λi,j ∀∀y ∈ 1, 2..Ny

(2.13)

where Nx and Ny are the number of breakpoints in each direction. ηx and ηy are
additional variables to be defined as either SOS1 or SOS2. These variables restrict the
number of non-zero breakpoints in x and y directions.

Illustration

Figure x visualizes variable grids of 2D PWL. The f(x, y) domain are discretized into a
set of breakpoints in x-direction {x1, x2, x3, x4} and y-direction {y1, y2, y3}. The PWL
approximation constructed from this set is:

g(x, y) =



g1(x, y) x ∈ {x1, x2}, y ∈ {y1, y2}.
g2(x, y) x ∈ {x2, x3}, y ∈ {y1, y2}.
g3(x, y) x ∈ {x3, x4}, y ∈ {y1, y2}.
g4(x, y) x ∈ {x1, x2}, y ∈ {y2, y3}.
g5(x, y) x ∈ {x2, x3}, y ∈ {y2, y3}.
g6(x, y) x ∈ {x3, x4}, y ∈ {y2, y3}.

(2.14)

To approximate the f(a, b), ηx,i and ηy,j are assigned to be SOS2. At most four
neighboring breakpoints are included into the computation. Based on the expression in
Eq. 2.14, it can be solved by applying linear equation g2(x, y) thus only λ2,1, λ2,2, λ3,1,
and λ3,2 are set to be non-zero (Eq. 2.15). Accordingly, ηx,2, ηx,3, ηy,1, and ηy,2 are
considered.

16



2.3 Piecewise Linear Approximation

g2(a, b) = λ2,1 · f(x2, y1) + λ2,2 · f(x2, y2) + λ3,1 · f(x3, y1) + λ3,2 · f(x3, y2)

a = λ2,1 · x2 + λ2,2x2 + λ3,1 · x3 + λ3,2 · x3
b = λ2,1 · y1 + λ2,2y2 + λ3,1 · y1 + λ3,2 · y2

(2.15)

x

y

x1 x2 x3 x4

y1

y2

y3
ηx,2 ηx,3

ηy,1

ηy,2

(a, b)

Figure 2.9: 2D PWL Approximation to estimate f(a, b) (adapted from Hoffmann (2014); Angga
(2019))

Angga (2019) shows that 3D PWL has a similar formulation with 2D PWL. One only
needs to have additional variable of ηz for non-linear function f(x, y, z). Consequently, ηz
also imposes SOS1/SOS2. Therefore, this work implements this formulation for a higher
degree of a non-linear function.
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Chapter 3
Methodology

Figure 3.1: The main workflow of this thesis

In general, this thesis focuses on performing an early development study on Field X. Fig-
ure 3.1 shows the three main stages of the study. The first stage is to build a MILP for
NPV optimization. The goal is to maximize the Net Present Value (NPV) of the field by
adjusting the production splitting of the reservoirs and the drilling schedule. The decision
variables are fluid production rates and the number of wells drilled throughout the field
lifetime.

The optimization uses the proxy models of reservoir model and cost estimation as
the input. The proxy model for the reservoirs implements the production potential from
Alkindira (2019). Cost estimation of the field includes the Capital Expenditure (CapEx),
Drilling Expenditure (DrillEx), and Operational Expenditure (OpEx). The CapEx and
OpEx proxy models are generated from a multivariate linear regression. Once the problem
formulation is completed, the NPV optimization result is compared with another optimiza-
tion routine as a reference case, which applied fixed-well scheduling. This well schedule
is obtained from the original production profile. Therefore, the reference case only adjusts
fluid production profiles.

The next step is to perform another NPV optimization for several water and gas produc-
tion schemes. Different cumulative water and gas productions of the field are generated.
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They are calculated from the available water and gas profile from the original production
plot. Lastly, the effects of uncertainty in oil price, initial oil in place, production poten-
tial, and cost estimation are analyzed. The uncertainty analysis is carried out using the
probability tree approach.

3.1 Production System Proxy Models

The derivation of the production system proxy model is further explained in the special-
ization project of Alkindira (Alkindira, 2019).

Figure 3.2: Production System Layout of Field X (retrieved from Alkindira (2019))

Field X has two reservoirs with nine producer wells; six wells in Reservoir X1 and
three in Reservoir X2. The production of each reservoir is commingled at the separator
(Figure 3.2). Therefore, each reservoir has its production potential and independent of
each other.

The production potential of the production system was derived from the original pro-
duction plot in Figure 3.3. The plot is generated from the reservoir simulator model. The
derivation only employed the data points in the plot where all the producers are in decline
mode (blue region). This region is selected because it represents the trend of production
potential. A curve-fit to production potential from coupled MBAL-GAP model is per-
formed to construct the production potential from the data points. The MBAL-GAP model
is another production system model of Field X employing a material balance approach to
create the reservoir.
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Figure 3.3: Original production plot.

(a) Production potential of Reservoir X1 (b) Production potential of Reservoir X2

Figure 3.4: Constructed production potential derived from the data points

Figure 3.4 shows the production potential for Reservoir X1 and Reservoir X2. The de-
rived production potential was only suitable when all producer wells in the corresponding
reservoir are active or producing. Furthermore, the production potential curve with fewer
producer wells was obtained by multiplying the derived curves with the contributing fac-
tors. Mathematically, it can be defined as :

qopp,n(Np) = fn · qopp,f (Np) (3.1)

With qopp,n as the production potential of a particular producer well status scenario n,
qopp,f (Np) as production potential at a particular Np with all wells in the reservoir active
and fn as the contribution factor of scenario n. In other words, the contribution factor is
also a multiplier factor to the qopp,f (Np) for a certain producer well status scenario. Note
that each scenario has a unique, well status combination. The example of the contributing
factor in Reservoir X1 and its translation are shown in Table 3.1. Similar with qopp, the
water and gas production are modelled as a function of Np only (Figure 3.5). There is no
modification applied for these relationship curves, so they are retrieved directly from the
original production profiles.
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(a) Reservoir X1 (b) Reservoir X2

Figure 3.5: The cumulative water and gas production profiles

Table 3.1: Well status scenario and contribution factors of Reservoir X1. The value ”1” means the
well active and ”0” means the well inactive

n fn W1 W2 W3 W4 W5 W6

1 0 0 0 0 0 0 0
2 0.166 1 0 0 0 0 0
3 0.249 0 1 0 0 0 0
4 0.194 0 0 1 0 0 0
5 0.293 0 0 0 1 0 0
: : : : : : : :
64 1.000 1 1 1 1 1 1

Pipelines connect the wells to manifolds and manifolds to the separator. For each well
status, the field requires a certain pipeline installment. Hence, the assembly of the pipeline
is different between one well status combination and others. Table 3.2 stores the example
of the required pipeline for each scenario and its total length. For example, scenario 2 has
only well 1 producing thus only P12, P12, P24,P4J and P12 should be installed. Therefore,
the total pipeline length of Plsum,2 is 8.5 km.

Table 3.2: Example of the required pipeline for each scenario. Pij is the pipeline connecting joint i
to joint j

P12 P24 P4J P3J PJFPSO P6T P5T PTFPSO P̄ lsum,n n̄
(km) (km) (km) (km) (km) (km) (km) (km) (km)

0 0 0 0 0 0 0 0 0 1
3.1 2.3 2.6 6.5 0.5 0 0 0 8.5 2
0 2.3 2.6 0 0.5 0 0 0 5.5 3
: : : : : : : : : :
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3.2 Cost Proxy Models

3.2 Cost Proxy Models

In general, the cost estimation development requires many detailed aspects (e.g., specific
tool price and cost of injector well) to be considered. It is updated every time a decision
is changed. Nunes et al. (2018) gave an example of a simplified cost estimation based on
historical data for screening field development alternatives. In this work, the cost proxy
model is formulated as a linear function. Therefore, the model can be included in the
optimization problem. The expense for the field development is categorized into four
groups:

1. DrillEx: the cost of drilling well(s).

2. CapEx - Subsea: the cost of subsea equipment such as pipeline, flowline, Xmas tree,
and template.

3. CapEx - Topside: the cost of offshore structure and handling facilities. Both of these
two parameters are considered to be dependent on the fluid capacity. It is modeled
as a function of maximum fluid rates.

4. OpEx: the expense considering all ongoing costs for running the field, such as op-
erator, utilities, supply, and well maintenance cost. It is modeled as a function of
maximum fluid rates and the number of well.

The cost proxy model is built based on the provided data (Table 3.3, Table 3.4, and
Table 3.5). Both CapEx and OpEx are estimated using different fluid rates. These rates are
adjusted to be ±25 % of the maximum fluid rates from the original production plot. This
ensures that the proxy model is compatible for a wider range of fluid capacity. For the cost
that depends on multiple variables, a linear regression is performed to build the function
using Add-in Excel (Cameron, 2009). In general, the multivariate linear regression is
expressed as:

y = α+ β1 · x1 + β2 · x2 + β3 · x3 (3.2)

Where y is the dependent variable, xi is a set of independent variables, α is the y-
intercept, and betai is a set of the coefficient for each xi. In this work, the regression uses
the oil, gas, and water rates as the independent variables.

Table 3.3: The cost of the production system instruments

Well cost (Million NOK/well) 500
Xmas Tree (Million NOK/Xmas Tree) 50
Subsea Template (Million NOK/template) 500
Prodution Line (Million NOK/km) 25
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Table 3.4: The input for CapEx proxy model

Required capacity FPSO Circular FPSO (Sevan)
qo max
(Sm3/d)

qw max
(Sm3/d)

qg max (1000
Sm3/d)

CapEx Topside
(Million NOK)

CapEx Topside (Million
NOK)

13750 13750 6750 16150 17650
13750 13750 4050 15500 17000
13750 8250 6750 15955 17455
13750 8250 4050 15305 16805
11000 13750 6750 13625 15125
11000 13750 4050 12975 14475
11000 8250 6750 13495 14995
11000 8250 4050 12845 14345
8250 13750 6750 11545 13045
8250 13750 4050 10895 12395
8250 8250 6750 11100 12600

Table 3.5: The input for OpEx proxy model

Required capacity FPSO Circular FPSO (Sevan)
qo max
(Sm3/d)

qw max
(Sm3/d)

qg max (1000
Sm3/d)

OpEx Topside
(Million NOK)

OpEx Topside (Million
NOK)

13750 13750 6750 1050 1050
13750 13750 4050 1050 1050
13750 8250 6750 1050 1050
13750 8250 4050 1050 1050
11000 13750 6750 980 980
11000 13750 4050 980 980
11000 8250 6750 980 980
11000 8250 4050 980 980
8250 13750 6750 920 920
8250 13750 4050 920 920
8250 8250 6750 920 920
8250 8250 4050 920 920

3.3 NPV Optimization Formulation
This optimization mainly uses PWL approximation to reduce the complexity of an oil field
problem by transforming it into a simpler linear problem. As mentioned in section 2.1, The
production potential qopp,n acts as a bound to oil rates, and it is a non-linear function de-
pendent to Np and well status (Alkindira, 2019). A particular well combination status zwi

is represented by unique scenario number sn for distinction. Accordingly, a lookup table
is provided to link the well status with a scenario number. This table can be converted to a
linear function by applying a SOS1 constraint. Scenario number also defines the pipeline
length, Pl, if few wells are drilled. Therefore, the PWL Approximation is implemented

24



3.3 NPV Optimization Formulation

to reformulate the non linear function qopp = f(Np, sn), sn = f(zw1, zw2...zwN ) and
Pl = f(sn) with N as the number of well into an MILP.

The objective and related equations

The main purpose of this optimization problem is to maximize the net present value of the
project:

NPV = NPVpreprod +
∑
n∈T

DCFn (3.3)

where n indicates the year and T is all the production years.
NPVpreprod is the development cost before production starts. It includes the expenses

on CapEx. Mathematically, it is expressed as:

NPVpreprod = CapExtopside + CapExsubseapipe (3.4)

CapEx consists of two separate components: Topside and subsea. As mentioned in
section 3.2, the CapEx topside depends on the fluid processing capacity of oil, water and
gas, while the CapEx subsea depends on the pipeline length Pl and the number of xmas
tree. However, the CapEx subsea xmas tree is not included NPVpreprod. Thus, the com-
ponents for NPVpreprod is:

CapExtopside = f(qo,max, qw,max, qg,max)

CapExsubseapipe = f(Pl)
(3.5)

Meanwhile, Discounted Cashflow (DCFn) at particular time n is modelled as the
discounted revenue subtracted with the discounted cost:

DCFn =
Revenuen − Costn

(1 + disc)n
(3.6)

The revenue at year n is the return obtained from the field oil production at that partic-
ular year only, ∆Np,n, while assuming that the oil price Po remains constant throughout
the production times. The revenue can be written as:

Revenuen = Po ·XR · V C ·∆Np,n (3.7)

where XR is the exchange rate from USD to NOK and V C is the volume conversion.
Generally, ∆Np,n are determined from the oil production rates of both X1 and X2. The
equations related to the field oil production computation are:

∆Np,n =
360 · qo,X1,n−1 + 360 · qo,X2,n−1

1E06
Np,X1,n = Np,X1,n−1 + 360 · qo,X1,n−1

Np,X2,n = Np,X2,n−1 + 360 · qo,X2,n−1

(3.8)
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where qo,X1,n is oil rate at year n and Np,X1,n is the cumulative oil production after
producing for n years from reservoir X1. The same definition is applied to reservoir X2.
Similarly, the cumulative gas and water production are determined from the corresponding
fluid production rates:

Gp,X1,n = Gp,X1,n−1 + 360 · qg,X1,n−1

Wp,X1,n = Wp,X1,n−1 + 360 · qw,X1,n−1
(3.9)

where qg,X1,n−1 and qw,X1,n−1 is gas and water rate at year n of reservoir X1, while
Gp,X1,n and Wp,X1,n is the cumulative gas and water production respectively after pro-
ducing for n years from reservoir X1 also. The similar expression is applied to reservoir
X2.

The expenses after the production starts are originated from the cost of drilling new
wells (DrillEx), OpEx and the installation of new xmas tree (or the CapEx subsea xmas
tree):

Costn = DrillExn +OpExn + CapExsubseaxt,n

DrillExn = f(Nw,d,n)

CapExsubseaxt,n = f(Nw,d,n)

OpExn = f(Nw,F,n, qo,F,n, qw,F,n, qg,F,n)

(3.10)

where qo,F,n, qw,F,n, qg,F,n are the field oil, water and gas production, respectively,Nw,d,n

is the the number of well drilled. Nw,F,n is the number of wells in the field expressed as:

Nw,F,n = Nw,X1,n +Nw,X2,n (3.11)

where Nw,X1,n and Nw,X2,n is the number of well in reservoir X1 and X2 respectively.

Optimization Variables

The optimization is carried out by changing:

• the oil production rates per year per reservoir, qo,X1,n and qo,X2,n.

• the status of each well in each time step, zwi,n where i ∈ {1, 2, ..., 6} for reservoir
X1 and zwj,n where j ∈ {7, ..., 9} for reservoir X2 . All the well statuses are binary
(0-1).

Optimization Constraints

The optimization problem is subject to the following constraints:

∀n ∈ T :

• The oil production rates should not be greater than the production potential of each
reservoir:

qo,X1,n ≤ qopp,X1,n

qo,X2,n ≤ qopp,X2,n

(3.12)
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qopp,X1,n and qopp,X2,n are the potential oil rates at time step n for reservoir X1 and
X2.

• Maximum number of wells (for borth reservoirs) allowed to drill each year is three,
and it is not allowed to shut down wells:

0 ≤ Nw,F,n −Nw,F,n−1 ≤ 3 (3.13)

• Relationship between the number of wells and the well status:

Nw,X1,n =
∑

i={1,2,...,6}

zwi,n

Nw,X2,n =
∑

j={7,..9}

zwj,n

(3.14)

• Once a well is activated (drilled), it should not be shut down:

zwi,n ≥ zwi,n−1

zwj,n ≥ zwj,n−1

∀i ∈ {1, 2, ..6}
∀j ∈ {7, ..., 9}

(3.15)

• The production oil, gas and water capacities of the procession facilities are obtained
as follow:

qo,max ≥ qo,F,n

qg,max ≥ qg,F,n

qw,max ≥ qw,F,n

(3.16)

where qo,F,n, qg,F,n and qw,F,n are the field oil, gas and water production rates
respectively.

• The number of well in reservoir X1 has to be greater than 3.

The potential oil rates of each reservoir is a non-linear function of the cumulative oil
produced from each reservoir and status of wells in that reservoir:

∀i ∈ {1, 2, ..6} :

qopp,X1,n = f(Np,X1,n, zwi,n)

∀j ∈ {7, ..., 9} :

qopp,X2,n = f(Np,X2,n, zwj,n)

(3.17)

Meanwhile, the Gp and Wp are non-linear functions of the cumulative oil produced only
from each reservoir. Table 3.6 shows the example of reservoir X1.
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Table 3.6: The production potentials illustration of Reservoir X1

zw1 zw2 zw3 zw4 zw5 zw6 Np qopp,X1 Gp,X1 WpX1

0 0 0 0 0 0 0 0 0 0
...

...
...

...
...

...
...

...
...

...
0 0 0 0 0 0 21.9 0 25839.5 19.07
1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 4.2 2301.31 1673.6 1.26
1 0 0 0 0 0 7.1 1445.49 2973.43 2.86
...

...
...

...
...

...
...

...
...

...
1 1 1 1 1 1 0 24010.6 0 0
1 1 1 1 1 1 4.2 13832.7 1673.6 1.26
...

...
...

...
...

...
...

...
...

...

3.3.1 Formulation
The formulation of the problem is further explained in the following.

Objective function

The main purpose of this optimization problem is to yield the highest NPV. Therefore, the
objective function can be expressed as:

Maximize NPV (3.18)

Sets

• T = {0, 1...nt} is set of timestep where nt is number of years

• R: Set of reservoirs {1, 2}.

• S: set of well status breakpoints {1, 2}.

• iNp = {1, ..., bpnp}: Set of Np breakpoint, with bpnp as number of Np breakpoint
used for PWL

• isn[ir]= {1, ..., bpsn[ir]}: Set of the sn breakpoints with bpsn[ir] as the number of
scenario breakpoints for reservoir-ir. Reservoir X1 reduces the number of scenarios
used for qopp = f(Np, sn). It is decided that scenario with Nw less than 3 in
reservoir X1 is discarded to improve the computational efficiency. Reservoir X1
have 43 scenarios instead of 64, while Reservoir X2 uses 8 scenarios.

Indices

The followings are the indices used in the sets:

• ir : reservoir in R
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• n : time in T .

• k : cumulative oil production in iNp.

• l : scenario number in isn[ir of reservoir-ir.

• m : scenario number in isn[ir defining the pipeline length.

• a : well 1 status in S.

• b : well 2 status in S.

• c : well 3 status in S.

• d : well 4 status in S.

• e : well 5 status in S.

• f : well 6 status in S.

• g : well 7 status in S.

• h : well 8 status in S.

• i : well 9 status in S.

Parameters

A fixed value in the optimization problem is called parameter. It consists of breakpoints
data used during PWL approximation and general data that is not change during the com-
putation. The parameters are classified into four segments:

1. General parameters:

• Nw,peryear: max number of new wells in a year (3 wells).

• Nw,pd: number of predrilled wells (3 wells).

• Po: Oil Price (60 USD/bbl).

• xr: Currency exchange rate from USD to NOK (8.5).

• V C: Volume conversion ratio from Sm3 to bbl (6.29).

• Pwell: the drilling cost per well.

• PX : the installment cost per one X-mas tree

• Ppipe: the cost of pipeline installment.

• PCapex,i: coeffiecient of linear function CapEx with i ∈ {1, 2, 3, 4}.
• POpex,i: coeffiecient of linear function OpEx i ∈ {1, 2, 3, 4, 5}.

2. Parameters for the scenario lookup tables:

• z̄w1,a,b,c,d,e,f : Binary variable for well 1 status at breakpoint (a,b,c,d,e,f). The
well status lookup tables (Table 3.7) is modelled with 6D PWL approximation.
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• z̄w2,a,b,c,d,e,f : The status of well 2 at breakpoint (a,b,c,d,e,f).

• z̄w3,a,b,c,d,e,f : The status of well 3 at breakpoint (a,b,c,d,e,f).

• z̄w4,a,b,c,d,e,f : The status of well 4 at breakpoint (a,b,c,d,e,f).

• z̄w5,a,b,c,d,e,f : The status of well 5 at breakpoint (a,b,c,d,e,f).

• z̄w6,a,b,c,d,e,f : The status of well 6 at breakpoint (a,b,c,d,e,f).

• s̄nx1,a,b,c,d,e,f : the scenario number of reservoir X1 at breakpoint (a,b,c,d,e,f).
It is important to note that the scenario number is a function of unique well
status zwi combination.

