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Summary

In planning a field development, there are many field design features to be decided upon.
The company’s development team has a responsibility to determine a configuration of
those options which maximizes the value of the company’s asset. Automated field devel-
opment is a cutting-edge methodology to screen and search in an automated manner for
the best combination of field design features under a given set of constraints.

This thesis presents an automated field development methodology which is based on math-
ematical optimization. The methodology is designed for a synthetic (fictitious) case called
"Safari". The Safari field is characterized by having multiple reservoir units, where the
reservoirs are non-communicating and have unique properties.

In this study, there are two main optimization problems, i.e., maximization of the plateau
duration and maximization of the Net Present Value (NPV). The optimization problems
include production & injection rates, drilling schedule, and recovery mechanism as the
decision variables. Some constraints concerning production, injection, and drilling are
also considered in the optimization. Formulations of the optimization problems adapt 2
main ideas, i.e. (1) to use production potential curves as the proxy model of the produc-
tion system and (2) to use multi-dimensional PWL approximations for representing some
non-linear functions. According to the optimization results, a better objective value is ob-
tained when the drilling schedule and recovery mechanism are also defined as the decision
variables in addition to fluid rates.

Several evaluations have been performed to make the formulations of the optimization
problems and their implementations in AMPL more efficient and more accurate. By adapt-
ing the evaluations’ results, the optimization process becomes much faster. Furthermore,
uncertainties of the optimization results have been quantified through uncertainty analyses.
Three uncertain parameters are considered, i.e., in-place, development & operational cost,
and oil price. To conduct an uncertainty analysis, two approaches have been studied, i.e.,
using Latin Hypercube Sampling (LHS) method and using a probability tree. Uncertainty
analysis using a probability tree is preferred because it is quicker and produces similar
results as the other approach.
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Chapter 1
Introduction

1.1 Background

In planning a field development, there are many field design features to be decided upon,
e.g., type of offshore structure, recovery mechanism, production schedule, number of wells
& its drilling schedule (Haldorsen, 1996). Decisions on those features often have impacts
on the economy of the field development. Therefore, the company’s development team has
a responsibility to determine a configuration of those options which maximizes the value
of the company’s asset.

However, most of the development team’s outcomes are suboptimal. The reason is that
only a few selected combinations and cases are evaluated due to time constraints. In con-
sequence of this conventional approach, there are many combinations or cases which po-
tentially have higher economic value are unstudied.

Automated field development is a cutting-edge methodology to screen and search in an
automated manner for the best combination of field design features under a given set of
constraints. Such methodology is currently under development at SUBPRO, i.e., a re-
search center for subsea production & processing (SUBPRO, 2018). The project is carried
out by PhD student Diana Gonzalez and supervised by Professor Milan Stanko. Up to
date, the developed methodology is capable of determining the production schedule and
drilling schedule which yield the highest NPV (Net Present Value) through mathematical
optimization.

The progress of the project has been presented to the oil industry and successfully gain
attention from several companies; one of the interested company is Aker Solutions. They
have proposed to test the methodology for a synthetic (fictitious) case called "Safari".
The Safari field is characterized by multiple reservoir units, where the reservoirs are non-
communicating and have unique properties.
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In the specialization project, an automated field development methodology is established
for Safari field (Angga, 2018). Some concepts of SUBPRO’s automated development
methodology are adapted, e.g., using production potential curves as the proxy model of
the production system, using piecewise-linear models to represent non-linear functions,
etc. The developed methodology is successful in prolonging the plateau duration of Sa-
fari field. It is done by optimizing the production splitting between the reservoirs. The
optimization problem established in the specialization project is rather simple, where only
the oil production rates are defined as the decision variables. In addition, only a few con-
straints are included for the optimization.

1.2 Objective

The primary objective of the thesis work is to further develop the automated field develop-
ment methodology for Safari field. The further developments will be focused to:

1. formulate & solve a more complex optimization problem which maximizes the
plateau duration. What is meant by more complex is that the optimization includes
more decision variables (e.g., production & injection rates, drilling schedule, and
recovery mechanism) and considers more constraints (e.g., production constraints,
injection constraints, and drilling constraints).

2. formulate & solve another optimization problem which maximizes the Net Present
Value (NPV) instead of the plateau duration.

3. make the formulations of the optimization problems and the optimization process
not only more efficient but also more accurate

4. analyze the effects of uncertainties in the optimization results. The uncertainty anal-
yses are expected to take into account the uncertainties of in-place and oil price in
addition to the uncertainty of development & operational cost.

1.3 Overview of Safari Field

Safari field is an offshore field located east of Johan Sverdrup and Grane fields and west of
Haugesund (Figure 1.1a). Water depth in the field location is approximately 120 m. The
field consists of three reservoirs, i.e. Løve, Nesehorn, and Sebra. Location of all reservoirs
is shown in Figure 1.1b.

All the reservoirs are undersaturated oil reservoirs. Løve is characterized by nearly circu-
lar reservoir shape, highest oil-in-place, and heavier oil. Nesehorn and Sebra are almost
identical in term of reservoir properties, except Sebra has much less oil-in-place but has
higher permeability. All production wells will be completed with gas-lift as the artificial
lift method. Fluid properties, rock properties, and well properties of the Safari field are
summarized in Table 1.1, Table 1.2, and Table 1.3, respectively.
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Development of the field will be commenced from the 1st 2019. Facility construction and
installation are planned to be ready in four years, and the field first oil is expected to be in
2023. The field is scheduled for abandonment in 2040, after 18 years of production.

(a) Safari field (NPD, 2019) (b) Reservoirs in Safari field

Figure 1.1: Location of Safari field and its reservoirs (Angga, 2018)

Table 1.1: Initial reservoir fluid properties (Angga, 2018)

Parameters Løve Nesehorn Sebra Unit
Oil density 933.99 850 850 kg/m3

Gas density 0.8 0.75 0.75 sp. gravity
Solution GOR 50 150 150 sm3/sm3

Saturation pressure 174.4 257.3 257.3 bara
Reservoir pressure 280 280 280 bara

Reservoir temperature 80 80 80 oC
STOOIP 75 55 13 M sm3

Aquifer volume 30 20 20 M sm3

Table 1.2: Reservoir rock properties (Angga, 2018)

Parameters Løve Nesehorn Sebra Unit
Permeability 250 250 450 mD

Porosity 0.18 0.18 0.18
Reservoir thickness 50 50 50 m

Irreducible water saturation 0.25 0.25 0.25
Residual oil saturation 0.25 0.25 0.25

krw(1− Sor) 0.8 0.8 0.8
kro(Swirr) 0.8 0.8 0.8

Corey exponent for water 1.5 1.5 1.5
Corey exponent for oil 1.5 1.5 1.5
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Table 1.3: Well properties (Angga, 2018)

Parameters Løve Nesehorn Sebra Unit
Water depth 120 120 120 m

Well MD - TVD 3500 - 2500 3500 - 2500 3500 - 2500 m
Wellbore radius 0.12 0.12 0.12 m

Well drainage radius 800 800 800 m
Skin factor +5 +5 +5
Tubing ID 0.124 0.124 0.124 m

Artificial lift gas lift (GL) GL GL
GL valve depth 3000 3000 3000 m
GL gas gravity 0.7 0.7 0.7 sp. gravity

Max GL inj. rate 400 400 400 1000 sm3/d
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Chapter 2
Theoretical Framework

This chapter is presented to provide an understanding of the concepts and theories that are
relevant to this study.