Table 3.7: The look up table illustration for Reservoir X1, snx1(zw1, zw2, zw3, zw4, zw5, zw6).
This table stores all combinations of the well status and its scenario number

a b c d e f ¯zw1 ¯zw2 ¯zw3 ¯zw4 ¯zw5 ¯zw6 ¯snx1

1 1 1 1 1 1 0 0 0 0 0 0 1
2 1 1 1 1 1 1 0 0 0 0 0 2
: : : : : : : : : : : : :
2 2 2 2 2 2 1 1 1 1 1 1 64

Table 3.8: The look up table illustration for Reservoir X2, snx2(zw7, zw8, zw9)

g h i ¯zw7 ¯zw8 ¯zw9 ¯snx2

1 1 1 0 0 0 1
2 1 1 1 0 0 2
: : : : : : :
2 2 2 1 1 1 8

• z̄w7,g,h,i: Binary variable representing the status of well 7 at breakpoint (g,h,i)
in the lookup tables for reservoir X2 (Table 3.8). The table reformulated with
3D PWL approximation.

• z̄w8,g,h,i: The status of well 8 at breakpoint (g,h,i).

• z̄w9,g,h,i: The status of well 9 at breakpoint (g,h,i).

• s̄nx2,g,h,i: the scenario number of reservoir X2 attained at breakpoint (g,h,i)
defined by unique well status combination.

3. Parameters related to 2D PWL approximation of qopp = f(Np, sn) and other prop-
erties that depends on the Np and sn (Table 3.9):
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Table 3.9: The illustration for 2D PWL approximation data

ir k l N̄p (M Sm3) s̄n ¯qopp (Sm3/d) Ḡp W̄p

1 1 43 0 1 0 0 0
1 2 43 4.16 1 0 1673.6 1.26
1 3 43 7.08 1 0 2972.4 2.85
1 4 43 10.12 1 0 4650.4 5.035448
1 5 43 15.00 1 0 10523.2 9.62
1 6 43 18.51 1 0 17247.8 13.79
1 7 43 21.73 1 0 25839.5 19.07
1 1 1 0 23 12386.6 0 0
1 2 1 4.16 23 7136.0 1673.6 1.26
...

...
...

...
...

...
...

...
1 6 42 18.51 64 1515.9 17247.87 13.79
1 7 42 21.73 64 943.8 25839.5 19.07
2 1 1 0 50 0 0 0
2 2 1 1.01 50 0 106.7 0.044
...

...
...

...
...

...
...

...

• N̄p,ir,k,l: The cumulative oil production of reservoir-ir at breakpoint (k,l).
Index-k represents the breakpoint for Np.

• s̄nir,k,l: The scenario number for production potential curve of reservoir-ir at
breakpoint (k,l).

• q̄opp,ir,k,l: The production potential of reservoir-ir. The value of qopp is differ-
ent as a subject to the Np and sn.

• Ḡp,ir,k,l: The cumulative gas production of reservoir-ir. Here, it is defined to
be a subject to Np and sn.

• W̄p,ir,k,l: The cumulative water production of reservoir-ir as a subject to the
Np and sn.

4. Parameters related to 1D PWL approximation of pipeline length P̄ l = f(sn) (Table
3.10):

Table 3.10: The illustration for 1D PWL approximation P̄ l = f(sn)

ir m s̄n P̄ lsum

1 1 1 0
1 2 23 15
1 3 24 8.5
: : : :
2 1 1 0
2 2 2 17
: : : :
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• P̄ lsum,ir,m: The total length of pipeline connecting wells in reservoir-ir to
separator at breakpoint-m.

• s̄npipe,ir,m: The scenario number for P̄ l = f(sn) at breakpoint-m.

Variables

Variables are adjustable element in the optimization. It is changed to yield the optimum
objective value. Note that most of the variables in this optimization are non negative,
except DCF and NPV . Other than the variables declared as integer or binary, all the
variables are continuous number. Furthermore, the variables are listed as:

• Nw,F,n ∈ Z: total number of well of the field at time-n.

• Nw,ir,n ∈ Z, : total number of well of reservoir-ir at time-n.

• qo,F,n: field oil production rate at time-n.

• qo,ir,n: oil production rate of reservoir-ir at time-n.

• qg,ir,n: gas production rate of reservoir-ir at time-n.

• qw,ir,n: water production rate of reservoir-ir at time-n.

• qopp,ir,n: production potential rate of reservoir-ir at time-n.

• Np,ir,n: cumulative oil production of reservoir-ir at time-n.

• snir,n ∈ Z: scenario number of reservoir-ir at time-n.

• Gp,ir,n: cumulative gas production of reservoir-ir at time-n.

• Wp, ir, n: cumulative water production of reservoir-ir at time-n.

• Np, F, n: total cumulative oil production of the field at time-n.

• zw1,n ∈ {0, 1}: status of well 1 at time-n.

• zw2,n ∈ {0, 1}: status of well 2 at time-n.

• zw3,n ∈ {0, 1}: status of well 3 at time-n.

• zw4,n ∈ {0, 1}: status of well 4 at time-n.

• zw5,n ∈ {0, 1}: status of well 5 at time-n.

• zw6,n ∈ {0, 1}: status of well 6 at time-n.

• zw7,n ∈ {0, 1}: status of well 7 at time-n.

• zw8,n ∈ {0, 1}: status of well 8 at time-n.

• zw9,n ∈ {0, 1}: status of well 9 at time-n.
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• pipeir,n: total length of the pipeline connected to reservoir-ir at time-n.

• pipemax: maximum pipeline length in the field.

• qo,max: maximum oil production rate.

• qw,max: maximum water production rate.

• qg,max: maximum gas production rate.

• PVtop: present value representing CapEx Topside in Million NOK.

• PVop,n, ∀n ∈ {1, 2, ..., nt}: present value representing OpEx at time-n in Million
NOK.

• PVd,n: present value representing DrillEx at time-n in Million NOK.

• PVsub,n: present value representing CapEx Topside at time-n in Million NOK.

• PVr,n, ∀n ∈ {1, 2, ..., nt}: present value representing revenue at time-n in Million
NOK.

• DCFn: discounted cash flow at time-n in Million NOK.

• NPV : net present value in Million NOK.

Variables induced by PWL approximation constraints:

• Auxiliary variables for a particular well status in Reservoir X1. They enforce the
SOS1 constraint for 6D PWL Approximation of the lookup table at time-n:
ηzw1,n,a, ηzw2,n,b, ηzw3,n,c, ηzw4,n,d, ηzw5,n,e, and ηzw6,n,f

• λx1,n,a,b,c,d,e,f : The weighting coefficient of breakpoints (a,b,c,d,e,f) in the 6D
PWL Approximation at time-n.

• Auxiliary variables for a particular well status in reservoir X2. They impose the
SOS1 constraint for 3D PWL Approximation of the lookup table at time-n:
ηzw7,n,g ,ηzw8,n,h, and ηzw9,n,i

• λx2,n,g,h,i: The weighting coefficient of breakpoints (g,h,i) in the 3D PWL Approx-
imation at time-n.

• Auxiliary variables for a particular sn andNp of reservoir-ir at time-n. They impose
the SOS1/SOS2 constraint for the 2D PWL Approximation:
ηsn,ir,n,l and ηNp,ir,n,k.

• λqopp,ir,n,k,l: The weighting coefficient of breakpoints (k,l) in the 2D PWL Approx-
imation correspond to reservoir-ir at time-n.

• λpipe,ir,n,m: The weighting coefficient of breakpoint-m in the 1D PWL Approxi-
mation correspond to reservoir-ir at time-n.
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Inequality Constraints

The inequality constraints enclose the condition that may be binding or not binding as long
as the criteria are fulfilled. In particular, binding means enforcing the condition to be the
same. The inequality constraints are typically used to bound certain variables.

The oil rates are bounded to be less than or equal to the production potential:

qo,ir,n ≤ qopp,ir,n ∀n ∈ T, ∀ir ∈ R (3.19)

It is assumed that qopp,n and qo,n are remained constant from n to n− 1.
The maximum fluid production rates are required to determine the CapEx Topside. It

is defined that any rate in the entire years does not exceed the maximum production rates:

qo,F,n ≤ qo,max ∀n ∈ T∑
i∈R

qg,ir,n ≤ qg,max ∀n ∈ T∑
i∈R

qw,ir,n ≤ qw,max ∀n ∈ T

(3.20)

The optimization restricts the value of maximum rates to be the highest rates of the field
such that Equation 3.20 is satisfied.

The zwi,n are the binary variables representing the status of well-i. The zwi,n equal to
1 means that the well-i is drilled or active, while zwi,n equals to 0 indicates that the well-i
not drilled or inactive. Once a well is drilled, it could not be undrilled. Then, the well
should be present in the following years:

zw1,n − zw1,n−1 ≥ 0

zw2,n − zw2,n−1 ≥ 0

zw3,n − zw3,n−1 ≥ 0

: : : : :

zw9,n − zw9,n−1 ≥ 0

∀n ∈ {1, .., nt}

(3.21)

Note that Equation 3.21 is applied to all well status zwi,n.
Consequently, the number of wells in each reservoir cannot be reduced:

Nw,ir,n −Nw,ir,n−1 ≥ 0 ∀ir ∈ R ∀n ∈ {1, .., nt} (3.22)

The number of well allowed to be drilled at the early time is not more than the number
of pre-drilled well:

Nw,F,1 ≤ Nw,predrilled (3.23)

In the following years, the field should add at most three wells per year:

Nw,F,n −Nw,F,n−1 ≤ Nw,peryear ∀ir ∈ R ∀n ∈ {2, .., nt} (3.24)
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When new wells are drilled, there are two possibilities; installing another pipeline
installed or just making use of the existing pipelines. Either way, the length of the pipeline
used in the field does not decrease. Therefore, the same constraint as Eq. 3.22 is applied
to the pipeline length:

Pipeir,n − Pipeir,n−1 ≥ 0 ∀ir ∈ R ∀n ∈ {2, .., nt} (3.25)

The maximum pipeline length are required to determine the CapEx subsea. Similar to
Eq- 3.20, the maximum pipeline length imposes the following:∑

i∈R
pipeir,n ≤ pipemax ∀n ∈ T (3.26)

Equality Constraints

Equality constraints strictly enforce the variable to be a specific condition or value (bind-
ing). The equality constraints are mostly used to determine the equations that calculate
certain variables, e.g., field cumulative oil production and the number of wells.

In the beginning, the field does not have any oil production. Thus, the cumulative oil
production is initiated as:

Np,ir,0 = 0 ∀ir ∈ R (3.27)

The common way to compute gas rate qg is by multiplying the oil rate and Gas Oil Ratio
(GOR). However, by multiplying two variables, the problem becomes non-linear. One ap-
proach is to use the PWL approximation for GOR as a function ofNp and thus determined
the qg from 2D PWL approximation qg = f(qo, GOR) (González et al., 2020). Another
approach is to compute qg from cumulative production potential, Gp = f(Np). The op-
timization finds the gas rate that would give the corresponding value of Gp. The second
approach withGp is preferred due to faster computation and comparable results as the first
approach (Angga, 2019). Therefore, it is decided to use cumulative production to calculate
qg . This approach is also applied to determine the qw.

All cumulative production terms are approximated using the forward integration as:

Np,ir,n = Np,ir,n−1 +
qo,ir,n−1 · 365

106

Gp,ir,n = Gp,ir,n−1 +
qg,ir,n−1 · 365

103

Wp,ir,n = Wp,ir,n−1 +
qw,ir,n−1 · 365

106

∀ir ∈ R, ∀n ∈ {1, .., nt}

(3.28)

Since the well status is a binary, the total number of well of a particular reservoir can be
directly expressed as the summation of the well status in the corresponding reservoir:

Nw,1,n = zw1,n + zw2,n + zw3,n + zw4,n + zw5,n + zw6,n

Nw,2,t = zw7,n + zw8,n + zw9,n

∀t ∈ T
(3.29)
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For all variables related to a field, it is the summation product of the variable of each
reservoir:

qo,F,n =
∑
i∈R

qo,ir,n ∀n ∈ T ir ∈ R (3.30)

Nw,F,n =
∑
i∈R

Nw,ir,n ∀n ∈ T ir ∈ R (3.31)

Np,F,n =
∑
i∈R

Np,ir,n ∀n ∈ T ir ∈ R (3.32)

PWL Approximation Constraints

Four groups of PWL approximation are listed as below:

1. A lookup table is used to find the scenario number’s translation to the well-status
combination. Well status only have 2 possible values; 1→ positive and 0→ inactive.
The scenario number sn is non-linearly dependent on the unique combination of
well status. It is important to define which well are producing in order to impose
Eq. 3.21 and maintain well scheduling consistency. 6D PWL Approximation for
Reservoir X1 is used to model the non-linear function snx1(zw1, zw2, . . . , zw6).

The formulation of this multidimensional PWL adapts the standard form of 2D PWL
introduced in section 2.3.1. Now, the formulation adds more variables of η to im-
pose SOS1 constraint in each dimension. The following represents the 6D PWL
constraints for three of six wells:

∀n ∈ T :

sn1,n =
∑
a∈S

∑
b∈S

∑
c∈S

∑
d∈S

∑
e∈S

∑
f∈S

λx1,n,a,b,c,d,e,f · s̄nx1,a,b,c,d,e,f (3.33)

zw1,n =
∑
a∈S

∑
b∈S

∑
c∈S

∑
d∈S

∑
e∈S

∑
f∈S

λx1,n,a,b,c,d,e,f · z̄w1,a,b,c,d,e,f (3.34)

zw2,n =
∑
a∈S

∑
b∈S

∑
c∈S

∑
d∈S

∑
e∈S

∑
f∈S

λx1,n,a,b,c,d,e,f · z̄w2,a,b,c,d,e,f (3.35)

zw3,n =
∑
a∈S

∑
b∈S

∑
c∈S

∑
d∈S

∑
e∈S

∑
f∈S

λx1,n,a,b,c,d,e,f · z̄w2,a,b,c,d,e,f (3.36)

ηzw1,n,a =
∑
b∈S

∑
c∈S

∑
d∈S

∑
e∈S

∑
f∈S

λx1,n,a,b,c,d,e,f ∀a ∈ S (3.37)

ηzw2,n,b =
∑
a∈S

∑
c∈S

∑
d∈S

∑
e∈S

∑
f∈S

λx1,nt,a,b,c,d,e,f ∀b ∈ S (3.38)

ηzw3,n,c =
∑
a∈S

∑
b∈S

∑
d∈S

∑
e∈S

∑
f∈S

λx1,n,a,b,c,d,e,f ∀c ∈ S (3.39)
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1 =
∑
a∈S

∑
b∈S

∑
c∈S

∑
d∈S

∑
e∈S

∑
f∈S

λx1,n,a,b,c,d,e,f (3.40)

{ηzw1,n,a, ηzw2,n,b, and ηzw3,n,c, ∀a, b, c ∈ S}is SOS1 (3.41)

By setting all the set of ηzwi to SOS1, it ensures that values of variable zwi,n are
chosen among the breakpoints. Therefore, the scenario number would only be trans-
lated based on the defined well status combination.

2. 3D PWL Approximation is implemented to model the lookup table for the three
wells statuses of reservoir X2 . Again, the formulation of this multidimensional
PWL modifies the standard form in section 2.3.1. The following shows the 3D
PWL constraints:

∀n ∈ T :

sn2,n =
∑
g∈S

∑
h∈S

∑
i∈S

λx2,n,g,h,i · s̄nx2,g,h,i (3.42)

zw7,n =
∑
g∈S

∑
h∈S

∑
i∈S

λx2,n,g,h,i · z̄w7,g,h,i (3.43)

zw8,n =
∑
g∈S

∑
h∈S

∑
i∈S

λx2,n,g,h,i · z̄w8,g,h,i (3.44)

zw9,n =
∑
g∈S

∑
h∈S

∑
i∈S

λx2,n,g,h,i · z̄w9,g,h,i (3.45)

ηzw7,n,g =
∑
h∈S

∑
i∈S

λx2,n,g,h,i g ∈ S (3.46)

ηzw8,n,h =
∑
g∈S

∑
i∈S

λx2,n,g,h,i h ∈ S (3.47)

ηzw9,n,i =
∑
i∈S

∑
i∈S

λx2,n,g,h,i i ∈ S (3.48)

1 =
∑
g∈S

∑
h∈S

∑
i∈S

λx2,n,g,h,i (3.49)

{ηzw7,n,g, ηzw8,n,h, and ηzw9,n,h, ∀a, b, c ∈ S}is SOS1 (3.50)

3. Production potential is non-linearly dependent on Np and sn. Alkindira (2019)
determined the qopp,t at certain Np for any combination of sn by multiplying the
f(sn) with the qopp,64 (see section 3.1). To cope with this, the qopp(Np, Sn) is pre-
calculated for every Np and sn before included into the formulation. Subsequently,
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the non-linear function qopp(Np, Sn) can reformulated directly using 2D PWL Ap-
proximation. The constraints for the qopp(Np, Sn) formulation are:

∀n ∈ T and ∀ir ∈ R :

qopp,ir,n =
∑

k∈iNp

∑
l∈isn[ir]

λqopp,ir,n,k,l · q̄opp,ir,k,l

snir,t =
∑

k∈iNp

∑
l∈isn[ir]

λqopp,ir,n,k,l · s̄nir,k,l

Np,ir,t =
∑

k∈iNp

∑
l∈isn[ir]

λqopp,ir,n,k,l · N̄p,ir,k,l

ηNp,ir,n,k =
∑

l∈isn[ir]

λqopp,ir,n,k,l ∀k ∈ iNp

ηsn,ir,n,l =
∑

k∈iNp

λqopp,ir,n,k,l ∀l ∈ isn[ir]

1 =
∑

k∈iNp

∑
l∈isn[ir]

λqopp,ir,n,k,l

(3.51)

{ηsn,ir,n,l, ∀l ∈ isn[ir]}is SOS1
{ηNp,ir,n,k, ∀l ∈ iNp}is SOS2

(3.52)

The scenario number is iteratively picked among the defined selection and the in-
terpolation is executed between the Np of the particular sn. Only ηsn,ir,n,l imposes
SOS1 constraint.

The Wp and Gp are solely dependent on the Np, but stay the same for any scenario
number. Instead of creating another PWL approximation for these two variables, the
Wp and Gp are included to the 3D Approximation and determined using the same
λqopp,ir,n,k,l. This is to reduce the number of variables in the optimization. The Gp

and Wp are expressed as:

Gp,ir,t =
∑

k∈iNp

∑
l∈isn[ir]

λqopp,ir,n,k,l · Ḡp,ir,k,l ∀n ∈ T ∀ir ∈ R (3.53)

Wp,ir,t =
∑

k∈iNp

∑
l∈isn[ir]

λqopp,ir,n,k,l · W̄p,ir,k,l ∀n ∈ T ∀ir ∈ R (3.54)

4. Lastly, this optimization employs 1D PWL Approximation to find the pipe length
for a particular sn. The total length of pipeline is pre-calculated based on the con-
figuration of the required pipeline connecting the separator and the wells for each
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scenario (Table 3.2). Again, this PWL approximation has SOS1 constraint:

∀n ∈ T and ∀ir ∈ R :

Pipeir,t =
∑

m∈isn[ir]

λpipe,ir,n,m · P̄ lsum,ir,m

snir,t =
∑

m∈isn[ir]

λpipe,ir,n,m · s̄npipe,ir,m

1 =
∑

m∈isn[ir]

λpipe,ir,n,m

(3.55)

{λpipe,ir,n,m, ∀m ∈ isn[ir]}is SOS1 (3.56)

Economic Constraints

These constraints are composed based on the cost proxy model in section 3.2. the price
(i.e. Pwell, PX and Ppipe included in the cost constraints are obtained from Table 3.3.
The coefficient of CapEx and OpEx in the cost constraints are obtained through linear
regression. Several assumptions made to the constraints are:

• Drillex is computed when the well starts producing on that year

• CapEx Topside and Pipeline is made at year “0” or the beginning of production.

• CapEx X-mas tree is computed when the well starts producing

• OpEx and Revenue start at year “1” when the field has operated for one year

The following is the list of economic constraints:

1. DrillEx

At the beginning (t = 0), the cost of drilling the predrilled wells is expressed as:

PVdp,0 = Pwell ·Nw,F,0 (3.57)

Starting from the t = 1 year, the cost of drilling additional wells of each year is
formulated as:

PVd,n = Pwell · (Nw,F,n −Nw,F,n−1) ∀n ∈ {1..nt} (3.58)

The additional wells are calculated from the difference in the number of well be-
tween the two consecutive years:

2. CapEx Subsea

The payment of the pipeline installment takes place at the beginning of production,
thus it directly calculate cost of the maximum pipeline length. On the other hand,
the schedule of the X-mas tree payment follows DrillEx’s schedule. The CapEx
Subsea is expressed as:

PVsub,0 = Ppipe · pipemax + PX ·Nw,F,0

PVsub,n = PX · (Nw,F,n −Nw,F,n−1) ∀n ∈ {1..nt}
(3.59)
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3. CapEx Topside The CapEx Topside depends on the maximum oil, water and gas
rates:

PVtop = PCapex,1 + PCapex,2 · qo,max

+ PCapex,3 · qw,max + PCapex,4 · qg,max

(3.60)

CapEx Topside only has one value since it is fully paid at the beginning of the
production.