2.1 Fundamentals of Production Potential Curve

2.1.1 Definition of Production Potential

One can define the field production potential, qpp(t), as the maximum rate of preferred
production phase (the maximum gas rate for a gas field and the maximum oil rate for an
oil field) that a field can produce at a particular time. This maximum production rate is
often achieved when the controllable components of the production system, such as choke,
gas-lift injection rate, and so on, are operated at the optimal condition.

An illustration of field production potential is provided in Figure 2.1. To fully under-
stand the definition of production potential, let us consider the following example based
on Figure 2.1. At the beginning of the year 2026, the field production potential is around
1500 sm3/d. This number simply pinpoints the upper limit of the field production rate at
that time. However, in the illustration, the field is only produced at its plateau rate (1000
sm3/d).

The production potential of a producing field typically declines over time. The production
potential may step up if some modifications are made to the field, for instance, drilling new
production wells, installing multi-phase booster, etc. The decline of production potential
over time is often caused by the dynamic changes of inflow performance (IPR) and lift
performance (VLP) during the life of the field (Stanko, 2019).
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Figure 2.1: An illustration of field production potential. The solid line indicates the profile of field
production potential, while the dots represent the profile of field production rate (Angga, 2018).

As previously discussed, the changes of IPR and VLP from time to time lead to the decline
of production potential. Instead of time, the changes of IPR and VLP are in reality depen-
dent mostly on the amount of fluid that has been produced. Thus, it can be deduced that the
production potential at a given point in time, qpp(t), primarily depends on the cumulative
production up to that point in time, Np(t) (Stanko, 2019).

Production potential curve is defined as a curve which relates the production potential
with the cumulative production. An example of production potential curve is given in
Figure 2.2. It is important to note that a single production potential curve represents a
particular production system, i.e., one particular reservoir produced with a particular num-
ber of wells and a particular recovery mechanism. Besides that, the time-dependency of
production potential is successfully eliminated in that production potential curve.

Figure 2.2: An example of production potential curve (Angga, 2018)
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2.1.2 Construction of Production Potential Curve

To generate a production potential curve, one has to initially create the model of a pro-
duction system. After the model is established, reservoir and network simulations are
performed simultaneously to obtain the profile of production potential (qpp vs. t). In the
simulations, one has to ensure that the field will always produce the maximum rate, i.e.,
by ensuring the optimal operating conditions (e.g. optimal choke opening, optimal gas-lift
injection rate, etc.) and by discarding all production constraints (e.g. maximum liquid
rate, maximum gas rate, erosional velocity, etc.).

The following step is to compute the profile of cumulative production over time (Np vs t)
based on the profile of production potential (qpp vs. t). The cumulative production at a
particular time is defined as:

Np(t) =

∫ t

0

qpp(t) · dt (2.1)

Finally, the production potential curve is obtained by plotting the production potential qpp
against the cumulative production Np. Here, the production potential curve is provided as
a collection of points. An illustration of generating the production potential curve is given
in Figure 2.3.

Figure 2.3: An illustration of generating production potential curve (Angga, 2018)

2.1.3 Planning the Production Schedule Using the Production Poten-
tial Curve

Planning the production schedule using the production potential curve is a straightforward
routine. At any time, the production rate q(ti) can be any number as long as it fulfills the
following condition:

0 ≤ q(ti) ≤ qpp
(
Np(ti)

)
(2.2a)

where

Np(ti) =

∫ ti

0

q(t) · dt (2.2b)
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If one discretizes the timespan of the production period, the cumulative production at time
ti can be approximated using the rectangular integration technique as the following:

Np(ti) = Np(ti−1) + q(ti−1) · (ti − ti−1) (2.2c)

To get a better understanding, let us consider an illustration provided in Figure 2.4. Initially
(time t0), we know that there is no oil has been produced. Thus, by referring to the
production potential curve, the production rate at time t0 can be chosen within a range of
0 - 19000 sm3/d (as indicated by the red line in Figure 2.4a).

Once qo(t0) has been selected, the cumulative production at time t1 can be estimated by
applying Equation 2.2c. Note that the numerical integration technique in this equation
assumes that qo(t0) remains constant until time t1. Afterward, again by referring to the
production potential curve, the production rate at time t1 is selected between 0 and 16000
sm3/d (as indicated by the red line in Figure 2.4b). The procedure is carried out until the
end of the defined field lifetime.

(a) Determination of qo(t0)

(b) Determination of qo(t1)

Figure 2.4: An illustration of planning the production schedule using the production potential curve
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(c) Determination of qo(t2)

Figure 2.4: An illustration of planning the production schedule using the production potential curve
(cont.)

Angga (2018) has validated the utilization of the production potential curve for planning
the production schedule. The validation is accomplished by comparing the results ob-
tained from the production potential approach against the results retrieved from a full
reservoir-network simulation. It is found that the production potential approach provides
very similar results as the full simulation run.

2.1.4 Characteristics of Production Potential Curve

Some characteristics of the production potential curve are presented as the following
(Angga, 2018). These characteristics work for most cases, but not always.

1. If there is no abrupt human intervention on either the reservoir or the production
system, the production potential curve is continuous. These interventions consist
of performing well stimulation, introducing pressure support, implementing EOR,
adding more wells, modifying well completion, changing tubing/pipeline diameter,
switching artificial-lift method, varying separator pressure, etc.

2. Reservoir pressure, water cut (WC), gas-oil ratio (GOR), and injection-production
ratio can be expressed as functions of cumulative oil production (Np). With these
properties, cumulative production/injection of water & gas (Wp, Gp, Wi, Gi) can
also be expressed as functions of cumulative oil production.

3. If a field has a fully-connected reservoir, the field production potential is unique for
a given field cumulative production.

4. If the field is composed of two or more non-communicating reservoirs, the produc-
tion potential of a reservoir is solely dependent on the cumulative production of that
reservoir. In addition, the field production potential is not unique for a given field
cumulative production. It depends on the production schedule of each reservoir.
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5. If the field is composed of two or more non-communicating reservoirs and the pro-
duction from all reservoirs are tied to a non-fixed pressure node, the production
potential of each reservoir is dependent on the production of the other reservoirs.

2.2 Mathematical Optimization

Mathematical optimization is defined as the mathematical process of finding the best so-
lutions -a combination of decision variables- that maximize or minimize the objective
function while honoring a defined set of constraints. There are three main components of
an optimization problem, i.e., objective function, decision variables, and constraints. The
objective function is basically an equation to be maximized or minimized through the op-
timization. The decision variables are the quantities to be varied and decided upon in order
to maximize or minimize the objective function. The constraints declare the limitation on
the decisions to be made. The type of optimization problems and the common algorithms
for solving the optimization problems are explained briefly in the following subsections.

2.2.1 Linear Programming

Definition

One defines Linear Programming (LP) as the optimization of a linear objective function
subject to a set of linear constraints. The standard form of LP is expressed as follows
(Cormen et al., 2009):

maximize cTx (2.3a)
subject to Ax ≤ b (2.3b)

x ≥ 0 (2.3c)

where c and x are vectors in Rn, b is a vector in Rm, and A is an m× n matrix.

Feasible Solution, Feasible Region, and Optimal Solution

Feasible solution refers to a set of values for the decision variables which satisfies the
entire constraints included in the optimization problem. A collection of feasible solutions
forms a region called feasible region. For an LP, the feasible region is always a convex
polytope (Hoffmann, 2014). With linear objective function and convex feasible region, the
optimal solution of an LP is always located at the boundary of the feasible region (e.g.,
a vertex, a line segment, or a plane). In addition, linear objective function and convex
feasible region ensure the global optimality of the optimal solution.
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An illustration of an LP with two decision variables (x1 and x2) is provided in Figure 2.5.
As shown in Figure 2.5a, every constraint of the LP is depicted with a straight line and its
direction. The intersection of the semispaces creates the feasible region as indicated by
the grey area. Figure 2.5b points out the location of the optimum solution. Correspond to
the previous explanation, the optimal solution lies on the vertex of the feasible region.