4. OpEx

The operating expense is paid after one year of production or at the end of the year.
Thus, it is computed using the variables from the previous year , n−1. The operating
cost per year can be determined as:

PVop,n =POpex,1 + POpex,2 ·Nw,F,n−1 + POpex,3 · qo,ir,n−1 + ...

POpex,4 · qw,ir,n−1 + POpex,5 · qg,ir,n−1 ∀n ∈ {1..nt}
(3.61)

5. Revenue

By considering the exchange rate xr, volume conversion V C and oil price Po, the
revenue per year is computed as:

PVr,n = Po ·XR · V C · (Np,F,n −Np,F,n−1) ∀n ∈ {1..nt} (3.62)

The return of this field only comes from the sales of cumulative oil production. The
revenue is inputted from yearly production which is the difference between Np,n

and Np,n−1 .

6. Discounted Cash Flow (DCF) and NPV

The DCF are segmented into two parts:

DCF0 = −(PVtop + PVd,0 + PVsub,0)

DCFn =
PVr,t − PVop,t − PVd,t − PVsub,n

(1 + disc)n
n ∈ {1..nt}

(3.63)

Lastly, the NPV is the summation of the DCF set:

NPV =
∑
n∈T

DCFn (3.64)

3.4 Setting up the Optimization
The optimization is executed using a tool called AMPL. AMPL is a modeling language
widely used for setting up optimization problems, e.g., production distribution and schedul-
ing. The way the problem created is practical because it uses similar algebraic notation
used in mathematical programming (AMPL, 2020). Many powerful solvers are available
in this tool. This optimization chooses GUROBI as the solver for the MILP. In general, the
AMPL user divides the problem formulation into several files with different information.
In this work, the formulation presented in the previous section is segmented into five file
categories:
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3.4 Setting up the Optimization

• case.mod: .mod file stores the main formulation. All variables, constraints, param-
eters, and objective functions are declared in this file.

• combinationfactor.dat: a file with .dat extension saves the parameter data imple-
mented in the problem. This data file contains the lookup table data, nt, nr, Nw,py

and Nw,pd.

• PWL Table x.dat: this data file consists of data related to the 2D PWL approxi-
mation, including the number of Np and sn breakpoints.

• Econ.dat: it stores data related to economic constraints.

• Case x.run: the .run file put all .mod and .dat files together. It states the se-
lected solver along with its solver option for customization. It also declares the
SOS1/SOS2 constraints and states which variables and parameters supposed to be
displayed as the output.

• log.tmp: This file prints the result and the log messages during the computation.

3.4.1 Selecting the Breakpoints

The selection of the breakpoints plays a vital role in the computational efficiency of PWL
Approximation. A large number of breakpoints have presentable non-linear behavior but
much slower computation. In contrast, reducing the breakpoints shortens the running time,
but the result is less accurate.

Table 3.11: List of cases for evaluating number of breakpoints

Number of Breakpoints Case ID

5 Case5bp
7 Case7bp
10 Case10bp
15 Case15Bp

This section determines the optimal breakpoints selection with a shorter run time and
an average error of less than 10% compared to the reference result. The error is calculated
for the NPV and phase production rates. The optimization has a fixed drilling schedule
(i.e., scenario number). Thus, only NPV and oil rates are assessed. The cases for this
study are listed in Table 3.11. The author wisely selected the breakpoints to fit the non-
linear curve of qopp vs. Np. The reconstructed curves with the corresponding number of
breakpoints are shown in Figure 3.6.
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Figure 3.6: The reconstructed production potential with 5, 7, 10 and 15 breakpoints

3.4.2 NPV Optimization Cases

In this section, two optimization cases being compared are:

• Case1: maximizing NPV by changing the production schedule and drilling sched-
ule. The decision variables are Oil production rates and the number of well

• Case2: maximizing NPV by changing only the production schedule. The decision
variable is oil production rates.

Case2 employs the drilling schedule from the original plot. The input for this case can
be seen in Table 3.12. The objective is to compare the NPV of the two results. Case1 is
expected to have higher NPV since it has more decision variables to adjust.

Table 3.12: The drilling schedule for Case2

Year Active wells Timestep Scenario X1 Scenario X2

2025 1, 2, 4 0 24 1
2026 1, 2, 4, 5, 6, 7 1 61 2
2027 1, 2, 3, 4, 5, 6, 7, 8, 9 2 64 8
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3.5 NPV Optimization for Different Cumulative Gas and
Water Production Profiles

The cumulative water and gas production is computed as a function of cumulative oil
production only. However, the Wp and Gp profiles of the field are not fixed but change
depending on the well scheduling. Each well has a separate WC and GOR profiles (See
Figure 3.7), which might be caused by the well’s location in the reservoir model.

(a) GOR (b) Water Cut

Figure 3.7: GOR and Water Cut of the wells in Reservoir X1

In this section, severalWp andGp curves of each reservoir are generated usingWp and
Gp of the well. In this regard, the upper and lower limit of Wp and Gp can be computed.
Another NPV optimization routine is performed by employing these curves to determine
which curve has the highest and lowest NPV. Moreover, the GOR and WC from the NPV
result are computed to assess the generated Wp and Gp curves. The workflow of this
section is illustrated in Figure 3.8.

Figure 3.8: The workflow of running NPV optimization with different Wp and Gp curves

3.5.1 Formulation for Generating New Gas and Water Cumulative
Production

The curves are computed through an optimization routine. Again, the PWL Approximation
is employed to transform the optimization problem into MILP. The problem includes some
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non-linear functions, e.g. Wp,wellj = f(Np,wellj) and Gp,wellj = f(Np,wellj). with
j ∈ {1, 2, ..., 9}.

Objective

In this optimization, the highest and lowest bound ofWp andGp are determined. BothWp

andGp are dependent onNp, thus it might not possible to find the profile that maximize or
minimize water and gas production at the same time. To capture all the possible bounds,
six extreme cases are formulated along with its objective function:

• Maximizing Water and Gas Production case (MaxWpGp)

Maximize Gp,total +Wp,total (3.65)

• Minimizing Water and Gas Production case (MinWpGp)

Minimize Gp,total +Wp,total (3.66)

• Maximizing Gas Production case (MaxGp)

Maximize Gp,total (3.67)

• Maximizing Water Production case (MaxWp)

Maximize Wp,total (3.68)

• Minimizing Gas Production case (MinGp)

Minimize Gp,total (3.69)

• Minimizing Water Production case (MinWp)

Minimize Wp,total (3.70)

Sets

• iNp : the set of Np reservoir breakpoints {1, 2, ..., 15}. Both reservoir use the same
number of breakpoints.

• I: is the set of Np well breakpoints {1, 2, ..., 15}. All wells have the same number
of breakpoints.

Parameters

• Np,x1,k, ∀k ∈ iNp : the predefined oil cumulative production of Reservoir X1 at
breakpoint-k. The optimization determines the Gp and Wp at this particular Np,k.
The values of Np,x1,k get higher for increasing k.
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• Np,x2,k, ∀k ∈ iNp : the predefined oil cumulative production of Reservoir X2 at
breakpoint-k. The values of Np,x2,k get higher for increasing k.

• Some of the parameters are the breakpoints of all linear function. The following are
the examples for some of the wells:

– Ḡp,w1,i, ∀i ∈ I: the gas cumulative production of well-1 defined at breakpoint-
i as a subject to Np,well1.

– W̄p,w1,i, ∀i ∈ I: the water cumulative production of well-1 at breakpoint-i as
a subject to Np,well1.

– N̄p,w1,i, ∀i ∈ I: the oil cumulative production of well-1 at breakpoint-i. The
index is marked by i.

– Ḡp,w2,i, ∀i ∈ I: the gas cumulative production of well-1 at breakpoint-i as a
subject to Np,well2.

– W̄p,w2,i, ∀i ∈ I: the water cumulative production of well-2 at breakpoint-i as
a subject to Np,well2.

– N̄p,w2,i, ∀i ∈ I: the oil cumulative production of well-2 at breakpoint-i. The
index is marked by i.

Note that parameterGp,wj,i,Wp,wj,i, andNp,wj,i are declared also for the remaining
wells {j = 3, 4, .., 9}.

Variables

• Wp,x1,k, ∀k ∈ iNp : the water cumulative production of Reservoir X1 at breakpoint-
k. It also can be stated as the Wp at Np,k of Reservoir X1.

• Gp,x1,k, ∀k ∈ iNp : the gas cumulative production of Reservoir X1 at breakpoint-k.
It also can be stated as the Gp at Np,k of Reservoir X1.

• Wp,x2,k, ∀k ∈ iNp : the water cumulative production of Reservoir X2 at breakpoint-
k. It also can be stated as the Wp at Np,k of Reservoir X2.

• Gp,x2,k , ∀k ∈ iNp: the gas cumulative production of Reservoir X2 at breakpoint-k.
It also can be stated as the Gp at Np,k of Reservoir X2.

• Gp,total : total gas cumulative production.

• Wp,total : total water cumulative production.

• The oil cumulative production of each well at breakpoint-k:

Np,w1,k, Np,w2,k, Np,w3,k, Np,w4,k, Np,w5,k, Np,w6,k, Np,w7,k

Np,w8,k, and Np,w9,k

• The gas cumulative production of each well at breakpoint-k:

Gp,w1,k, Gp,w2,k, Gp,w3,k, Gp,w4,k, Gp,w5,k, Gp,w6,k, Gp,w7,k,
Gp,w8,k, and Gp,w9,k
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• The water cumulative production of each well at breakpoint-k:

Wp,w1,k, Wp,w2,k,Wp,w3,k,Wp,w4,k,Wp,w5,k,Wp,w6,k,Wp,w7,k,

Wp,well8,k, and ,Wp,well9,k

• Weighting coefficient of each well at breakpoint-(i,k) in 1D PWL Approximation:

λw1,i,k, λw2,i,k, λw3,i,k, λw4,i,k, λw5,i,k, λw6,i,k, λw7,i,k, λw8,i,k, and λw9,k

Constraints

The constraints imposed in this problem are the following:

1. In every reservoir, the Np at breakpoint-k is the summation of Np,wi of all wells,
existing in that reservoir, at point-k :

∀k ∈ iNp :

Np,x1,k = Np,w1,k +Np,w2,k +Np,w3,k +Np,w4,k +Np,w5,k +Np,w6,k

Np,x2,k = Np,w7,k +Np,w8,k +Np,w9,k

(3.71)
This constraint enforces at least one well to have more oil production for every
increasing Np reservoir.

2. The cumulative oil production of every well is non-decreasing:

∀k ∈ {1, 2, ..., 14} :

Np,w1,k+1 −Np,w1,k ≥ 0

Np,w2,k+1 −Np,w1,k ≥ 0

: : : : :

Np,w9,k −Np,w9,k−1 ≥ 0

(3.72)

Note that this condition is applied to all wells.

The constraint keeps the well production consistent. The Np of reservoir is ascend-
ing order in k. Therefore, Once a well has contributed to a particular Np , it could
not be discarded or reduced.

3. When a certain well produces a certain Np,wi to fulfil Equation 3.71, it also have
produced certain amount of water and gas production as the consequence. There-
fore, the Gp and Wp of a particular reservoir is also the summation of Gp and Wp

of all wells in that reservoir:

∀k ∈ iNp :

Gp,x1,k = Gp,w1,k +Gp,w2,k +Gp,w3,k +Gp,w4,k +Gp,w5,k +Gp,w6,k

Gp,x2,k = Gp,w7,k +Gp,w8,k +Gp,w9,k

Wp,x1,k = Wp,w1,k +Wp,w2,k +Wp,w3,k +Wp,w4,k +Wp,w5,k +Wp,w6,k

Wp,x2,k = Wp,w7,k +Wp,w8,k +Wp,w9,k

(3.73)
This constraint would determine Gp vs Np and Wp vs Np relationships for each
reservoir.
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4. The total production of a fluid is the summation of the related fluid production for
all breakpoints and all reservoirs:

Gp,total =
∑

k∈iNp

(Gp,x1,k +Gp,x2,k)

1000
(3.74)

Wp,total =
∑

k∈iNp

Wp,x1,k +Wp,x2,k (3.75)

To normalize the Gp, the total gas production is divided by 1000.

5. A 1D PWL Approximation is implemented to convert the Wp,wellj = f(Np, wellj)
and Gp,wellj = f(Np, wellj) for every well j into linear functions. Therefore,
there are 9 1D PWL Approximations in this problem. Similar to the formulation in
Equation 3.53 and 3.54, Gp and Wp of each well are compounded into one PWL
formulation. The following are the PWL induced constraints for two out of nine 1D
PWL Approximations:

∀k ∈ iNp : Np,w1,k =
∑
i∈I

λw1,i,k ·Np,w1,i (3.76)

Gp,w1,k =
∑
i∈I

λw1,i,k ·Gp,w1,i (3.77)

Wp,w1,k =
∑
i∈I

λw1,i,k ·Wp,w1,i (3.78)

1 =
∑
i∈I

λw1,i,k (3.79)

Np,w2,k =
∑
i∈I

λw2,i,k ·Np,w2,i (3.80)

Gp,w2,k =
∑
i∈I

λw2,i,k ·Gp,w2,i (3.81)

Wp,w2,k =
∑
i∈I

λw2,i,k ·Wp,w2,i (3.82)

1 =
∑
i∈I

λw2,i,k (3.83)

{λw1,i,k and λw2,i,k, ∀i ∈ I}is SOS2 (3.84)

Note that the constrains imposed in Equation 3.76- 3.84 are implemented also for
the other seven wells {j = 3, 4, .., 9}.
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3.5.2 NPV Optimization

Once the new curves are generated, NPV optimizations are carried out using these curves.
The best case is the case with the highest NPV, while the case with the lowest NPV is
defined as the worst case. These cases are used further in the uncertainty analysis.

The optimization changes both production and drilling schedule. Although the gen-
erated Wp and Gp curves already have a particular well schedule, it is assumed that the
curves are fixed and only dependent on the Np during the optimization. The idea of this
optimization is to find the best strategy if such Wp and Gp occur.

3.5.3 Quality Control (QC) of the Cumulative Gas and Water Pro-
duction Curves

The generated curves from section 3.5.1 are cross-checked to ensure that the computer
GOR and Water cuts do not exceed the maximum producing well GOR and Water cuts.
One way to do it is by comparing the GOR and WC computed from each NPV optimization
result and from the original production plot. First, the GOR and WC are determined from
NPV optimization result as:

GORir,n =
Gp,ir,n+1 −Gp,ir,n

Np,ir,n+1 −Np,ir,n

WCir,n =
Wp,ir,n+1 −Wp,ir,n

Wp,ir,n+1 +Np,ir,n+1 −Wp,ir,n −Np,ir,n

∀ir ∈ R ∀n ∈ T

(3.85)

From these result, the maximum and minimum of GOR and WC of every case are selected.
Afterwards, GOR and WC of each well and reservoir from the original plot are calculated
based on monthly production. This is to obtain precise value of these parameters. The
maximum and minimum values are determined as well during this phase.

Since the GOR and WC from the optimization results are calculated every year, it com-
bines the production for longer time duration and largerNp. This might cause a significant
difference with the values from the original plot. Accordingly, the production for longer
timesteps is compounded to yield another GOR and WC from the original plot. By doing
so, the values of GOR and WC from both approaches can be compared. The workflow
of this QC is illustrated in Figure 3.9. If the GOR and WC are between the max and min
values of monthly GOR and WC from the original plot and have the similar values with
the compound ones, the curves of Wp and Gp are valid.
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Figure 3.9: The Quality Control (QC) workflow

3.6 Uncertainty Analysis
In general, early field development has high uncertainty due to the variability of inputs
used for data processing (with many assumptions). The uncertainty concerns the reservoir
modeling, cost estimation, and the oil price. It could build up affecting the production
forecast and further into revenue and NPV calculation. If the uncertainty is not considered,
it may lead to false design due to over or underestimated NPV and selection or inadequate
design parameters. Therefore, it is essential to include the impacts of uncertainty during
the development study.

This section discusses the uncertainties in Initial Oil in Place (IOIP), production po-
tential (qopp), cost estimation, oil price, and cumulative water and gas production. The
uncertainty analysis is executed for different Gp and Wp curves that obtain the best NPV,
worst NPV, and the base case (original Wp and Gp). The gas and water production are
included because of their dynamic behavior (as mentioned in section 3.5). The uncertainty
analysis is used to quantify the possible change in NPV, optimal oil rates, and the num-
ber of wells to make a better judgment. The probability tree approach is selected for the
uncertainty analysis.

3.6.1 The Effect of Uncertainty to the Problem Formulation
Some modifications are made to simplify the computation, as well as to include the un-
certain parameters. Only three parameters affect the mathematical formulation in section
3.3:

• Initial Oil in Place (IOIP)

In this optimization, the IOIP is not directly applied in the calculation. Despite
that, the change in IOIP could change the production performance i.e. prolong or
shorten the field lifetime, thus the production potential. Angga (2019) studied the
effect of changing the IOIP to the production potential curves. It was found that that
changing IOIP by x% from the base value would move the Np of the production
potential curves by the same x% (Figure 3.10). This finding is also valid in Gp vs
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Np and Wp vs Np curves. By including the uncertain parameter, the cumulative oil
production are determined as:

Np,ir,n = N ·
∑

k∈iNp

∑
l∈isn[ir]

λqopp,ir,n,k,l · N̄p,ir,k,l (3.86)

with N as the uncertainty multiplier of IOIP.

Figure 3.10: The effect of varying IOIP to the production potential. When the IOIP is changed into
double the size, the Np shifts into same ratio (adapted from Angga (2019))

• Production potential

Referring to the section 3.1, the production potential of a particular scenario num-
ber is the multiplication product of the production potential and combination factor.
Implementing the same principal, it is assumed that the qopp could be shifted for a
certain extend by adding another multiplier (the uncertain parameter) into the Equa-
tion 3.51. In other words, it takes account the uncertainty of the factor. Therefore,
the qopp is calculated as:

qopp,ir,n = Q ·
∑

k∈iNp

∑
l∈isn[ir]

λqopp,ir,n,k,l · q̄opp,ir,k,l (3.87)

with Q as the uncertainty multiplier of qopp.

• Cost proxy model

The cost value is varied with desired range. Similar to the production potential, the
uncertain parameter is set as a multiplier to the actual equations. Some economical
constraints for cost proxy model are modified as:
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– DrillEx equations:

PVdp,0 = C · Pwell ·Nw,F,0

PVd,n = C · Pwell · (Nw,F,n −Nw,F,n−1)
(3.88)

– CapEx Subsea equations:

PVsub,0 = C · (Ppipe · pipemax + PX ·Nw,F,0)

PVsub,n = C · PX · (Nw,F,n −Nw,F,n−1)
(3.89)

– CapEx Topside equation

PVtop = C · (PCapex,1 + PCapex,2 · qo,max

+ PCapex,3 · qw,max + PCapex,4 · qg,max)
(3.90)

– OpEx equation

PVop,n =C · (POpex,1 + POpex,2 ·Nw,F,n−1 + POpex,3 · qo,ir,n−1 + ...

POpex,4 · qw,ir,n−1 + POpex,5 · qg,ir,n−1)

(3.91)

With C as the standard multiplier representing the uncertain cost estimation.

3.6.2 The Uncertain Distribution
There is a variation of five elements to be studied based on the uncertainty analysis:

• The uncertainty of the initial oil in place is quantified as a multiplier N representing
the ratio between the new and base values of the corresponding parameter. The
distribution for N is assumed, similar to that of the Visund Field (Visund PDO
report (1995)). It is normally distributed with a mean and standard deviation of 1.0
and 0.2, respectively.

• A multiplier C is also used as a measure of the uncertainty of cost estimation. It is
modeled with the normal distribution that has a mean of 1.0 and standard deviation
of 0.2

• The multiplier Q represents the uncertainty of production potential and the combi-
nation factor. It is assumed that the value is normally distributed with a mean and
standard deviation of 1.0 and 0.2.

• The oil price is uniformly distributed between 20 and 80. The large range of this
distribution is to take account of the high variation of oil prices.

• Unlike the other parameters, the uncertainty in water and gas production is already
categorized into three types: best case, base case, and worst case. The curves of Gp

and Wp used in the uncertainty analysis are derived from the NPV optimization in
Section 3.5.1.
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3.6.3 The Probability Tree
The probability tree captures all possible combinations of events enclosing the uncer-
tain parameters and their probability of occurrence. Starting with the first parameter, the
branches of the possible outcomes and the probability, are drawn. Then, from each branch,
the same method is done for the next parameter.