(a) Feasible region (b) Optimal solution

Figure 2.5: Visualization of an LP (Cormen et al., 2009)

Existence of the Optimal Solution

There are two conditions for LP to have no optimal solution, i.e., it has no feasible solution
-often called infeasible problem- or it has feasible solutions with an extremely large value
of the objective function -generally called unbounded problem. For infeasible problem,
there is no solution that fulfills all the constraints. This occurs when an LP has two contra-
dictory constraints. On the other hand, the unbounded problem happens when the upper
bound for the value of the objective function does not exist. This means that the value of
the objective function can grow to an arbitrarily large value.

2.2.2 Algorithms to Solve Linear Programming

Simplex Algorithm

Dantzig (1951) develops the simplex algorithm to solve an LP. The algorithm starts from
one vertex of the feasible region. In each iteration, the algorithm evaluates the value of the
objective function of the neighboring vertices and then moves the incumbent solution to
the adjacent vertex with the highest value of the objective function. The iterations continue
until it arrives at a vertex in which all the neighboring vertices have smaller values of the
objective function. The simplex algorithm finally returns this vertex as the optimal solution
of the LP. An illustration of the simplex algorithm is shown in Figure 2.6a.
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Interior-Point Method

The interior-point method is another algorithm commonly used to solve an LP. The al-
gorithm is developed by Karmarkar (1984). In contrary to the simplex algorithm, the
interior-point method finds the optimal solution by traveling through the interior of the
feasible region. An illustration of the interior-point method is provided in Figure 2.6b.

(a) Simplex algorithm (b) Interior-point method

Figure 2.6: Illustration of simplex algorithm and interior-point method (Hoffmann, 2014)

2.2.3 Integer Programming

Definition

Integer programming (IP) is a kind of optimization problem in which all the decision
variables are restricted to be integers. Generally, IP refers to integer linear programming
(ILP) in which the objective function and the constraints are linear. The standard form of
IP is expressed as follows (Camponogara, 2018):

maximize cTx (2.4a)
subject to Ax ≤ b (2.4b)

x ≥ 0 (2.4c)
x ∈ Zn (2.4d)

where c is vectors in Rn, b is a vector in Rm, and A is an m× n matrix.

Feasible Solutions & LP Relaxation

An illustration of an IP with two integer variables x1 and x2 is provided in Figure 2.7. In
this illustration, the constraints are represented by the solid black lines, while the objective
function is represented by the solid red line. The feasible solutions for this IP are indicated
by the black dots, and the optimal solution is indicated by the blue dot (objective value =
68).
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LP relaxation of an IP is obtained by replacing the integrity constraints (in this illustration,
x1, x2 ∈ Z) with appropriate continuous constraints (x1, x2 ∈ R). In the illustration, the
feasible region of the LP relaxation is indicated by the darker grey area, and the optimal
solution of the LP relaxation is indicated by the green dot (objective value = 68.33). Note
that in LP relaxation, we perform an optimization over a larger set of solutions. Therefore,
the optimal solution of LP relaxation is always better than or equal to the optimal solution
of the initial IP (Trevisan, 2011).