A method to encode probability from a cumulative distribution function (CDF) is in-
troduced by McNamee and Celona (2008). The principle is to discretize the CDF into
several outcomes and probability. The example for the discretization can be seen in Figure
3.11. The first step is to select the desired probabilities that the summation of them is equal
to 1. In this example, the probabilities are 0.25, 0.75, and 0.25. Horizontal lines are drawn
at these points. Starting from the lower legion, choose a point A and draw a vertical line at
A, such that the left shaded area and right shaded area of the vertical line are equal. Then,
it can be said that point A has a probability of 0.25. The same method is performed in the
middle and upper regions.

Figure 3.11: The example of discrete probability distribution cost (McNamee and Celona, 2008)

In this work, three outcomes for each uncertain parameter are used. Production po-
tential, cost proxy model, and IOIP apply the same probabilities: 0.25, 0.75, and 0,25.
The probabilities for the oil price outcomes are 0.2, 0.6, and 0.2. Afterward, the proce-
dure from McNamee and Celona (2008) is used to determine the outcome with associated
probability from the CDF. Lastly, each Gp-Wp curve has an equal probability of 1/3. The
probability tree for this uncertainty analysis can be seen in Figure 3.12. With five uncertain
parameters used in the computation, there are 243 optimization cases.

3.6.4 Running Time Limitation
Due to the time constraint of the project, each optimization case’s running time needs to
be limited. Some cases need computation time for 4-6 hours in order to find the optimal
solution. Therefore, it could take at most 1458 hours ( 61 days) to finish all 243 runs.

The MILP implements the branch and bound method to find the best solution. Opti-
mization determines the best-bound while searching for the best integer solution, usually
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Figure 3.12: The probability tree for the uncertainty analysis. Each parameter have three branches
of outcomes along with its probability P

called incumbent (GUROBI, 2020). As time passes, the best-bound decreases, and the
incumbent increases. The optimization keeps running until the best-bound equals to the
incumbent. However, the optimization tends to stop finding a better integer solution after
extending the running time. Then, the optimization stops because the best bound evolves
and reaches the incumbent, without any increment in the incumbent.

In this section, several cases are run to determine the shorter runtime that could yield
similar NPV compared to the one obtained from longer runtime. The cases that being
evaluated are the base, worst, and best cases determined in section 3.5.2 and also randomly
picked from 243 cases of the uncertainty analysis cases. The evaluated runtime is 2, 4, and
6 hours. 3.13.

Table 3.13: The tested case with evaluated runtime of 2, 3 and 6 hours

Tested Case

BaseCase
MaxWpGp
MinWpGp
BaseCase 20
BaseCase 40
Best Case 20
Best Case 40
Worst Case 20
Worst Case 40
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Chapter 4
Result and Discussion

4.1 Cost Proxy Model
DrillEx

The cost of drilling well usually depends on the daily rig rates, water depth, and distance
from the shore. A single cost for DrillEx is used as a function of the number of well: 500
Million NOK/well. The DrillEx (in Million NOK) is expressed as:

DrillEXt = 500 ·Nw,t (4.1)

Where Nw,t is the number of well at time-t.

CapEx

CapEx is the investment cost for the company to build a field. There are two categories of
CapEx introduced:

1. CapEx - Subsea. Referring to Figure 3.2, the wells are not installed in a template.
Therefore, it is assumed to be linearly dependent on maximum pipeline length and
subsea X-mas tree. The cost of Pipeline is 25 Million Nok/km and the cost of X-mas
tree is 50 Million Nok/km. The proxy model for CapEx Subsea in Million NOK is
expressed as follow:

CapEx (Subsea Pipe) = 25 · Plmax

CapEx (Subsea xmas tree)t = 50 ·Nw,t

(4.2)

where Plmax is the maximum length of the pipeline in km.

2. CapEx - Topside. CapEx Topside is modelled as a dependent variable with multiple
independent variables: maximum oil rates, maximum gas rates and maximum water
rates. The cost proxy model for CapEx Topside in Million NOK is presented below:
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CapExtop,FPSO = 2150 + 0.8562 · qo,max

+ 0.0442 · qw,max + 0.2.35 · 10−1 · qg,max

CapExtop,Sevan = 3650 + 0.8562 · qo,max

+ 0.0442 · qw,max + 2.35 · 10−1 · qg,max

(4.3)

where qo,max and qw,max are maximum oil and water rates in sm3/d and qg,max is
maximum gas rate in 1000 sm3/d.

OpEx

OpEx is expressed as a function of fluid rates and number of well. The well maintenance
cost is 6.5 Million nok/well/year. The data stored in table 3.5 is the yearly expense for
managing the fluid production. The OpEx for both FPSO and Sevan are assumed to be the
same, thus only one cost proxy model for OpEx per year are defined in Million NOK as:

OpExop,t = 723.3 + 6.5 ·Nw,t + 0.0236 · qo,t−1
+ 1.855E − 18 · qw,t + 3.04E − 18 · qg,t

(4.4)

where qo,t and qw,t are in oil and water rates at time t (in sm3/d) and qg,t is gas rate at
time t (in 1000sm3/d).

CapEx Topside and OpEx linear equations are retrieved from multilinear regression.
The standard error for this regression is shown in Table 4.1. It can be shown that the errors
are considerably low for their actual value.

Table 4.1: Linear regression of CapEc and OpEx

Standard Error R Square

CapEx FPSO 116.125 0.997
CapEx Sevan 116.125 0.997
OpEx 2.886 0.998

Furthermore, the cost proxy model is employed into the MILP as the economic con-
straints. The optimization only executed for the FPSO structure. The economic parameters
previously introduced in section 3.3 have the values stored in Table 4.2.

Parameters Value Parameters Value Parameters Value

Pwell 500 PCapex,1 2150 POpex,1 723.3
Ppipe 25 PCapex,2 0.8562 POpex,2 6.5
PX 50 PCapex,3 0.0442 POpex,3 0.0236

PCapex,4 2.35 · 10−1 POpex,4 1.855E-18
POpex,5 3.04E-18

Table 4.2: The economical parameter data value
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4.2 NPV Optimization

4.2.1 The Number of Np Breakpoints

To select the number of breakpoints, the NPV optimization results with several numbers
of breakpoints were compared. Table 4.3 shows the NPV result from the breakpoint eval-
uation.

Case NPV (Million NOK)

case5bp 28037.4
case7bp 27753.9
case10bp 27542.9
case15bp 27590

Table 4.3: The NPV obtained from cases with different number of Np

It can be seen that the NPV with 5 Np breakpoints has the most significant difference
with case15bp by 500 Million NOK. To summarize, more breakpoints give a more accurate
representation of the non-linear behavior of the function. Hence, case15bp was considered
as the reference to compute the average error of the other cases.

Table 4.4: Average error of the case5bp, case7bp, case10bp and case15bp

Breakpoint 5 7 10 16
Runtime (s) 2 6 50 190

Average Error Reference Value
X1 X2 X1 X2 X1 X2 X1 X2

qo 4.3% 5.1% 2.2% 3.2% 2.5% 0.9% - -
qg 13.9% 8.4% 4.7% 7.3% 1.9% 1.1% - -
qw 12.3% 4.0% 4.1% 5.3% 4.2% 1.3% - -
qo,F 6.8% 2.5% 1.4% -
NPV 1.6% 0.6% 0.2% -

The average errors of the NPV and the production rates are shown in Table 4.4. The
average error mainly went up with an increasing number of breakpoints, while the runtime
got longer. If only oil rates and NPV were considered, all cases had met the criteria.
However, case5bp was proven to obtain a relatively high error in gas and water rate. It was
because the Np reconstruction aimed to have a good fit in the qopp curves only. Despite
that, the errors of gas and water production rate of case7bp were still below the allowable
error while being the second-fastest to reach the optimum solution. Therefore, considering
the error and the runtime, case7bp was selected for this optimization formulation.
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4.2.2 The NPV optimization result

Table 4.5: The NPV comparison of Case1 and Case2

NPV (Million NOK) Runtime (s)

Case1 28968.5 18327
Case2 28332.3 8

The comparison of optimization result between Case1 and Case2 is presented in Table
4.5. Corresponding with the statement in section 3.4.2, Case1 yields higher NPV by 2.2%
compared to Case2. An optimization with more decision variables tends to be more flex-
ible in finding the optimum solution. Consequently, it also required longer runtime to
obtain the best solution because the optimization had more possible solutions to assess.
However, considering the small improvement from Case1 implied that the drilling sched-
ule used for Case2 was nearly optimal.

(a) Case1

(b) Case2

Figure 4.1: The drilling schedule of both cases

Table 4.6 tabulated the well schedule of both cases and Figure 4.1 shows the compari-
son between the drilling schedule of Case1 and Case2. Based on the result, Case1 yields
higher NPV by applying the following measures: (1) drill one less well in both reservoirs
Same as Case2, and (2) delay the drilling of well in reservoir X2. Adding new wells
increased not only the production potential but also the development expense. In this par-
ticular problem, the DrillEx for having two more wells was higher than the added revenue.
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Table 4.6: The well schedule of Case1 and Case2

Year Active wells Case1 Active wells Case2

2025 2, 5, 6 1, 2, 4
2026 2,3,4,5,6 1, 2, 4,5, 6, 7
2027 2, 3, 4, 5, 6, 8, 9 1, 2,3, 4,5, 6, 7, 8,9
: : :
2029 2,3,4, 5, 6, 8, 9 1, 2, 3, 4, 5, 6, 7, 8, 9

(a) Case1 (b) Case2

(c) Field oil rates of both cases

Figure 4.2: The comparison of oil production rates and production potential between case1 and
case2
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(a) Gas rates from the reservoirs in both cases (b) Water rates from the reservoirs in both cases

(c) Field water and gas production rates of both cases

Figure 4.3: The comparison of gas and water production rates between Case1 and Case2

Figure 4.4: Comparison of DCF between Case1 and Case2
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Thus the optimization suggested canceling the drilling of additional wells. Case1 choose
to discard the well 1 and well 7 for the development. The reason could be that the oil
productions from these wells did not give significant contributions to the field production.
Nonetheless, both optimization agreed to drill three wells initially, which is the maximum
number of predrilled wells.

Although the number of wells was distinct, the field oil production rates of Case1
and Case2 were quite similar (Figure 4.2). It could be said that the plateau rate of 12000
Sm3/d is the optimal rate for this field in most cases. On closer look, Case2 did have
slightly higher oil production to increase the revenue at the beginning. Case2 chose not
to increase the production rates even though it had much higher production potential. In-
creasing production rates were not always beneficial because it also required higher fluid
capacity, thus increasing the CapEx expenses. Corresponding to this, the Case1 optimiza-
tion considered that it was unnecessary to enhance the oil production rates, not to mention
adding more wells.

Both cases decided to prioritize reservoir X1, as the result of having higher production
potential. Case1 proposed to delay the production from Reservoir X2 until the time when
Reservoir X1 could not afford to deliver the plateau rate. Besides, Case2 always set the
oil production from reservoir X1 at its potential, even though reservoir X2 was able to
contribute with more production starting from the second year. It is surmised that the
delay is to reduce the maximum field gas production rate (Figure 4.3). Referring to the gas
rate coefficient in Equation 4.3, the gas rate was second to the most sensitive parameter to
CapEx. Therefore, having a high production of gas was not favorable.

From the observation in Figure 4.4, both cases have relatively identical DCF. More-
over, the cashflow of Case1 excelled slightly early. The decrease of Case2 compared to
Case1 in 2026 and 2027 occurred due to the cost of additional wells. Case2 had higher
field plateau rates but did not significantly boost the DCF due to the high expense on
DrillEx. This supports the fact that drilling more wells gave inadequate returns. In con-
clusion, the Case1 has successfully increased the NPV with fewer wells drilled in both
reservoirs while having a similar production plot.

4.3 The Extreme Curves of Cumulative Water and Gas
Production

Figure 4.5 depicted the cumulative water production (Wp) and cumulative gas production
(Gp) curves of reservoir X1 from the optimization cases. Here, the gas and water produc-
tion curves retrieved from the original plot are referred to as ”base case”. It showed that
there was no exact upper or lower limit that applied for both Wp and Gp simultaneously.
Both Wp and Gp are dependent on the Np, such that adjusting the Np to achieve maxi-
mum production of one fluid production affects the other fluid’s production. For instance,
the MaxGp case constructed the curve with the highest gas production; in turn, the opti-
mization has considerably low production of water. This observation typically occurred in
cases that maximized or minimized only one of the fluid production. MinWpGp lowered
both water and production such that the line in both curves falls between the maximum
and minimum cases. On the other hand, MaxWpGp determined to optimize gas and water
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(a) Gp vs Np

(b) Wp vs Np

Figure 4.5: The extreme curves of Reservoir X1
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(a) Gp vs Np (b) Wp vs Np

Figure 4.6: The extreme curves of Reservoir X2

(a) Gp vs Np (b) Wp vs Np

Figure 4.7: The production contribution of each well in MaxWpGp case for Reservoir X2

production separately. At first, It maximized the Gp until Np = 7 MSm3, then increased
the Wp in range of Np = 7-13 MSm3. This phenomenon was indicated by a sharp change
of slope at that range in both MaxWpGp curves.

In contrast with Reservoir X1, the optimization for Reservoir X2 shows more consis-
tent results among the cases (Figure 4.6). All the maximization cases have the same Wp

and Gp profiles. That is to say, the upper bound of both fluid production for this reservoir
was found. For minimization cases, only MinGp shows a distinct profile while the others
were the same.

These extreme curves were built by adjusting the well production scheduling in each
reservoir. For example, Figure 4.7 shows how much the well contributed to the gas and
water production at each Np breakpoint in MaxWpGp case. The columns under the Gp

and Wp curves were the gas and water production share respectively from each well.
Initially, the reservoir produced from well with high GOR, i.e., well 2, and well 3 (see

Figure 3.7). Since the non-decreasing constraint was imposed, the production from each
well at the next Np was either constant or increasing. Once the Np of a particular well has
reached its maximum, the production stayed constant for the following Np. After well 2
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and 3 reached the maximum Np, the optimization chose to continue the production with
the highest WC well, i.e., well 6. Although the WC of this well was the highest, the GOR
was the lowest compared to the other wells. Considering Equation 3.85, the GOR of the
reservoir can be defined as the slope of Gp vs. Np curve. Therefore, the insignificant
increment of Gp in range of Np = 7-13 MSm3 represented the low GOR production from
Well 6.

The other production share plot is presented in the Appendix.

4.4 Npv Optimization using The Extreme Curves
The NPV obtained from optimizations with the extreme curves are summarized in Table
4.7. The base case refers to the Case1 defined in section 4.2.2. It used the water and gas
production profiles from the original plot. Based on the result, case MinWpGp was named
the best case of water and gas production with the highest NPV, while MaxWpGp was the
worst case. The NPV of the base case and MinWpGp were not very distinctive, possibly
due toWp andGp curves of both being almost the same. However, considering the MaxW-
pGp curves into the optimization had lowered the NPV by 3 billion NOK approximately,
compared to the base case.

Table 4.7: NPV optimization result of the extreme cases

NPV (Million NOK) Runtime (sec.)

Base case 28968.5 18327
MaxWpGp 26110.6 40679
MaxGp 26347.3 19781
MaxWp 28002.9 38315
MinWpGp 29141.1 20870
MinGp 28555.5 16056
MinWp 27017 12388

Figure 4.8 exhibits the production profile comparisons between the three cases. Again,
the results between the MinWpGp and base case were quite similar. MinWpGp slightly
raised the oil plateau rate, because it was still able to lower the rates of the other fluid
production. In contrast, MaxWpGp reduced the oil production by 2000 Sm3/d as the
consequence of having high productions of water and gas. Figure 4.8b shows that there
was sudden drop of gas rate after high gas production during the early years in MaxWpGp
plot. This occurrence happened due to the well schedule forming the Wp and Gp curves
as discussed in section 4.3. For MaxWpGp in particular, there would be a time when
the field have high gas - low water production rates then continued with low gas - high
water production rates. This justified why the field had high gas and high water rates
consecutively.

The drilling schedule for MaxWpGp and MinWpGp is depicted in Figure 4.9. MaxW-
pGp delayed the drilling of additional well by one year. The field could maintain plateau
rates until 2027. Thus it was considered unnecessary to add more wells before that year.
MinWpGp drill more wells in 2026 compared to the base case (Figure 4.1a). Presumably,
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(a) Field oil rates

(b) Gas rates (c) Water rates

Figure 4.8: The comparison of fluid production rates between MaxWpGp, MinWpGp and base case
(Case1)

(a) MaxWpGp

(b) MinWpGp

Figure 4.9: The drilling schedule of MaxWpGp and MinWpGp
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the reason is that it has a higher plateau rate; thus, the field could not deliver the plateau
rates with the existing number of well.

It is important to note that the actual well schedule of the Wp and Gp curves was not
employed. In reality, the Wp and Gp would change if the different well schedules were
assigned. In this regard, one could use the fixed well scheduling to have a more realistic
result.

4.5 The Quality Check of the Wp and Gp Curves
The comparison of the GOR and WC values are tabulated in Table 4.8 and 4.9. Base
case(1) retrieved the GOR and WC from monthly production, while base case(2) calcu-
lated the values from compounded production.

Table 4.8: The GOR and WC of the extreme cases (Reservoir X1)

Case GOR min GOR max WC min WC max

MaxWp 115.2 1855.8 0.24 0.75
MaxGp 654.7 1769 0.25 0.45
MaxWpGp 112.1 1594.7 0.24 0.64
MinWp 358.3 1829.6 0.18 0.46
MinGp 117.9 2064 0.25 0.62
MinWpGp 312 2146 0.22 0.51
Base case (1) 95.4 7536.5 0.01 0.89
Base case (2) 112.3 2241.15 0.24 0.69

Table 4.9: The GOR and WC of the extreme cases (Reservoir X2)

Case GOR min GOR max WC min WC max

MaxWp 373.2 843.1 0.03 0.05
MaxGp 168.2 680.3 0.03 0.05
MaxWpGp 205.2 686.4 0.03 0.05
MinWp 150.4 777.9 0.03 0.05
MinGp 144.5 851.5 0.04 0.05
MinWpGp 54 935 0.03 0.05
Base case (1) 32.3 1796.9 0.01 0.07
Base case (2) 163.2 1019.3 0.03 0.05

The values retrieved from the base case (1) were considered the lower and upper range
of the GOR and WC in the corresponding reservoir. The GOR and WC from base case (1)
have higher precision of the gas and water behaviors. It is indicated from the significant
difference between its maximum and minimum values of both parameters. The NPV opti-
mization used timestep of one year; hence it averaged the GOR and WC for one year (more
considerable value of ∆Np). This caused a massive difference in the values between the
NPV optimizations and base case (2). The base case (2) averages the water and gas pro-
duction to find the GOR and WC. For Reservoir X1, the compounded GOR and WC were
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calculated from the production at t = 0 until the end of the production time. Reservoir
X2 compounded the production by dividing the Gp and Wp vs. Np into two segments.
By doing so, the GOR and WC of NPV optimization results and base cases were similar.
Hence, it can be said that GOR and WC’s value would depend on the timestep or the Np
range used.

The GOR and WC of the optimization cases vary within the base case’s upper and
lower bound (1). Moreover, all optimization cases have similar GOR and WC as the base
case (2). Based on these observations, the curves of Wp and Gp are considered credible.

It is worth mentioning that one could use more breakpoints in Gp and Wp curves to
improve GOR and WC’s quality during the optimization. Since the GOR is the slope of
Gp vs. Np, more breakpoints would enable the computation to capture more GOR and
WC changes. The more the breakpoints and the smaller the time step, the more precise the
result would be. Nevertheless, it is decided to keep using the same number of breakpoints
in this work, considering the result in section 4.2.1.

4.6 The Uncertainty Analysis

IOIP, production potential, and cost proxy model have a normal distribution with the same
mean value and standard deviation. Accordingly, thus these parameters would have iden-
tical CDF, whereas the oil price had separate CDF.

(a) CDF of the normal distribution mode (b) CDF of the uniform distribution model

Figure 4.10: The discretization of Cumulative Distribution Function (CDF) plot

The generation for the possible outcomes with the associated probabilities is depicted
in Figure 4.10. The distribution for IOIP, production potential and cost proxy are discretize
into: 0.74 with probability of 0.25, 0.99 with probability of 0.5 and 1.26 with probability of
0.25. Concurrently, the oil price CDF are segmented into 26, 50 and 74 with probabilities
of 0.25, 0.5 and 0.25 respectively. Using these values, the probability tree diagram for this
uncertainty analysis are presented in Figure 4.11. The Wp and Gp used in the study are
the curves that produced the best and worst Npv as well as the original curves. Thus, only
MaxWpGp, MinWpGp and base case curves are included.
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Figure 4.11: The complete tree diagram with the possible outcomes

4.6.1 The Runtime Limit

Table 4.10: The result of runtime evaluation

Runtime Base case Base case20 Base case40
NPV Relative

Gap
NPV Relative

Gap
NPV Relative

Gap

7200 28968.5 6.2% 6516.7 14% 449.3 195 %
10800 28968.5 2.8% 6516.7 10% 449.3 135 %
21600 28968.5 0.0% 6516.7 0.0% 485.2 0.0 %

MaxWpGp MaxWpGp20 MaxWpGp40
NPV Relative

Gap
NPV Relative

Gap
NPV Relative

Gap

7200 26110.6 3.5% 4023.1 32% -949.1 77 %
10800 26110.6 2.8% 4023.1 25% -922.7 58 %
21600 26110.6 1.8% 4023.1 18% -922.7 35 %

MinWpGp MinWpGp20 MinWpGp40
NPV Relative

Gap
NPV Relative

Gap
NPV Relative

Gap

7200 29141.1 5.4% 6649.3 19% 615.8 50 %
10800 29141.1 3.6% 6649.3 17% 615.8 0 %
21600 29141.1 0.0% 6649.3 13% -

Table 4.10 summarizes the result of the tested cases, presenting the NPV obtained with
the particular runtime. Most of the cases have the same result after running 2, 3, and 6
hours. In each of the runtime, it is written the relative gap obtained between the running.
The relative gap is the relative difference between the best bound and the incumbent so-
lution. Therefore, there is a possibility to increase the NPV by a certain % of the relative
gap. However, there was no assurance that it always happens. The table shows that the
optimization typically decreased the relative gap instead of improving the NPV. Only Base
case 40 cases showed that 3-hour runtime produced lower NPV than the 6-hour runtime.
Meanwhile, there were two cases pointed out that setting 2-hour runtime had resulted in
lower NPV. From this finding, it was preferable to limit the time to 3 hours. To have a
better evaluation of how different the result would be if a shorter time is used, the oil
rate comparison is tabulated in Table 4.11. Base case 40 with 3-hour runtime and MaxW-
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4.6 The Uncertainty Analysis

Table 4.11: The oil rate errors of Base case 40 and MaxWpGp40. The result from the 6-hour runtime
is used as the reference

Base case 40 (3 hour) Max40 (2 hour)

Max qo Error 9 % 17 %
Average Error 5 % 5 %

(a) Base case 40

(b) MaxWpGp40

Figure 4.12: The number of well comparison

pGp40 with 2-hour runtime were compared with the result with a 6-hour runtime of the
corresponding case. Both cases obtained the same average error of 5 %, although the
MaxWpGp40 had a bigger maximum error. Besides, Figure 4.12 also shows that there
were differences by one well in the optimal number of wells. Therefore, it should be an-
ticipated that the uncertainty analysis might have a 5 % error in the optimal oil rate and
a small deviation in the number of well results due to time limitation. Indeed, one could
increase the running time to get a more reliable result. However, it was not convenient to
be done in this thesis. Therefore, based on the result in Table 4.10, it was assumed that
3-hour runtime was sufficient to be implemented in the uncertainty study.

4.6.2 The Result

Figure 4.13 shows the cumulative distribution function of the NPV obtained from the
uncertainty analysis. It can be seen most of the NPV are positive. However, there were

69



Chapter 4. Result and Discussion

Figure 4.13: The cumulative distribution function of NPV

20% of the data showing that the field may be unprofitable. From the cdf plot, the P10,
P50 and P90 are tabulated in Table 4.12.

Table 4.12: The NPV of P10, P50, and P90

P10 P50 P90

NPV (Million NOK) -4331 17549 45180

The distribution of an optimal number of well throughout the field lifetime is repre-
sented in Figure 4.14. The result suggested that the field should be drilled at its maximum
number of predrilled wells (three wells), which corresponds to the result from the base
case. It is also shown that 50% of the cases would have the optimal number of the well of
only six wells.

Referring to Figure 4.15, 50% of the optimal oil rates suggested to keep a plateau
rate of 9800 Sm3/d, which is lower than the result provided in the base case. It is also
important to note that the field had no oil production at the later year, especially in the year
2043 and 2044. It shows that during that year, 25 % of the cases proposed the field to stop
producing. One of the causes was that the reservoir had reached its maximum Np during
the computation, thus no more oil could be produced.
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4.6 The Uncertainty Analysis

Figure 4.14: The optimal number of well boxplot

Figure 4.15: The optimal oil rates boxplot
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Chapter 5
Conclusion

• The cost proxy model was successfully built based on the cost figures for CapEx,
OpEx, and DrillEx. CapEx and OpEx were derived from multilinear regression and
obtained low standard error.

• The NPV optimization problem was formulated by implementing the production
potential curves that are distinct for a particular active well combination. Multidi-
mensional PWL approximation was used to transform the non-linear behaviour of
qopp at particular Np and well combination scenario sn. Two cases were run to test
the formulation: fixed drilling schedule case and varied drilling schedule case. The
optimization included the drilling schedule as decision variables had increased the
NPV by 2.2% while having fewer wells than the fixed drilling schedule case.

• In order to quantify the uncertainty in GOR and WC, the following actions are per-
formed:

– Six extreme curves of Wp and Gp curves were successfully generated to cap-
ture all the possible changes of GOR and WC profiles in the reservoir using
an optimization formulation. The main idea of the formulation was (1) to use
individual well GOR and WC profiles as the input and (2) 1D PWL approxima-
tion to reformulate the non-linear functions of Wp(Np) and Gp(Np) to linear
functions

– NPV optimizations using these extreme curves were run. It showed that the
NPV could be slightly increased by having low production of gas and water
simultaneously. On the other hand, the NPV was significantly decreased by
three billion NOK by taking into account the high production of both gas and
water.

– From the quality control of Wp and Gp, it verified that the GOR and WC
produced from the extreme curves are similar to the base case and does not
exceed the maximum and minimum values of the base case.

.
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Chapter 5. Conclusion

• Uncertainty analysis was performed for five parameters; thus, 243 optimizations
were run. In this particular problem, it was proved that the limitation of 3-hour
runtime could produce representative results of the optimization without time limi-
tation. The uncertainty analysis shows that the field were apparent to be profitable.
However, 20% of the cases was indicated for having negative NPV. Futhermore,
the study also suggested to have plateau rates of 9800 Sm3/d and the maximum
number of well of 6 wells.
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Appendix A
Well combination factor

Table A.1: Full translation of scenario number and combination factor of reservoir X1

n fn
Status

W1 W2 W3 W4 W5 W6

1 0 0 0 0 0 0 0
2 0.166 1 0 0 0 0 0
3 0.249 0 1 0 0 0 0
4 0.195 0 0 1 0 0 0
5 0.293 0 0 0 1 0 0
6 0.198 0 0 0 0 1 0
7 0.113 0 0 0 0 0 1
8 0.332 1 1 0 0 0 0
9 0.357 1 0 1 0 0 0
10 0.413 1 0 0 1 0 0
11 0.365 1 0 0 0 1 0
12 0.279 1 0 0 0 0 1
13 0.436 0 1 1 0 0 0
14 0.467 0 1 0 1 0 0
15 0.448 0 1 0 0 1 0
16 0.362 0 1 0 0 0 1
17 0.477 0 0 1 1 0 0
18 0.393 0 0 1 0 1 0
19 0.308 0 0 1 0 0 1
20 0.492 0 0 0 1 1 0

Continue to next page..
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n fn
Status

W1 W2 W3 W4 W5 W6

21 0.406 0 0 0 1 0 1
22 0.304 0 0 0 0 1 1
23 0.516 1 1 1 0 0 0
24 0.524 1 1 0 1 0 0
25 0.530 1 1 0 0 1 0
26 0.445 1 1 0 0 0 1
27 0.591 1 0 1 1 0 0
28 0.556 1 0 1 0 1 0
29 0.470 1 0 1 0 0 1
30 0.611 1 0 0 1 1 0
31 0.526 1 0 0 1 0 1
32 0.470 1 0 0 0 1 1
33 0.642 0 1 1 1 0 0
34 0.635 0 1 1 0 1 0
35 0.549 0 1 1 0 0 1
36 0.665 0 1 0 1 1 0
37 0.580 0 1 0 1 0 1
38 0.553 0 1 0 0 1 1
39 0.676 0 0 1 1 1 0
40 0.590 0 0 1 1 0 1
41 0.499 0 0 1 0 1 1
42 0.597 0 0 0 1 1 1
43 0.781 0 0 1 1 1 1
44 0.771 0 1 0 1 1 1
45 0.740 0 1 1 0 1 1
46 0.755 0 1 1 1 0 1
47 0.841 0 1 1 1 1 0
48 0.717 1 0 0 1 1 1
49 0.661 1 0 1 0 1 1
50 0.704 1 0 1 1 0 1
51 0.790 1 0 1 1 1 0
52 0.636 1 1 0 0 1 1
53 0.637 1 1 0 1 0 1
54 0.722 1 1 0 1 1 0
55 0.629 1 1 1 0 0 1
56 0.714 1 1 1 0 1 0
57 0.696 1 1 1 1 0 0
58 0.895 1 1 1 1 1 0
59 0.809 1 1 1 1 0 1
60 0.820 1 1 1 0 1 1
61 0.828 1 1 0 1 1 1
62 0.895 1 0 1 1 1 1
63 0.946 0 1 1 1 1 1
64 1.000 1 1 1 1 1 1
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Table A.2: Full translation of scenario number and combination factor of reservoir X2

n fn
Status

W7 W8 W9

1 0.000 0 0 0
2 0.527 1 0 0
3 0.606 0 1 0
4 0.644 0 0 1
5 0.807 1 1 0
6 0.878 1 0 1
7 0.907 0 1 1
8 1.000 1 1 1
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Appendix B
Well Production Contribution

(a) Cumulative Gas Production Potential (b) Cumulative Water Production Potential

Figure B.1: The production contribution of MaxWpGp case in reservoir X2

(a) Cumulative Gas Production Potential (b) Cumulative Water Production Potential

Figure B.2: The production contribution of MinWpGp case in reservoir X1
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(a) Cumulative Gas Production Potential (b) Cumulative Water Production Potential

Figure B.3: The production contribution of MinWpGp case in reservoir X2

(a) Cumulative Gas Production Potential (b) Cumulative Water Production Potential

Figure B.4: The production contribution of MaxGp case in reservoir X1

(a) Cumulative Gas Production Potential (b) Cumulative Water Production Potential

Figure B.5: The production contribution of MaxGp case in reservoir X2
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(a) Cumulative Gas Production Potential (b) Cumulative Water Production Potential

Figure B.6: The production contribution of Maxwp case in reservoir X1

(a) Cumulative Gas Production Potential (b) Cumulative Water Production Potential

Figure B.7: The production contribution of MaxWp case in reservoir X2

(a) Cumulative Gas Production Potential (b) Cumulative Water Production Potential

Figure B.8: The production contribution of MinGp case in reservoir X1
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(a) Cumulative Gas Production Potential (b) Cumulative Water Production Potential

Figure B.9: The production contribution of MinGp case in reservoir X2

(a) Cumulative Gas Production Potential (b) Cumulative Water Production Potential

Figure B.10: The production contribution of MinWp case in reservoir X1

(a) Cumulative Gas Production Potential (b) Cumulative Water Production Potential

Figure B.11: The production contribution of MinGp case in reservoir X2
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Appendix C
NPV Optimization Source Code

Case.mod

,

param nr;
set R:= 1..nr; #set of reservoir
param nt;
set T:=0..nt; #set of time
param qo_F_des; #desired plateau rate
param Nw_pd; #predrilled well
param Nw_py; #new well per year

#PWL for scenario
set S := 1..2;
param zw1_bar {a in S,b in S, c in S, d in S, e in S,f in S};
param zw2_bar {a in S,b in S, c in S, d in S, e in S,f in S};
param zw3_bar {a in S,b in S, c in S, d in S, e in S,f in S};
param zw4_bar {a in S,b in S, c in S, d in S, e in S,f in S};
param zw5_bar {a in S,b in S, c in S, d in S, e in S,f in S};
param zw6_bar {a in S,b in S, c in S, d in S, e in S,f in S};
param sn_x1 {a in S,b in S, c in S, d in S, e in S,f in S};
param zw7_bar {g in S, h in S, i in S};
param zw8_bar {g in S, h in S, i in S};
param zw9_bar {g in S, h in S, i in S};
param sn_x2 {g in S, h in S, i in S};

#PWL for qopp,gp,wp, pr
param bp_Np; #number of Np breakpoints
set i_Np := 1..bp_Np;
param bp_sn {ir in R}; #number of scenario break point for each

reservoir
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set i_sn {ir in R} := 1..bp_sn[ir];
param Np_bar {ir in R, k in i_Np, l in i_sn[ir]};
param sn_bar {ir in R, k in i_Np, l in i_sn[ir]};
param qopp_bar {ir in R, k in i_Np, l in i_sn[ir]};
param gp_bar {ir in R, k in i_Np, l in i_sn[ir]};
param wp_bar {ir in R, k in i_Np, l in i_sn[ir]};

#PWL for pipe length
param pl_sum {ir in R, m in i_sn[ir]};
param sn_pipe {ir in R, m in i_sn[ir]};

#economic value
param Po;
param XR;
param VC;
param disc;
param P_well;
param Px;
param P_pipe;
param P_top {o in {1..4}};
param P_opex {o in {1..5}};

var Nw {ir in R, n in T} integer>=0; #number of well in reservoir
i for each year

var Nw_F {n in T} integer>=0; #number of well in Field for each
year

var qo_F {n in T}>=0;
var qo {ir in R, n in T}>=0;
var qg {ir in R, n in T}>=0;
var qw {ir in R, n in T}>=0;

var qopp {ir in R, n in T } >=0;
var Np {ir in R, n in T } >= 0 ;
var sn {ir in R, n in T} integer >= 0 ;
var gp {ir in R, n in T}>=0;
var wp {ir in R, n in T}>=0;
var Np_F {n in T}>=0;

var zw1 {n in T} binary ; #well status per year
var zw2 {n in T} binary ;
var zw3 {n in T} binary ;
var zw4 {n in T} binary ;
var zw5 {n in T} binary ;
var zw6 {n in T} binary ;

var zw7 {n in T} binary ;

86



var zw8 {n in T} binary ;
var zw9 {n in T} binary ;

var pipe {ir in R, n in T}>=0; #pipeline length per year
var pipemax>=0;

#2D PWL Variables to estimate qopp, Gp and Wp
var eta_Np {ir in R, n in T, k in i_Np}>=0;
var eta_sn {ir in R, n in T, l in i_sn[ir]}>=0;
var lambda_qopp {ir in R, n in T, k in i_Np, l in i_sn[ir]}>=0;

#MULTI-D PWL Variables to find the well status
var eta_zw1 {n in T, a in S} >=0;
var eta_zw2 {n in T, b in S} >=0;
var eta_zw3 {n in T, c in S} >=0;
var eta_zw4 {n in T, d in S} >=0;
var eta_zw5 {n in T, e in S} >=0;
var eta_zw6 {n in T, f in S} >=0;
var lambda_x1 {n in T, a in S,b in S, c in S, d in S, e in S,f in

S} >= 0;

var eta_zw7 {n in T, g in S} >=0;
var eta_zw8 {n in T, h in S} >=0;
var eta_zw9 {n in T, i in S} >=0;
var lambda_x2 {n in T, g in S, h in S, i in S} >=0;

#1D PWL Variables to find the pipelength
var lambda_pipe {ir in R, n in T, m in i_sn[ir]} >=0;

var qomax>=0;
var qwmax>=0;
var qgmax>=0;

var PVtop;
var PVop {n in {1..nt}}>=0;
var PVd {p in {0..nt}}>=0;
var PVsub {p in {0..nt}}>=0;
var PVr {n in {1..nt}} >=0;
var DCF {n in T};
var NPV;

maximize obj: NPV;
#Inequality constraint
#operation constraint
subject to c1 {ir in R, n in T } : qo [ir,n]<= qopp[ir, n];
subject to c63 {n in T}: qo_F[n]<=qomax;
subject to c64 {n in T}: qwmax>= sum{ir in R} qw [ir,n];
subject to c65 {n in T}: qgmax>= sum{ir in R} qg [ir,n];
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#number of well constraint
subject to c42 {n in {1..nt} }:zw1[n]-zw1[n-1]>=0;
subject to c43 {n in {1..nt} }:zw2[n]-zw2[n-1]>=0;
subject to c44 {n in {1..nt} }:zw3[n]-zw3[n-1]>=0;
subject to c45 {n in {1..nt} }:zw4[n]-zw4[n-1]>=0;
subject to c46 {n in {1..nt} }:zw5[n]-zw5[n-1]>=0;
subject to c47 {n in {1..nt} }:zw6[n]-zw6[n-1]>=0;
subject to c48 {n in {1..nt} }:zw7[n]-zw7[n-1]>=0;
subject to c49 {n in {1..nt} }:zw8[n]-zw8[n-1]>=0;
subject to c50 {n in {1..nt} }:zw9[n]-zw9[n-1]>=0;
subject to c5 {ir in R, n in {1..nt} } : Nw [ir,n]- Nw[ir,n-1]

>=0;
subject to c6 {ir in R, n in {1..nt} } : Nw_F [n]- Nw_F[n-1]

<=Nw_py;
subject to c7 : Nw_F [0]<=Nw_pd;

#pipeline constraint
subject to c59 {ir in R, n in {1..nt}}: pipe[ir,n]-pipe[ir,n-1]

>=0;
subject to c76 {n in T}: sum {ir in R } pipe [ir,n] <= pipemax;

#equality constraint
#Np, qo_F and Nw definition
subject to c8 {ir in R} : Np[ir,0] =0 ;
subject to c9 {ir in R, n in {1..nt}}: Np[ir,n] =

Np[ir,n-1]+qo[ir,n-1]*365/10ˆ6;
subject to c54 {ir in R, n in {1..nt}}: gp[ir,n] =

gp[ir,n-1]+qg[ir,n-1]*365/10ˆ3;
subject to c55 {ir in R, n in {1..nt}}: wp[ir,n] =

wp[ir,n-1]+qw[ir,n-1]*365/10ˆ6;
subject to c10 {n in T} : Nw[1,n] = zw1[n]+

zw2[n]+zw3[n]+zw4[n]+zw5[n]+zw6[n];
subject to c11 {n in T} : Nw[2,n] = zw7[n]+ zw8[n]+zw9[n];
subject to c12 {n in T} : Nw_F[n] = sum {ir in R} Nw [ir,n];
subject to c13 {n in T} : qo_F [n] = sum {ir in R} qo [ir,n];
subject to c71 {n in T} : Np_F[n] = sum {ir in R} Np [ir,n];

#PWL for well x1
subject to c14 {n in T, a in S}: eta_zw1 [n,a] = sum {b in S, c

in S, d in S, e in S, f in S} lambda_x1 [n,a,b,c,d,e,f];
subject to c15 {n in T, b in S}: eta_zw2 [n,b] = sum {a in S, c

in S, d in S, e in S, f in S} lambda_x1 [n,a,b,c,d,e,f];
subject to c16 {n in T, c in S}: eta_zw3 [n,c] = sum {a in S, b

in S, d in S, e in S, f in S} lambda_x1 [n,a,b,c,d,e,f];
subject to c17 {n in T, d in S}: eta_zw4 [n,d] = sum {a in S, b

in S, c in S, e in S, f in S} lambda_x1 [n,a,b,c,d,e,f];
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subject to c18 {n in T, e in S}: eta_zw5 [n,e] = sum {a in S, b
in S, c in S, d in S, f in S} lambda_x1 [n,a,b,c,d,e,f];

subject to c19 {n in T, f in S}: eta_zw6 [n,f] = sum {a in S, b
in S, c in S, d in S, e in S} lambda_x1 [n,a,b,c,d,e,f];

subject to c20 {n in T}: 1 = sum {a in S,b in S, c in S, d in S,
e in S,f in S} lambda_x1 [n,a,b,c,d,e,f];

subject to c21 {n in T}: zw1 [n] = sum {a in S,b in S, c in S, d
in S, e in S,f in S} lambda_x1 [n,a,b,c,d,e,f] * zw1_bar
[a,b,c,d,e,f];

subject to c22 {n in T}: zw2 [n] = sum {a in S,b in S, c in S, d
in S, e in S,f in S} lambda_x1 [n,a,b,c,d,e,f] * zw2_bar
[a,b,c,d,e,f];

subject to c23 {n in T}: zw3 [n] = sum {a in S,b in S, c in S, d
in S, e in S,f in S} lambda_x1 [n,a,b,c,d,e,f] * zw3_bar
[a,b,c,d,e,f];

subject to c24 {n in T}: zw4 [n] = sum {a in S,b in S, c in S, d
in S, e in S,f in S} lambda_x1 [n,a,b,c,d,e,f] * zw4_bar
[a,b,c,d,e,f];

subject to c25 {n in T}: zw5 [n] = sum {a in S,b in S, c in S, d
in S, e in S,f in S} lambda_x1 [n,a,b,c,d,e,f] * zw5_bar
[a,b,c,d,e,f];

subject to c26 {n in T}: zw6 [n] = sum {a in S,b in S, c in S, d
in S, e in S,f in S} lambda_x1 [n,a,b,c,d,e,f] * zw6_bar
[a,b,c,d,e,f];

subject to c27 {n in T}: sn [1,n] = sum {a in S,b in S, c in S, d
in S, e in S,f in S} lambda_x1 [n,a,b,c,d,e,f] * sn_x1
[a,b,c,d,e,f];