Figure 2.7: Visualization of IP and its LP relaxation (Vanderbei, 2008)

2.2.4 Mixed-Integer Linear Programming

Definition

Mixed-integer linear programming (MILP) is an LP in which some of the variables are
constrained to be integers while the rests are continuous variables. The standard form of
MILP is expressed as follows (Camponogara, 2018):

maximize cTx (2.5a)
subject to Ax ≤ b (2.5b)

x = (xC , xI) ≥ 0 (2.5c)
xC ∈ Rk (2.5d)
xI ∈ Zn−k (2.5e)

where c is vectors in Rn, b is a vector in Rm, and A is an m× n matrix.
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2.2.5 Algorithms to Solve IP or MILP

Branch-and-Bound Algorithm

The branch-and-bound algorithm is developed by Land and Doig (1960) for solving an IP
or MILP. The concept of this algorithm is the divide-and-conquer strategy. Let us consider
an IP or MILP problem P with a feasible region S. At first, the algorithm divides the
the problem P into an equivalent set of sub-problems {SPk}. The sub-problem SPk

is defined on a feasible region Sk, with
⋃

k Sk = S. After solving the sub-problems,
the optimal solution for problem P is obtained by comparing the optimal solutions for
sub-problems SPk. The divisions of problem P are carried out iteratively such that the
sub-problems SPk are easier to solve. In addition, some sub-problems are eliminated if
they can be proven that they will not produce the optimal solution for problem P .

Figure 2.8: An illustration of branch-and-bound algorithm (Camponogara, 2018)

An illustration of the branch-and-bound algorithm is provided in Figure 2.8. In this ex-
ample, there are three binary variables (x1, x2, and x3) to be decided. In addition, Fig-
ure 2.8 illustrates a complete tree enumeration, which means that it sketches all possible
tree branches. In practice, the complete tree enumeration is not preferred due to the effi-
ciency issue. Therefore, to improve the efficiency, one needs to prune the sub-problems
that are proven not to produce the optimal solution for the initial problem. The rules for
cutting the tree branches are listed as follows:
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1. by optimality → the optimal solution of sub-problem SPk has been found, which
means the solution cannot be improved by further decomposing the formulation and
adding bounds.

2. by bounding → the optimal solution of sub-problem SPk relaxation is worse than
the best-known solution for problem P .

3. by infeasibility→ the sub-problem SPk has no feasible solution.

Cutting Plane Algorithm

To illustrate the cutting plane algorithm, let us consider an IP, as shown in Figure 2.9.
In this illustration, there are two integer variables to be decided (y1 and y2). The IP is
defined on a feasible region bounded by the solid green line. The optimal solution for LP
relaxation of the IP is indicated by the point yR.

The convex hull of the feasible integer solutions is indicated by the dashed black line.
By having the convex hull, one can find the optimal solution for the IP by solving an LP
defined on the convex hull. In this illustration, the optimal solution for the IP is indicated
by the point yZ .

To approximate the convex hull, one needs to generate valid and non-trivial inequalities.
For example, two inequalities which are depicted by the red and the blue lines in Figure 2.9
have been introduced into the initial IP. As shown in the figure, these inequalities cut the
feasible region of the initial IP, and make it tighter towards the convex hull. Note that
the optimal solution for LP relaxation of the new IP (the initial IP with two additional
inequalities) is equal to the optimal solution of the initial IP, i.e., the point yZ .

Figure 2.9: An illustration of cutting plane algorithm (NTNU, 2019)
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A few methods that have been developed to generate valid inequalities of an IP or MILP
are listed as follows (Cornuejols, 2007):

• Chavatal-Gomory cuts for IP (Gomory, 1963)

• Gomory cuts for MILP

• Mixed-integer rounding inequalities

• Lift-and-project

• Cover inequalities

• Split and intersection cuts

2.3 Piecewise Linear (PWL) Approximation

Non-linear behaviours appear in countless real-world problems. An optimization problem
which involves non-linear function(s) is called Non-Linear Programming (NLP). Today,
this class of optimization problem often remains difficult to solve. Due to the irregularity
behaviour of the non-linear function, some challenges emerge when solving an NLP, such
as difficulties to verify the global optimal, high running time, and so on.

PWL approximation is a well-known yet powerful approach to solve an NLP. The fun-
damental of PWL is to replace the non-linear function with a set of linear functions. A
function that containts a set of linear functions is called as PWL function. Using PWL
approximation, one can transform an NLP into an MILP, which is easier to solve.