#PWL for well x2
subject to c28 {n in T, g in S}: eta_zw7 [n,g] = sum {h in S, i

in S} lambda_x2 [n,g,h,i];
subject to c29 {n in T, h in S}: eta_zw8 [n,h] = sum {g in S, i

in S} lambda_x2 [n,g,h,i];
subject to c30 {n in T, i in S}: eta_zw9 [n,i] = sum {g in S, h

in S} lambda_x2 [n,g,h,i];
subject to c31 {n in T}: 1 = sum {g in S, h in S, i in S}

lambda_x2 [n,g,h,i];
subject to c32 {n in T}: zw7 [n] = sum {g in S, h in S, i in S}

lambda_x2 [n,g,h,i]* zw7_bar [g,h,i];
subject to c33 {n in T}: zw8 [n] = sum {g in S, h in S, i in S}

lambda_x2 [n,g,h,i]* zw8_bar [g,h,i];
subject to c34 {n in T}: zw9 [n] = sum {g in S, h in S, i in S}

lambda_x2 [n,g,h,i]* zw9_bar [g,h,i];
subject to c35 {n in T}: sn [2,n] = sum {g in S, h in S, i in S}

lambda_x2 [n,g,h,i] * sn_x2 [g,h,i];

#PWL for qopp
subject to c36 {ir in R, n in T,k in i_Np}: eta_Np[ir,n,k] = sum

{l in i_sn[ir]} lambda_qopp[ir,n,k,l];
subject to c37 {ir in R, n in T,l in i_sn[ir]}: eta_sn[ir,n,l] =
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sum {k in i_Np} lambda_qopp[ir,n,k,l];
subject to c38 {ir in R, n in T}: 1 = sum {k in i_Np, l in

i_sn[ir]} lambda_qopp[ir,n,k,l];
subject to c39 {ir in R, n in T}: Np[ir,n] = sum {k in i_Np, l in

i_sn[ir]} lambda_qopp[ir,n,k,l]*Np_bar[ir,k,l];
subject to c40 {ir in R, n in T}: sn[ir,n] = sum {k in i_Np, l in

i_sn[ir]} lambda_qopp[ir,n,k,l]*sn_bar[ir,k,l];
subject to c41 {ir in R, n in T}: qopp[ir,n] = sum {k in i_Np, l

in i_sn[ir]} lambda_qopp[ir,n,k,l]*qopp_bar[ir,k,l];
subject to c51 {ir in R, n in T}: gp[ir,n] = sum {k in i_Np, l in

i_sn[ir]} lambda_qopp[ir,n,k,l]*gp_bar[ir,k,l];
subject to c52 {ir in R, n in T}: wp[ir,n] = sum {k in i_Np, l in

i_sn[ir]} lambda_qopp[ir,n,k,l]*wp_bar[ir,k,l];

#PWL for pipe
subject to c56 {ir in R, n in T}: 1 = sum {m in i_sn[ir]}

lambda_pipe[ir,n,m];
subject to c57 {ir in R, n in T}: pipe[ir,n]= sum {m in i_sn[ir]}

lambda_pipe[ir,n,m]*pl_sum[ir,m];
subject to c58 {ir in R, n in T}: sn[ir,n]= sum {m in i_sn[ir]}

lambda_pipe[ir,n,m]*sn_pipe[ir,m];

#Cost constraint
#cost proxy at first oil date
#drillex for predrilled well, paid at the year it starts producing
subject to c60: PVd [0] = P_well*Nw_F[0];
#drillex for producing well in the next timestep, paid when it

started producing
subject to c67 {n in {1..nt}}: PVd[n]=

(P_well*(Nw_F[n]-Nw_F[n-1]));

#capexsubsea for predrilled well xmas and pipe
subject to c61: PVsub[0] = P_pipe*pipemax+ Px*Nw_F[0];
subject to c68 {n in {1..nt}}: PVsub[n]= (Px*(Nw_F[n]-Nw_F[n-1]));
#capextopside
subject to c62: PVtop=

P_top[1]+P_top[2]*qomax+P_top[3]*qwmax+P_top[4]*qgmax*1000;

#opex and revenue calculated with rate at the previous timestep
subject to c69 {n in {1..nt}}: PVop[n] = P_opex[1]+

P_opex[3]*qo_F[n-1]+ P_opex[4]*(sum{ir in R} qw[ir,n-1]) +
P_opex[5]*1000*(sum{ir in R} qg[ir,n-1])+ P_opex[2]*Nw_F[n-1];

subject to c70 {n in {1..nt}}: PVr [n] =
Po*XR*VC*(Np_F[n]-Np_F[n-1]);

subject to c73 :DCF [0] = - (PVtop+PVd[0] + PVsub[0]);
subject to c74 {n in {1..nt-1}}: DCF [n] = (-PVop[n]+ PVr [n]-PVd

[n] - PVsub [n])/(1+disc)ˆ(n);
subject to c75 : DCF [nt] = (-PVop[nt]+ PVr [nt])/(1+disc)ˆ(nt);
subject to c72: NPV = sum {n in T} DCF [n];
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Case-basecase.run

,
option log_file "logbase.tmp";
option eexit;
model case.mod;
data combinationfactor.dat;
data PWL_table_basecase.dat;
data Econ.dat;

option show_stats 1;
option solver gurobi;
option gurobi_options "threads=8 timelim=43200 outlev=1

mipgap=0.0001 nodefilestart=8 bestbound=1";

suffix sosno;
suffix ref;
param iter1;
let iter1 :=0;
for {n in T} {

let iter1:=iter1+1;
let {a in S} eta_zw1[n,a].sosno := iter1;
let {a in S} eta_zw1[n,a].ref := zw1_bar[a,1,1,1,1,1];
let iter1:=iter1+1;
let {b in S} eta_zw2[n,b].sosno := iter1;
let {b in S} eta_zw2[n,b].ref := zw2_bar[1,b,1,1,1,1];
let iter1:=iter1+1;
let {c in S} eta_zw3[n,c].sosno := iter1;
let {c in S} eta_zw3[n,c].ref := zw3_bar[1,1,c,1,1,1];
let iter1:=iter1+1;
let {d in S} eta_zw4[n,d].sosno := iter1;
let {d in S} eta_zw4[n,d].ref := zw4_bar[1,1,1,d,1,1];
let iter1:=iter1+1;
let {e in S} eta_zw5[n,e].sosno := iter1;
let {e in S} eta_zw5[n,e].ref := zw5_bar[1,1,1,1,e,1];
let iter1:=iter1+1;
let {f in S} eta_zw6[n,f].sosno := iter1;
let {f in S} eta_zw6[n,f].ref := zw6_bar[1,1,1,1,1,f];
let iter1:=iter1+1;
let {g in S} eta_zw7[n,g].sosno := iter1;
let {g in S} eta_zw7[n,g].ref := zw7_bar[g,1,1];
let iter1:=iter1+1;
let {h in S} eta_zw8[n,h].sosno := iter1;
let {h in S} eta_zw8[n,h].ref := zw8_bar[1,h,1];
let iter1:=iter1+1;
let {i in S} eta_zw9[n,i].sosno := iter1;
let {i in S} eta_zw9[n,i].ref := zw9_bar[1,1,i];
}
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for {ir in R, n in T} {
let iter1:=iter1+1;
let {l in i_sn[ir]} eta_sn[ir,n,l].sosno:=iter1;
let {l in i_sn[ir]} eta_sn[ir,n,l].ref:= sn_bar[ir,1,l];

let iter1:=iter1+1;
let {m in i_sn[ir]} lambda_pipe[ir,n,m].sosno:=iter1;
let {m in i_sn[ir]} lambda_pipe[ir,n,m].ref:=sn_pipe[ir,m];
}

param iter2;
let iter2:= 0;
for {ir in R, n in T} {

let iter2:=iter2-1;
let {k in i_Np} eta_Np[ir,n,k].sosno:=iter2;
let {k in i_Np} eta_Np[ir,n,k].ref:= Np_bar[ir,k,1];

}

solve;
display qopp ;
display qo ;
display qg ;
display qw ;
display qo_F ;
display zw1 ;
display zw2 ;
display zw3 ;
display zw4 ;
display zw5 ;
display zw6 ;
display zw7 ;
display zw8 ;
display zw9 ;
display sn ;
display Np ;
display gp ;
display wp ;
display Nw ;
display Nw_F ;
display pipe;
display PVtop;
display PVd;
display PVsub;
display PVr;
display PVop;
display DCF;
display NPV ;
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Combinationfactor.dat

,
param nr:= 2;
param nt:= 20;
param Nw_pd := 3; #predrilled well
param Nw_py := 3;

param: sn_pipe pl_sum:=
#ir ip
#ir ip
1 1 1 0
1 2 23 15
1 3 24 8.5
1 4 25 11.2
1 5 26 19
1 6 27 15
1 7 28 17.7
1 8 29 25.5
1 9 30 11.2
1 10 31 19
1 11 32 21.2
1 12 33 11.9
1 13 34 14.6
1 14 35 22.4
1 15 36 8.1
1 16 37 15.9
1 17 38 18.1
1 18 39 12.3
1 19 40 20.1
1 20 41 19.7
1 21 42 15.8
1 22 43 22.3
1 23 44 18.1
1 24 45 24.6
1 25 46 22.4
1 26 47 14.6
1 27 48 21.2
1 28 49 27.7
1 29 50 25.5
1 30 51 17.7
1 31 52 21.2
1 32 53 19
1 33 54 11.2
1 34 55 25.5
1 35 56 17.7
1 36 57 15
1 37 58 17.7
1 38 59 25.5
1 39 60 27.7
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1 40 61 21.2
1 41 62 27.7
1 42 63 24.6
1 43 64 27.7
2 1 1 0
2 2 2 17
2 3 3 15.7
2 4 4 14
2 5 5 17
2 6 6 17
2 7 7 15.7
2 8 8 17

;

param: zw1_bar zw2_bar zw3_bar zw4_bar zw5_bar zw6_bar sn_x1 :=
#a b c d e f
1 1 1 1 1 1 0 0 0 0 0 0 1
2 1 1 1 1 1 1 0 0 0 0 0 2
1 2 1 1 1 1 0 1 0 0 0 0 3
1 1 2 1 1 1 0 0 1 0 0 0 4
1 1 1 2 1 1 0 0 0 1 0 0 5
1 1 1 1 2 1 0 0 0 0 1 0 6
1 1 1 1 1 2 0 0 0 0 0 1 7
2 2 1 1 1 1 1 1 0 0 0 0 8
2 1 2 1 1 1 1 0 1 0 0 0 9
2 1 1 2 1 1 1 0 0 1 0 0 10
2 1 1 1 2 1 1 0 0 0 1 0 11
2 1 1 1 1 2 1 0 0 0 0 1 12
1 2 2 1 1 1 0 1 1 0 0 0 13
1 2 1 2 1 1 0 1 0 1 0 0 14
1 2 1 1 2 1 0 1 0 0 1 0 15
1 2 1 1 1 2 0 1 0 0 0 1 16
1 1 2 2 1 1 0 0 1 1 0 0 17
1 1 2 1 2 1 0 0 1 0 1 0 18
1 1 2 1 1 2 0 0 1 0 0 1 19
1 1 1 2 2 1 0 0 0 1 1 0 20
1 1 1 2 1 2 0 0 0 1 0 1 21
1 1 1 1 2 2 0 0 0 0 1 1 22
2 2 2 1 1 1 1 1 1 0 0 0 23
2 2 1 2 1 1 1 1 0 1 0 0 24
2 2 1 1 2 1 1 1 0 0 1 0 25
2 2 1 1 1 2 1 1 0 0 0 1 26
2 1 2 2 1 1 1 0 1 1 0 0 27
2 1 2 1 2 1 1 0 1 0 1 0 28
2 1 2 1 1 2 1 0 1 0 0 1 29
2 1 1 2 2 1 1 0 0 1 1 0 30
2 1 1 2 1 2 1 0 0 1 0 1 31
2 1 1 1 2 2 1 0 0 0 1 1 32
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1 2 2 2 1 1 0 1 1 1 0 0 33
1 2 2 1 2 1 0 1 1 0 1 0 34
1 2 2 1 1 2 0 1 1 0 0 1 35
1 2 1 2 2 1 0 1 0 1 1 0 36
1 2 1 2 1 2 0 1 0 1 0 1 37
1 2 1 1 2 2 0 1 0 0 1 1 38
1 1 2 2 2 1 0 0 1 1 1 0 39
1 1 2 2 1 2 0 0 1 1 0 1 40
1 1 2 1 2 2 0 0 1 0 1 1 41
1 1 1 2 2 2 0 0 0 1 1 1 42
1 1 2 2 2 2 0 0 1 1 1 1 43
1 2 1 2 2 2 0 1 0 1 1 1 44
1 2 2 1 2 2 0 1 1 0 1 1 45
1 2 2 2 1 2 0 1 1 1 0 1 46
1 2 2 2 2 1 0 1 1 1 1 0 47
2 1 1 2 2 2 1 0 0 1 1 1 48
2 1 2 1 2 2 1 0 1 0 1 1 49
2 1 2 2 1 2 1 0 1 1 0 1 50
2 1 2 2 2 1 1 0 1 1 1 0 51
2 2 1 1 2 2 1 1 0 0 1 1 52
2 2 1 2 1 2 1 1 0 1 0 1 53
2 2 1 2 2 1 1 1 0 1 1 0 54
2 2 2 1 1 2 1 1 1 0 0 1 55
2 2 2 1 2 1 1 1 1 0 1 0 56
2 2 2 2 1 1 1 1 1 1 0 0 57
2 2 2 2 2 1 1 1 1 1 1 0 58
2 2 2 2 1 2 1 1 1 1 0 1 59
2 2 2 1 2 2 1 1 1 0 1 1 60
2 2 1 2 2 2 1 1 0 1 1 1 61
2 1 2 2 2 2 1 0 1 1 1 1 62
1 2 2 2 2 2 0 1 1 1 1 1 63
2 2 2 2 2 2 1 1 1 1 1 1 64

;

param: zw7_bar zw8_bar zw9_bar sn_x2:=
1 1 1 0 0 0 1
2 1 1 1 0 0 2
1 2 1 0 1 0 3
1 1 2 0 0 1 4
2 2 1 1 1 0 5
2 1 2 1 0 1 6
1 2 2 0 1 1 7
2 2 2 1 1 1 8
;

Econ.dat

,
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param Po := 60;
param XR := 8.5;
param VC := 6.29;
param disc := 0.12;
param Px := 50;

param P_well := 500;

param: P_top :=
1 2150
2 0.856242424
3 0.044161616
4 0.000235638
;
param: P_opex :=
1 723.3333333
2 6.5
3 0.023636364
4 1.8552E-18
5 3.03876E-21
;

param P_pipe := 25;

PWL table basecase.dat

,
param bp_Np:= 7;

param bp_sn:=
1 43
2 8
;

param: Np_bar sn_bar qopp_bar gp_bar wp_bar:=
#ir k l
1 1 1 0 1 0 0 0
1 2 1 4.163479729 1 0 1673.606623 1.261307784
1 3 1 7.088078361 1 0 2972.430213 2.859564676
1 4 1 10.12279601 1 0 4650.489193 5.035448441
1 5 1 15.00680301 1 0 10523.23814 9.621709902
1 6 1 18.5066877 1 0 17247.86926 13.79690505
1 7 1 21.72981803 1 0 25839.50 19.07
1 1 2 0 23 12386.60318 0 0
1 2 2 4.163479729 23 7136.023275 1673.606623 1.261307784
1 3 2 7.088078361 23 4482.245865 2972.430213 2.859564676
1 4 2 10.12279601 23 2666.786653 4650.489193 5.035448441
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1 5 2 15.00680301 23 1308.206621 10523.23814 9.621709902
1 6 2 18.5066877 23 782.0584154 17247.86926 13.79690505
1 7 2 21.72981803 23 486.9343354 25839.50 19.07
1 1 3 0 24 12581.3048 0 0
1 2 3 4.163479729 24 7248.19247 1673.606623 1.261307784
1 3 3 7.088078361 24 4552.70106 2972.430213 2.859564676
1 4 3 10.12279601 24 2708.705142 4650.489193 5.035448441
1 5 3 15.00680301 24 1328.769963 10523.23814 9.621709902
1 6 3 18.5066877 24 794.3513773 17247.86926 13.79690505
1 7 3 21.72981803 24 494.5883228 25839.50 19.07
1 1 4 0 25 12737.3061 0 0
1 2 4 4.163479729 25 7338.066093 1673.606623 1.261307784
1 3 4 7.088078361 25 4609.152063 2972.430213 2.859564676
1 4 4 10.12279601 25 2742.291605 4650.489193 5.035448441
1 5 4 15.00680301 25 1345.245984 10523.23814 9.621709902
1 6 4 18.5066877 25 804.2009 17247.86926 13.79690505
1 7 4 21.72981803 25 500.7209476 25839.50 19.07
1 1 5 0 26 10683.08899 0 0
1 2 5 4.163479729 26 6154.614835 1673.606623 1.261307784
1 3 5 7.088078361 26 3865.808144 2972.430213 2.859564676
1 4 5 10.12279601 26 2300.026789 4650.489193 5.035448441
1 5 5 15.00680301 26 1128.290585 10523.23814 9.621709902
1 6 5 18.5066877 26 674.5028903 17247.86926 13.79690505
1 7 5 21.72981803 26 419.9668595 25839.50 19.07
1 1 6 0 27 14200.41828 0 0
1 2 6 4.163479729 27 8180.976976 1673.606623 1.261307784
1 3 6 7.088078361 27 5138.597341 2972.430213 2.859564676
1 4 6 10.12279601 27 3057.293869 4650.489193 5.035448441
1 5 6 15.00680301 27 1499.772049 10523.23814 9.621709902
1 6 6 18.5066877 27 896.578058 17247.86926 13.79690505
1 7 6 21.72981803 27 558.2378915 25839.50 19.07
1 1 7 0 28 13341.51113 0 0
1 2 7 4.163479729 28 7686.153548 1673.606623 1.261307784
1 3 7 7.088078361 28 4827.791142 2972.430213 2.859564676
1 4 7 10.12279601 28 2872.374558 4650.489193 5.035448441
1 5 7 15.00680301 28 1409.05888 10523.23814 9.621709902
1 6 7 18.5066877 28 842.3488591 17247.86926 13.79690505
1 7 7 21.72981803 28 524.4730749 25839.50 19.07
1 1 8 0 29 11287.29402 0 0
1 2 8 4.163479729 29 6502.70229 1673.606623 1.261307784
1 3 8 7.088078361 29 4084.447223 2972.430213 2.859564676
1 4 8 10.12279601 29 2430.109742 4650.489193 5.035448441
1 5 8 15.00680301 29 1192.103482 10523.23814 9.621709902
1 6 8 18.5066877 29 712.6508494 17247.86926 13.79690505
1 7 8 21.72981803 29 443.7189868 25839.50 19.07
1 1 9 0 30 14679.92228 0 0
1 2 9 4.163479729 30 8457.223144 1673.606623 1.261307784
1 3 9 7.088078361 30 5312.111803 2972.430213 2.859564676
1 4 9 10.12279601 30 3160.529182 4650.489193 5.035448441
1 5 9 15.00680301 30 1550.41469 10523.23814 9.621709902
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1 6 9 18.5066877 30 926.8527127 17247.86926 13.79690505
1 7 9 21.72981803 30 577.0878502 25839.50 19.07
1 1 10 0 31 12625.70517 0 0
1 2 10 4.163479729 31 7273.771886 1673.606623 1.261307784
1 3 10 7.088078361 31 4568.767884 2972.430213 2.859564676
1 4 10 10.12279601 31 2718.264366 4650.489193 5.035448441
1 5 10 15.00680301 31 1333.459292 10523.23814 9.621709902
1 6 10 18.5066877 31 797.154703 17247.86926 13.79690505
1 7 10 21.72981803 31 496.3337622 25839.50 19.07
1 1 11 0 32 11290.49405 0 0
1 2 11 4.163479729 32 6504.545851 1673.606623 1.261307784
1 3 11 7.088078361 32 4085.605192 2972.430213 2.859564676
1 4 11 10.12279601 32 2430.798695 4650.489193 5.035448441
1 5 11 15.00680301 32 1192.441451 10523.23814 9.621709902
1 6 11 18.5066877 32 712.8528909 17247.86926 13.79690505
1 7 11 21.72981803 32 443.8447843 25839.50 19.07
1 1 12 0 33 15417.52842 0 0
1 2 12 4.163479729 33 8882.16407 1673.606623 1.261307784
1 3 12 7.088078361 33 5579.023728 2972.430213 2.859564676
1 4 12 10.12279601 33 3319.332866 4650.489193 5.035448441
1 5 12 15.00680301 33 1628.316696 10523.23814 9.621709902
1 6 12 18.5066877 33 973.4232764 17247.86926 13.79690505
1 7 12 21.72981803 33 606.084158 25839.50 19.07
1 1 13 0 34 15240.42695 0 0
1 2 13 4.163479729 34 8780.134463 1673.606623 1.261307784
1 3 13 7.088078361 34 5514.937364 2972.430213 2.859564676
1 4 13 10.12279601 34 3281.20362 4650.489193 5.035448441
1 5 13 15.00680301 34 1609.612188 10523.23814 9.621709902
1 6 13 18.5066877 34 962.2415426 17247.86926 13.79690505
1 7 13 21.72981803 34 599.1220564 25839.50 19.07
1 1 14 0 35 13186.30984 0 0
1 2 14 4.163479729 35 7596.740816 1673.606623 1.261307784
1 3 14 7.088078361 35 4771.629631 2972.430213 2.859564676
1 4 14 10.12279601 35 2838.960333 4650.489193 5.035448441
1 5 14 15.00680301 35 1392.667351 10523.23814 9.621709902
1 6 14 18.5066877 35 832.5498467 17247.86926 13.79690505
1 7 14 21.72981803 35 518.3718995 25839.50 19.07
1 1 15 0 36 15973.73306 0 0
1 2 15 4.163479729 36 9202.598102 1673.606623 1.261307784
1 3 15 7.088078361 36 5780.293267 2972.430213 2.859564676
1 4 15 10.12279601 36 3439.081523 4650.489193 5.035448441
1 5 15 15.00680301 36 1687.060048 10523.23814 9.621709902
1 6 15 18.5066877 36 1008.540613 17247.86926 13.79690505
1 7 15 21.72981803 36 627.9493239 25839.50 19.07
1 1 16 0 37 13919.51594 0 0
1 2 16 4.163479729 37 8019.146844 1673.606623 1.261307784
1 3 16 7.088078361 37 5036.949348 2972.430213 2.859564676
1 4 16 10.12279601 37 2996.816707 4650.489193 5.035448441
1 5 16 15.00680301 37 1470.10465 10523.23814 9.621709902
1 6 16 18.5066877 37 878.8426034 17247.86926 13.79690505
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1 7 16 21.72981803 37 547.1952358 25839.50 19.07
1 1 17 0 38 13280.51062 0 0
1 2 17 4.163479729 38 7651.010657 1673.606623 1.261307784
1 3 17 7.088078361 38 4805.717353 2972.430213 2.859564676
1 4 17 10.12279601 38 2859.24139 4650.489193 5.035448441
1 5 17 15.00680301 38 1402.616333 10523.23814 9.621709902
1 6 17 18.5066877 38 838.4974431 17247.86926 13.79690505
1 7 17 21.72981803 38 522.0750614 25839.50 19.07
1 1 18 0 39 16219.3351 0 0
1 2 18 4.163479729 39 9344.091447 1673.606623 1.261307784
1 3 18 7.088078361 39 5869.167411 2972.430213 2.859564676
1 4 18 10.12279601 39 3491.958672 4650.489193 5.035448441
1 5 18 15.00680301 39 1712.999219 10523.23814 9.621709902
1 6 18 18.5066877 39 1024.047297 17247.86926 13.79690505
1 7 18 21.72981803 39 637.6042767 25839.50 19.07
1 1 19 0 40 14165.11799 0 0
1 2 19 4.163479729 40 8160.640189 1673.606623 1.261307784
1 3 19 7.088078361 40 5125.823492 2972.430213 2.859564676
1 4 19 10.12279601 40 3049.693856 4650.489193 5.035448441
1 5 19 15.00680301 40 1496.043821 10523.23814 9.621709902
1 6 19 18.5066877 40 894.3492878 17247.86926 13.79690505
1 7 19 21.72981803 40 556.8501886 25839.50 19.07
1 1 20 0 41 11977.89977 0 0
1 2 20 4.163479729 41 6900.565906 1673.606623 1.261307784
1 3 20 7.088078361 41 4334.351473 2972.430213 2.859564676
1 4 20 10.12279601 41 2578.794428 4650.489193 5.035448441
1 5 20 15.00680301 41 1265.041559 10523.23814 9.621709902
1 6 20 18.5066877 41 756.2539287 17247.86926 13.79690505
1 7 20 21.72981803 41 470.8676448 25839.50 19.07
1 1 21 0 42 14333.61939 0 0
1 2 21 4.163479729 42 8257.715224 1673.606623 1.261307784
1 3 21 7.088078361 42 5186.797813 2972.430213 2.859564676
1 4 21 10.12279601 42 3085.971541 4650.489193 5.035448441
1 5 21 15.00680301 42 1513.840036 10523.23814 9.621709902
1 6 21 18.5066877 42 904.9880351 17247.86926 13.79690505
1 7 21 21.72981803 42 563.4742095 25839.50 19.07
1 1 22 0 43 18750.05618 0 0
1 2 22 4.163479729 43 10802.06053 1673.606623 1.261307784
1 3 22 7.088078361 43 6784.940197 2972.430213 2.859564676
1 4 22 10.12279601 43 4036.812907 4650.489193 5.035448441
1 5 22 15.00680301 43 1980.280412 10523.23814 9.621709902
1 6 22 18.5066877 43 1183.830548 17247.86926 13.79690505
1 7 22 21.72981803 43 737.0903884 25839.50 19.07
1 1 23 0 44 18504.35413 0 0
1 2 23 4.163479729 44 10660.50958 1673.606623 1.261307784
1 3 23 7.088078361 44 6696.029866 2972.430213 2.859564676
1 4 23 10.12279601 44 3983.914229 4650.489193 5.035448441
1 5 23 15.00680301 44 1954.330679 10523.23814 9.621709902
1 6 23 18.5066877 44 1168.31755 17247.86926 13.79690505
1 7 23 21.72981803 44 727.4315044 25839.50 19.07
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1 1 24 0 45 17771.14803 0 0
1 2 24 4.163479729 45 10238.10355 1673.606623 1.261307784
1 3 24 7.088078361 45 6430.71015 2972.430213 2.859564676
1 4 24 10.12279601 45 3826.057855 4650.489193 5.035448441
1 5 24 15.00680301 45 1876.893381 10523.23814 9.621709902
1 6 24 18.5066877 45 1122.024793 17247.86926 13.79690505
1 7 24 21.72981803 45 698.6081681 25839.50 19.07
1 1 25 0 46 18128.75101 0 0
1 2 25 4.163479729 46 10444.12155 1673.606623 1.261307784
1 3 25 7.088078361 46 6560.113219 2972.430213 2.859564676
1 4 25 10.12279601 46 3903.048361 4650.489193 5.035448441
1 5 25 15.00680301 46 1914.66149 10523.23814 9.621709902
1 6 25 18.5066877 46 1144.60293 17247.86926 13.79690505
1 7 25 21.72981803 46 712.666031 25839.50 19.07
1 1 26 0 47 20182.86812 0 0
1 2 26 4.163479729 47 11627.51519 1673.606623 1.261307784
1 3 26 7.088078361 47 7303.420952 2972.430213 2.859564676
1 4 26 10.12279601 47 4345.291647 4650.489193 5.035448441
1 5 26 15.00680301 47 2131.606327 10523.23814 9.621709902
1 6 26 18.5066877 47 1274.294626 17247.86926 13.79690505
1 7 26 21.72981803 47 793.4161879 25839.50 19.07
1 1 27 0 48 17210.54336 0 0
1 2 27 4.163479729 48 9915.134621 1673.606623 1.261307784
1 3 27 7.088078361 48 6227.848403 2972.430213 2.859564676
1 4 27 10.12279601 48 3705.361888 4650.489193 5.035448441
1 5 27 15.00680301 48 1817.685321 10523.23814 9.621709902
1 6 27 18.5066877 48 1086.629649 17247.86926 13.79690505
1 7 27 21.72981803 48 676.5700308 25839.50 19.07
1 1 28 0 49 15872.13221 0 0
1 2 28 4.163479729 49 9144.065025 1673.606623 1.261307784
1 3 28 7.088078361 49 5743.527742 2972.430213 2.859564676
1 4 28 10.12279601 49 3417.207263 4650.489193 5.035448441
1 5 28 15.00680301 49 1676.329511 10523.23814 9.621709902
1 6 28 18.5066877 49 1002.125796 17247.86926 13.79690505
1 7 28 21.72981803 49 623.9552554 25839.50 19.07
1 1 29 0 50 16911.64087 0 0
1 2 29 4.163479729 50 9742.934455 1673.606623 1.261307784
1 3 29 7.088078361 50 6119.686832 2972.430213 2.859564676
1 4 29 10.12279601 50 3641.009364 4650.489193 5.035448441
1 5 29 15.00680301 50 1786.116843 10523.23814 9.621709902
1 6 29 18.5066877 50 1067.757711 17247.86926 13.79690505
1 7 29 21.72981803 50 664.8197645 25839.50 19.07
1 1 30 0 51 18965.85798 0 0
1 2 30 4.163479729 51 10926.38571 1673.606623 1.261307784
1 3 30 7.088078361 51 6863.030752 2972.430213 2.859564676
1 4 30 10.12279601 51 4083.27418 4650.489193 5.035448441
1 5 30 15.00680301 51 2003.072241 10523.23814 9.621709902
1 6 30 18.5066877 51 1197.455721 17247.86926 13.79690505
1 7 30 21.72981803 51 745.5738526 25839.50 19.07
1 1 31 0 52 15267.92718 0 0
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1 2 31 4.163479729 52 8795.97757 1673.606623 1.261307784
1 3 31 7.088078361 52 5524.888663 2972.430213 2.859564676
1 4 31 10.12279601 52 3287.12431 4650.489193 5.035448441
1 5 31 15.00680301 52 1612.516615 10523.23814 9.621709902
1 6 31 18.5066877 52 963.9778367 17247.86926 13.79690505
1 7 31 21.72981803 52 600.2031281 25839.50 19.07
1 1 32 0 53 15292.52738 0 0
1 2 32 4.163479729 53 8810.149949 1673.606623 1.261307784
1 3 32 7.088078361 53 5533.790552 2972.430213 2.859564676
1 4 32 10.12279601 53 3292.420637 4650.489193 5.035448441
1 5 32 15.00680301 53 1615.114757 10523.23814 9.621709902
1 6 32 18.5066877 53 965.5310306 17247.86926 13.79690505
1 7 32 21.72981803 53 601.1701958 25839.50 19.07
1 1 33 0 54 17346.74449 0 0
1 2 33 4.163479729 54 9993.601207 1673.606623 1.261307784
1 3 33 7.088078361 54 6277.134471 2972.430213 2.859564676
1 4 33 10.12279601 54 3734.685453 4650.489193 5.035448441
1 5 33 15.00680301 54 1832.070155 10523.23814 9.621709902
1 6 33 18.5066877 54 1095.22904 17247.86926 13.79690505
1 7 33 21.72981803 54 681.9242839 25839.50 19.07
1 1 34 0 55 15097.82576 0 0
1 2 34 4.163479729 55 8697.980754 1673.606623 1.261307784
1 3 34 7.088078361 55 5463.335357 2972.430213 2.859564676
1 4 34 10.12279601 55 3250.502148 4650.489193 5.035448441
1 5 34 15.00680301 55 1594.551415 10523.23814 9.621709902
1 6 34 18.5066877 55 953.2380687 17247.86926 13.79690505
1 7 34 21.72981803 55 593.5162084 25839.50 19.07
1 1 35 0 56 17152.04287 0 0
1 2 35 4.163479729 56 9881.432012 1673.606623 1.261307784
1 3 35 7.088078361 56 6206.679276 2972.430213 2.859564676
1 4 35 10.12279601 56 3692.766964 4650.489193 5.035448441
1 5 35 15.00680301 56 1811.506813 10523.23814 9.621709902
1 6 35 18.5066877 56 1082.936078 17247.86926 13.79690505
1 7 35 21.72981803 56 674.2702965 25839.50 19.07
1 1 36 0 57 16714.53923 0 0
1 2 36 4.163479729 57 9629.382589 1673.606623 1.261307784
1 3 36 7.088078361 57 6048.363161 2972.430213 2.859564676
1 4 36 10.12279601 57 3598.574161 4650.489193 5.035448441
1 5 36 15.00680301 57 1765.300024 10523.23814 9.621709902
1 6 36 18.5066877 57 1055.313218 17247.86926 13.79690505
1 7 36 21.72981803 57 657.071429 25839.50 19.07
1 1 37 0 58 21479.97892 0 0
1 2 37 4.163479729 58 12374.79133 1673.606623 1.261307784
1 3 37 7.088078361 58 7772.796572 2972.430213 2.859564676
1 4 37 10.12279601 58 4624.554471 4650.489193 5.035448441
1 5 37 15.00680301 58 2268.600216 10523.23814 9.621709902
1 6 37 18.5066877 58 1356.190881 17247.86926 13.79690505
1 7 37 21.72981803 58 844.4073901 25839.50 19.07
1 1 38 0 59 19425.76181 0 0
1 2 38 4.163479729 59 11191.34007 1673.606623 1.261307784

101



1 3 38 7.088078361 59 7029.452652 2972.430213 2.859564676
1 4 38 10.12279601 59 4182.289655 4650.489193 5.035448441
1 5 38 15.00680301 59 2051.644818 10523.23814 9.621709902
1 6 38 18.5066877 59 1226.492872 17247.86926 13.79690505
1 7 38 21.72981803 59 763.653302 25839.50 19.07
1 1 39 0 60 19682.76395 0 0
1 2 39 4.163479729 60 11339.4011 1673.606623 1.261307784
1 3 39 7.088078361 60 7122.452062 2972.430213 2.859564676
1 4 39 10.12279601 60 4237.621199 4650.489193 5.035448441
1 5 39 15.00680301 60 2078.788006 10523.23814 9.621709902
1 6 39 18.5066877 60 1242.719329 17247.86926 13.79690505
1 7 39 21.72981803 60 773.7564082 25839.50 19.07
1 1 40 0 61 19877.36557 0 0
1 2 40 4.163479729 61 11451.51268 1673.606623 1.261307784
1 3 40 7.088078361 61 7192.87107 2972.430213 2.859564676
1 4 40 10.12279601 61 4279.518158 4650.489193 5.035448441
1 5 40 15.00680301 61 2099.340786 10523.23814 9.621709902
1 6 40 18.5066877 61 1255.005977 17247.86926 13.79690505
1 7 40 21.72981803 61 781.4064644 25839.50 19.07
1 1 41 0 62 21496.47906 0 0
1 2 41 4.163479729 62 12384.29719 1673.606623 1.261307784
1 3 41 7.088078361 62 7778.767351 2972.430213 2.859564676
1 4 41 10.12279601 62 4628.106886 4650.489193 5.035448441
1 5 41 15.00680301 62 2270.342872 10523.23814 9.621709902
1 6 41 18.5066877 62 1357.232658 17247.86926 13.79690505
1 7 41 21.72981803 62 845.0560331 25839.50 19.07
1 1 42 0 63 22713.5892 0 0
1 2 42 4.163479729 63 13085.48428 1673.606623 1.261307784
1 3 42 7.088078361 63 8219.193738 2972.430213 2.859564676
1 4 42 10.12279601 63 4890.145883 4650.489193 5.035448441
1 5 42 15.00680301 63 2398.88752 10523.23814 9.621709902
1 6 42 18.5066877 63 1434.077876 17247.86926 13.79690505
1 7 42 21.72981803 63 892.9022996 25839.50 19.07
1 1 43 0 64 24010.6 0 0
1 2 43 4.163479729 64 13832.7028 1673.606623 1.261307784
1 3 43 7.088078361 64 8688.533171 2972.430213 2.859564676
1 4 43 10.12279601 64 5169.387177 4650.489193 5.035448441
1 5 43 15.00680301 64 2535.870848 10523.23814 9.621709902
1 6 43 18.5066877 64 1515.967818 17247.86926 13.79690505
1 7 43 21.72981803 64 943.8895706 25839.50 19.07
2 1 1 0 1 0 0 0
2 2 1 1.007873034 1 0 106.7302846 0.04453459
2 3 1 2.042479879 1 0 320.597987 0.091392024
2 4 1 3.762329721 1 0 726.1950764 0.153749827
2 5 1 5.008121245 1 0 1389.013126 0.203443716
2 6 1 6.05754954 1 0 2736.948528 0.265414935
2 7 1 6.8607 1 0 3643.818039 0.300889055
2 1 2 0 2 4273.936632 0 0
2 2 2 1.007873034 2 2974.418597 106.7302846 0.04453459
2 3 2 2.042479879 2 1944.09011 320.597987 0.091392024
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2 4 2 3.29 2 1109.970236 726.1950764 0.153749827
2 5 2 4.49 2 692.4721684 1389.013126 0.203443716
2 6 2 6.06 2 342.5436253 2736.948528 0.265414935
2 7 2 6.8607 2 196.8042707 3643.818039 0.300889055
2 1 3 0 3 4915.397104 0 0
2 2 3 1.007873034 3 3420.83887 106.7302846 0.04453459
2 3 3 2.042479879 3 2235.871918 320.597987 0.091392024
2 4 3 3.29 3 1276.561858 726.1950764 0.153749827
2 5 3 4.49 3 796.4029381 1389.013126 0.203443716
2 6 3 6.06 3 393.9548217 2736.948528 0.265414935
2 7 3 6.8607 3 226.3419479 3643.818039 0.300889055
2 1 4 0 4 5222.198198 0 0
2 2 4 1.007873034 4 3634.355111 106.7302846 0.04453459
2 3 4 2.042479879 4 2375.426859 320.597987 0.091392024
2 4 4 3.29 4 1356.240176 726.1950764 0.153749827
2 5 4 4.49 4 846.1114943 1389.013126 0.203443716
2 6 4 6.06 4 418.5440396 2736.948528 0.265414935
2 7 4 6.8607 4 240.4693837 3643.818039 0.300889055
2 1 5 0 5 6549.266422 0 0
2 2 5 1.007873034 5 4557.91967 106.7302846 0.04453459
2 3 5 2.042479879 5 2979.071796 320.597987 0.091392024
2 4 5 3.29 5 1700.888765 726.1950764 0.153749827
2 5 5 4.49 5 1061.125868 1389.013126 0.203443716
2 6 5 6.06 5 524.9047088 2736.948528 0.265414935
2 7 5 6.8607 5 301.5776117 3643.818039 0.300889055
2 1 6 0 6 7120.101246 0 0
2 2 6 1.007873034 6 4955.18848 106.7302846 0.04453459
2 3 6 2.042479879 6 3238.72804 320.597987 0.091392024
2 4 6 3.29 6 1849.138428 726.1950764 0.153749827
2 5 6 4.49 6 1153.613723 1389.013126 0.203443716
2 6 6 6.06 6 570.6554643 2736.948528 0.265414935
2 7 6 6.8607 6 327.8631514 3643.818039 0.300889055
2 1 7 0 7 7359.496494 0 0
2 2 7 1.007873034 7 5121.794056 106.7302846 0.04453459
2 3 7 2.042479879 7 3347.622012 320.597987 0.091392024
2 4 7 3.29 7 1911.310992 726.1950764 0.153749827
2 5 7 4.49 7 1192.401042 1389.013126 0.203443716
2 6 7 6.06 7 589.8422991 2736.948528 0.265414935
2 7 7 6.8607 7 338.8867138 3643.818039 0.300889055
2 1 8 0 8 8114 0 0
2 2 8 1.007873034 8 5646.885899 106.7302846 0.04453459
2 3 8 2.042479879 8 3690.823826 320.597987 0.091392024
2 4 8 3.29 8 2107.260653 726.1950764 0.153749827
2 5 8 4.49 8 1314.647281 1389.013126 0.203443716
2 6 8 6.06 8 650.3135668 2736.948528 0.265414935
2 7 8 6.8607 8 373.6297447 3643.818039 0.300889055
;
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Appendix D
Extreme Curves Optimization
Source Code

casemaxwpgp.mod

,
set S:= 1..15;
param Np {ir in {1,2}, inp in S };

param Np_w1_bar {i in S};
param Wp_w1_bar {i in S};
param Gp_w1_bar {i in S};

param Np_w2_bar {i in S};
param Wp_w2_bar {i in S};
param Gp_w2_bar {i in S};

param Np_w3_bar {i in S};
param Wp_w3_bar {i in S};
param Gp_w3_bar {i in S};

param Np_w4_bar {i in S};
param Wp_w4_bar {i in S};
param Gp_w4_bar {i in S};

param Np_w5_bar {i in S};
param Wp_w5_bar {i in S};
param Gp_w5_bar {i in S};

param Np_w6_bar {i in S};
param Wp_w6_bar {i in S};
param Gp_w6_bar {i in S};
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param Np_w7_bar {i in S};
param Wp_w7_bar {i in S};
param Gp_w7_bar {i in S};

param Np_w8_bar {i in S};
param Wp_w8_bar {i in S};
param Gp_w8_bar {i in S};

param Np_w9_bar {i in S};
param Wp_w9_bar {i in S};
param Gp_w9_bar {i in S};

var Np_w1 {inp in S} >=0;
var Np_w2 {inp in S} >=0;
var Np_w3 {inp in S} >=0;
var Np_w4 {inp in S} >=0;
var Np_w5 {inp in S}>=0;
var Np_w6 {inp in S}>=0;
var Np_w7 {inp in S}>=0;
var Np_w8 {inp in S}>=0;
var Np_w9 {inp in S}>=0;

var Gp_w1 {inp in S}>=0;
var Gp_w2 {inp in S}>=0;
var Gp_w3 {inp in S}>=0;
var Gp_w4 {inp in S}>=0;
var Gp_w5 {inp in S}>=0;
var Gp_w6 {inp in S}>=0;
var Gp_w7 {inp in S}>=0;
var Gp_w8 {inp in S}>=0;
var Gp_w9 {inp in S}>=0;

var Wp_w1 {inp in S}>=0;
var Wp_w2 {inp in S}>=0;
var Wp_w3 {inp in S}>=0;
var Wp_w4 {inp in S}>=0;
var Wp_w5 {inp in S}>=0;
var Wp_w6 {inp in S}>=0;
var Wp_w7 {inp in S}>=0;
var Wp_w8 {inp in S}>=0;
var Wp_w9 {inp in S}>=0;

var lambda_zw1 {inp in S, i in S} >=0;
var lambda_zw2 {inp in S, i in S} >=0;
var lambda_zw3 {inp in S, i in S} >=0;
var lambda_zw4 {inp in S, i in S} >=0;
var lambda_zw5 {inp in S, i in S} >=0;
var lambda_zw6 {inp in S, i in S} >=0;
var lambda_zw7 {inp in S, i in S} >=0;

106



var lambda_zw8 {inp in S, i in S} >=0;
var lambda_zw9 {inp in S, i in S} >=0;

var Gp{ir in {1,2},inp in S }>=0;
var Wp{ir in {1,2},inp in S }>=0;

var Gptotal>=0;
var Wptotal>=0;

maximize obj: Wptotal+Gptotal;

#PWL Constraints
subject to c1 {inp in S}: 1 = sum {i in S} lambda_zw1[inp,i];
subject to c2 {inp in S}: Np_w1 [inp]= sum {i in S}

lambda_zw1[inp,i]*Np_w1_bar[i];
subject to c3 {inp in S}: Gp_w1 [inp]= sum {i in S}

lambda_zw1[inp,i]*Gp_w1_bar[i];
subject to c4 {inp in S}: Wp_w1 [inp]= sum {i in S}

lambda_zw1[inp,i]*Wp_w1_bar[i];

subject to c5 {inp in S}: 1 = sum {i in S} lambda_zw2[inp,i];
subject to c6 {inp in S}: Np_w2 [inp]= sum {i in S}

lambda_zw2[inp,i]*Np_w2_bar[i];
subject to c7 {inp in S}: Gp_w2 [inp]= sum {i in S}

lambda_zw2[inp,i]*Gp_w2_bar[i];
subject to c8 {inp in S}: Wp_w2 [inp]= sum {i in S}

lambda_zw2[inp,i]*Wp_w2_bar[i];

subject to c9 {inp in S}: 1 = sum {i in S} lambda_zw3[inp,i];
subject to c10 {inp in S}: Np_w3 [inp]= sum {i in S}

lambda_zw3[inp,i]*Np_w3_bar[i];
subject to c11 {inp in S}: Gp_w3 [inp]= sum {i in S}

lambda_zw3[inp,i]*Gp_w3_bar[i];
subject to c12 {inp in S}: Wp_w3 [inp]= sum {i in S}

lambda_zw3[inp,i]*Wp_w3_bar[i];

subject to c13 {inp in S}: 1 = sum {i in S} lambda_zw4[inp,i];
subject to c14 {inp in S}: Np_w4 [inp]= sum {i in S}

lambda_zw4[inp,i]*Np_w4_bar[i];
subject to c15 {inp in S}: Gp_w4 [inp]= sum {i in S}

lambda_zw4[inp,i]*Gp_w4_bar[i];
subject to c16 {inp in S}: Wp_w4 [inp]= sum {i in S}

lambda_zw4[inp,i]*Wp_w4_bar[i];

subject to c17 {inp in S}: 1 = sum {i in S} lambda_zw5[inp,i];
subject to c18 {inp in S}: Np_w5 [inp]= sum {i in S}
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lambda_zw5[inp,i]*Np_w5_bar[i];
subject to c19 {inp in S}: Gp_w5 [inp]= sum {i in S}

lambda_zw5[inp,i]*Gp_w5_bar[i];
subject to c20 {inp in S}: Wp_w5 [inp]= sum {i in S}

lambda_zw5[inp,i]*Wp_w5_bar[i];

subject to c21 {inp in S}: 1 = sum {i in S} lambda_zw6[inp,i];
subject to c22 {inp in S}: Np_w6 [inp]= sum {i in S}

lambda_zw6[inp,i]*Np_w6_bar[i];
subject to c23 {inp in S}: Gp_w6 [inp]= sum {i in S}

lambda_zw6[inp,i]*Gp_w6_bar[i];
subject to c24 {inp in S}: Wp_w6 [inp]= sum {i in S}

lambda_zw6[inp,i]*Wp_w6_bar[i];

subject to c25 {inp in S}: 1 = sum {i in S} lambda_zw7[inp,i];
subject to c26 {inp in S}: Np_w7 [inp]= sum {i in S}

lambda_zw7[inp,i]*Np_w7_bar[i];
subject to c27 {inp in S}: Gp_w7 [inp]= sum {i in S}

lambda_zw7[inp,i]*Gp_w7_bar[i];
subject to c28 {inp in S}: Wp_w7 [inp]= sum {i in S}

lambda_zw7[inp,i]*Wp_w7_bar[i];

subject to c29 {inp in S}: 1 = sum {i in S} lambda_zw8[inp,i];
subject to c30 {inp in S}: Np_w8 [inp]= sum {i in S}

lambda_zw8[inp,i]*Np_w8_bar[i];
subject to c31 {inp in S}: Gp_w8 [inp]= sum {i in S}

lambda_zw8[inp,i]*Gp_w8_bar[i];
subject to c32 {inp in S}: Wp_w8 [inp]= sum {i in S}

lambda_zw8[inp,i]*Wp_w8_bar[i];

subject to c33 {inp in S}: 1 = sum {i in S} lambda_zw9[inp,i];
subject to c34 {inp in S}: Np_w9 [inp]= sum {i in S}

lambda_zw9[inp,i]*Np_w9_bar[i];
subject to c35 {inp in S}: Gp_w9 [inp]= sum {i in S}

lambda_zw9[inp,i]*Gp_w9_bar[i];
subject to c36 {inp in S}: Wp_w9 [inp]= sum {i in S}

lambda_zw9[inp,i]*Wp_w9_bar[i];

#Consistensy constraints
subject to c37 {inp in S}: Np_w1 [inp]+ Np_w2 [inp]+ Np_w3 [inp]+

Np_w4 [inp]+ Np_w5 [inp]+ Np_w6 [inp] = Np[1,inp];
subject to c38 {inp in S}: Np_w7 [inp]+ Np_w8 [inp]+ Np_w9 [inp]=

Np[2,inp];

subject to c39 {inp in {1..14}}: Np_w1 [inp+1]-Np_w1[inp] >=0;
subject to c40 {inp in {1..14}}: Np_w2 [inp+1]-Np_w2[inp] >=0;
subject to c41 {inp in {1..14}}: Np_w3 [inp+1]-Np_w3[inp]>=0;
subject to c42 {inp in {1..14}}: Np_w4 [inp+1]-Np_w4[inp] >=0;
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subject to c43 {inp in {1..14}}: Np_w5 [inp+1]-Np_w5[inp] >=0;
subject to c44 {inp in {1..14}}: Np_w6 [inp+1]-Np_w6[inp] >=0;
subject to c45 {inp in {1..14}}: Np_w7 [inp+1]-Np_w7[inp]>=0;
subject to c46 {inp in {1..14}}: Np_w8 [inp+1]-Np_w8[inp] >=0;
subject to c47 {inp in {1..14}}: Np_w9 [inp+1]-Np_w9[inp] >=0;

subject to c48 {inp in S}: Wp_w1 [inp]+ Wp_w2 [inp]+ Wp_w3 [inp]+
Wp_w4 [inp]+ Wp_w5 [inp]+ Wp_w6 [inp] = Wp[1,inp];

subject to c49 {inp in S}: Gp_w1 [inp]+ Gp_w2 [inp]+ Gp_w3 [inp]+
Gp_w4 [inp]+ Gp_w5 [inp]+ Gp_w6 [inp] = Gp[1,inp];

subject to c50 {inp in S}: Wp_w7 [inp]+ Wp_w8 [inp]+ Wp_w9 [inp]=
Wp[2,inp];

subject to c51 {inp in S}: Gp_w7 [inp]+ Gp_w8 [inp]+ Gp_w9 [inp]=
Gp[2,inp];

subject to c52: Gptotal= sum { inp in S} (Gp[1,inp] +
Gp[2,inp])/1000;

subject to c53: Wptotal= sum { inp in S} (Wp[1,inp] + Wp[2,inp]);

case maxwpgp.run

,
reset;

option log_file "logmaxwpgp1.tmp";
option eexit;
model casemaxwpgp.mod;
data PWL_Wp_Gp.dat;

option solver gurobi;
option gurobi_options "threads=8 timelim=1000 outlev=1

nodefilestart=0.5 bestbound=1";

suffix sosno;
suffix ref;

param iter2;
let iter2:= 0;
for {inp in S} {

let iter2:=iter2-1;
let {i in S} lambda_zw1[inp,i].sosno:=iter2;
let {i in S} lambda_zw1[inp,i].ref:= Np_w1_bar[i];
let iter2:=iter2-1;
let {i in S} lambda_zw2[inp,i].sosno:=iter2;
let {i in S} lambda_zw2[inp,i].ref:= Np_w2_bar[i];
let iter2:=iter2-1;
let {i in S} lambda_zw3[inp,i].sosno:=iter2;
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let {i in S} lambda_zw3[inp,i].ref:= Np_w3_bar[i];
let iter2:=iter2-1;
let {i in S} lambda_zw4[inp,i].sosno:=iter2;
let {i in S} lambda_zw4[inp,i].ref:= Np_w4_bar[i];
let iter2:=iter2-1;
let {i in S} lambda_zw5[inp,i].sosno:=iter2;
let {i in S} lambda_zw5[inp,i].ref:= Np_w5_bar[i];
let iter2:=iter2-1;
let {i in S} lambda_zw6[inp,i].sosno:=iter2;
let {i in S} lambda_zw6[inp,i].ref:= Np_w6_bar[i];

}
for {inp in S} {

let iter2:=iter2-1;
let {i in S} lambda_zw7[inp,i].sosno:=iter2;
let {i in S} lambda_zw7[inp,i].ref:= Np_w7_bar[i];
let iter2:=iter2-1;
let {i in S} lambda_zw8[inp,i].sosno:=iter2;
let {i in S} lambda_zw8[inp,i].ref:= Np_w8_bar[i];
let iter2:=iter2-1;
let {i in S} lambda_zw9[inp,i].sosno:=iter2;
let {i in S} lambda_zw9[inp,i].ref:= Np_w9_bar[i];

}

solve;
display Np;
display Gptotal ;
display Wptotal ;
display Gp ;
display Wp ;
display Np_w1 ;
display Np_w2 ;
display Np_w3 ;
display Np_w4 ;
display Np_w5;
display Np_w6 ;
display Np_w7 ;
display Np_w8 ;
display Np_w9 ;
display Wp_w1 ;
display Wp_w2 ;
display Wp_w3 ;
display Wp_w4 ;
display Wp_w5;
display Wp_w6 ;
display Wp_w7 ;
display Wp_w8 ;
display Wp_w9 ;
display Gp_w1 ;
display Gp_w2 ;
display Gp_w3 ;
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display Gp_w4 ;
display Gp_w5;
display Gp_w6 ;
display Gp_w7 ;
display Gp_w8 ;
display Gp_w9 ;

PWL Wp Gp.dat

,
param: Np:=
1 1 0
1 2 1.7
1 3 2.6
1 4 4.16348
1 5 5.676587545
1 6 6.1
1 7 7.088078361
1 8 8.028194821
1 9 10.1228
1 10 11.6
1 11 13.2
1 12 15.00680301
1 13 17.07670403
1 14 18.5066877
1 15 21.729
2 1 0
2 2 0.58
2 3 1.007873034
2 4 1.537608201
2 5 2.042479879
2 6 2.52
2 7 2.770615944
2 8 3.29
2 9 3.76
2 10 4.01
2 11 4.49
2 12 5.10
2 13 5.51
2 14 6
2 15 6.8607
;

param: Np_w1_bar Wp_w1_bar Gp_w1_bar:=
1 0 0 0
2 0.288256885 0.031214168 80.96094092
3 0.465165512 0.062620116 149.3432683
4 0.755565581 0.149658701 282.2823623

111



5 1.018171586 0.256612197 405.7442709
6 1.275790298 0.383963305 533.3223981
7 1.611020081 0.552166459 711.4866122
8 1.853990239 0.667453077 887.1088925
9 2.002897228 0.724484872 1020.09269
10 2.300950157 0.814772535 1400.84812
11 2.507727078 0.867657345 1784.2556
12 2.802052363 0.943760732 2560.180006
13 3.000692529 0.99943402 3287.473932
14 3.203417269 1.057975708 4236.649151
15 3.318520641 1.086969467 4784.269763
;

param: Np_w2_bar Wp_w2_bar Gp_w2_bar:=
1 0 0 0
2 0.194618395 0.033129412 53.74595096
3 0.438220549 0.108014118 147.2346097
4 0.607234002 0.200259311 241.6290497
5 0.803706271 0.335666542 392.4766218
6 1.008513493 0.493889854 618.4256273
7 1.105420838 0.563168742 765.5239094
8 1.217216612 0.634027506 968.9994549
9 1.506167516 0.743479588 1710.655677
10 1.603461157 0.777370112 2063.847795
11 1.810451887 0.841584861 2969.16151
12 1.912736644 0.877464545 3482.633075
13 2.004526978 0.902543168 3939.246145
14 2.102198152 0.927813748 4447.533676
15 2.183515009 0.95161963 4893.595381
;

param: Np_w3_bar Wp_w3_bar Gp_w3_bar:=
1 0 0 0
2 0.071494043 0.000194454 7.174063148
3 0.20149221 0.016436752 24.14122992
4 0.513034179 0.103675836 108.1096008
5 0.799016576 0.204394834 280.0166745
6 1.015901027 0.28611572 483.8354985
7 1.211436595 0.362736858 726.8962878
8 1.50479555 0.471615205 1163.968016
9 1.808718727 0.580359622 1711.951081
10 2.008677206 0.699670841 1751.700204
11 2.208497283 0.716910515 2572.929493
12 2.510651237 0.818277514 3329.082309
13 2.999209396 0.978162971 4745.260141
14 3.272576498 1.065944302 5654.451177
15 3.43287295 1.117243428 6234.425232
;

param: Np_w4_bar Wp_w4_bar Gp_w4_bar:=
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1 0 0 0
2 0.105299289 0.011119574 38.90824585
3 0.553250747 0.128057126 229.0931524
4 1.018771445 0.347113662 457.4118092
5 1.212016242 0.305728764 494.5150885
6 1.317186696 0.490882003 639.2349644
7 1.418867924 0.530301444 722.2294541
8 1.609897994 0.591317636 934.9727964
9 1.745359457 0.6266902 1142.30094
10 1.858233041 0.658631475 1370.775911
11 1.910539881 0.673111882 1492.404917
12 2.123046091 0.730300269 2124.746961
13 2.222841985 0.756980303 2515.805435
14 2.402084386 0.801779808 3321.952452
15 2.656273116 0.868055268 4621.395457
;

param: Np_w5_bar Wp_w5_bar Gp_w5_bar:=
1 0 0 0
2 0.320002985 0.031710069 103.9534541
3 0.502883611 0.062826003 175.831897
4 0.748775175 0.126606607 278.3811106
5 1.006509563 0.216782732 396.4086008
6 1.212016242 0.305728764 494.5150885
7 1.619356135 0.493138969 686.6429994
8 2.006212458 0.688764339 886.6055975
9 2.393911404 0.874904638 1147.972062
10 2.800485432 1.01921247 1550.153943
11 3.006077466 1.06980651 1837.263824
12 3.204953073 1.120475744 2193.02703
13 3.404515158 1.172962496 2624.451402
14 3.804717552 1.275010044 3849.637916
15 3.986698598 1.320375133 4615.146502
;

param: Np_w6_bar Wp_w6_bar Gp_w6_bar:=
1 0 0 0
2 0.249828031 0.060997479 33.50084177
3 0.515494345 0.165532752 64.02824668
4 1.056181239 0.487374791 124.8790346
5 1.784857442 1.141677289 206.5917366
6 2.130967169 1.554329342 246.2771297
7 2.480973119 2.026983018 285.3806211
8 3.037624168 2.904978879 347.2634136
9 3.508093555 3.81106593 399.5168188
10 4.023491435 4.99541488 457.4193817
11 4.505660493 6.291703986 511.4922378
12 5.004998036 7.91530368 566.6615897
13 5.506067904 9.936142934 621.5240551
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14 5.804637494 11.43104538 653.2841959
15 6.151937713 13.73014415 690.6723081
;

param: Np_w7_bar Wp_w7_bar Gp_w7_bar:=
1 0 0 0
2 0.226601178 0.00620313 11.29507562
3 0.513508216 0.021938782 35.68539389
4 0.784630744 0.042367177 98.24415811
5 0.845077439 0.046775658 116.0731699
6 1.006471458 0.057721318 168.9878566
7 1.21593822 0.06968719 255.2707228
8 1.32934706 0.075783168 308.1963233
9 1.59646365 0.088954105 448.5843238
10 1.815516695 0.097825464 589.5770419
11 2.002032207 0.105221515 746.7178919
12 2.203584618 0.113775718 956.8717017
13 2.306910833 0.118425254 1078.963628
14 2.567613506 0.131396195 1447.100385
15 2.727931115 0.140007997 1714.219314
;

param: Np_w8_bar Wp_w8_bar Gp_w8_bar:=
1 0 0 0
2 0.004052967 0 0.149713481
3 0.100743446 0.000889842 3.931714526
4 0.303373596 0.005630772 14.38402872
5 0.513343797 0.01510258 40.08717395
6 0.59587294 0.019781497 55.42220238
7 0.804137407 0.031480534 106.6066359
8 0.91978532 0.036688467 142.1928487
9 1.098922252 0.044443085 208.5166679
10 1.160184046 0.046830122 234.2134078
11 1.307547259 0.052321471 305.949107
12 1.503712179 0.059961873 428.8248113
13 1.754935886 0.070674956 633.416234
14 1.849553069 0.075025791 725.694873
15 2.047162145 0.085059862 961.6629976
;

param: Np_w9_bar Wp_w9_bar Gp_w9_bar:=
1 0 0 0
2 0.000360561 0 0.011637433
3 0.051203772 0.000102976 1.793729551
4 0.303515453 0.006695388 13.91020544
5 0.514468395 0.016080187 38.14405743
6 0.651391463 0.023189464 63.01987527
7 0.831001825 0.030894843 103.8438753
8 0.935925666 0.035577223 134.7558753
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9 1.014930372 0.038777331 160.4598753
10 1.115724098 0.042502455 196.0758753
11 1.309130372 0.049275505 277.8918753
12 1.500914825 0.055934761 390.4518753
13 1.74622844 0.063504783 584.8278753
14 1.853733499 0.067102702 686.9718753
15 2.085678275 0.075824001 968.0358753
;
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