2.3.1 One-Dimensional PWL Approximation

Let us consider a one-dimensional non-linear function f(x). This function is denoted by
the solid black line in Figure 2.10. The function is defined on domain D, where D =
{x ∈ [x1, x4], x ∈ R}. A PWL function that approximates function f(x) is represented
by the dotted blue line in Figure 2.10. To produce this PWL function, one has to divide
the domain D into several breakpoints. In this example, those breakpoints are x1, x2, x3,
and x4. Linear functions are then generated for every two consecutive breakpoints. The
PWL function g(x) for this example is expressed as follows:

g(x) =


g1,2(x), if x ∈ [x1, x2], x ∈ R
g2,3(x), if x ∈ [x2, x3], x ∈ R
g3,4(x), if x ∈ [x3, x4], x ∈ R

(2.6)

where gi,i+1(x) is a linear function valid for any x within [xi, xi+1].
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Figure 2.10: A non-linear function and its PWL function (Hoffmann, 2014)

The fundamental of constructing the linear function gi,i+1(x) is a linear interpolation be-
tween point (xi, f(xi)) and (xi+1, f(xi+1)). Hoffmann (2014) showed that gi,i+1(x) can
be expressed as follows:

gi,i+1(x) = λif(xi) + λi+1f(xi+1) (2.7a)

where

x = λixi + λi+1xi+1 (2.7b)
1 = λi + λi+1 (2.7c)
λi, λi+1 ≥ 0 (2.7d)
λi, λi+1 ∈ R (2.7e)

In Equation 2.7, λi can be interpreted as the weighting coefficient of breakpoint-i.

By combining Equation 2.7 with Equation 2.6, the PWL function g(x) can be expressed
as follows:

g(x) = λ1f(x1) + λ2f(x2) + λ3f(x3) + λ4f(x4) (2.8a)

where

x = λ1x1 + λ2x2 + λ3x4 + λ4x4 (2.8b)
1 = λ1 + λ2 + λ3 + λ4 (2.8c)
λ = {λ1, λ2, λ3, λ4} ≥ 0 (2.8d)

λ = {λ1, λ2, λ3, λ4} ∈ R4 (2.8e)

To ensure that the linear interpolation only involves two consecutive breakpoints, we have
another condition for the set λ, i.e. at most two elements of set λ are positive and the two
positive elements must be consecutive in the ordered set. For example, when approximat-
ing the green dot within Figure 2.10, only λ3 and λ4 are greater than zero, while λ1 and
λ2 equal to zero.
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Generalization of the previous example defines the standard expression of one-dimensional
PWL approximation for a non-linear function f(x) as follows:

f(x) ≈ g(x) (2.9a)

≈
N∑
i=1

λi · f(xi) (2.9b)

where N is the number of breakpoints and

x =

N∑
i=1

λi · xi (2.9c)

1 =

N∑
i=1

λi (2.9d)

λ = {λ1, λ2, . . . , λN} ≥ 0 (2.9e)

λ ∈ RN (2.9f)
λ is SOS2 (2.9g)

The SOS2 (Special Ordered Set type 2) condition for set λ verifies that:

1. at most two elements of set λ are positive

2. if two elements are positive, they must be consecutive in the ordered set, let us say
λi and λi+1.

There is another condition for set λ, i.e., SOS1 (Special Ordered Set type 1). This condi-
tion restricts that at most one element of set λ is positive. If one uses SOS1 condition for
set λ, the input for the PWL function g(x) must be located at one of the breakpoints. For
the previous example, x must be the element of a set {x1, x2, x3, x4}.

2.3.2 Two-Dimensional PWL Approximation

Let f(x, y) be a two-dimensional non-linear function defined on a domain D = {x ∈
[x1, x4], y ∈ [y1, y4], x, y ∈ R} (see Figure 2.11). To make a PWL function g(x, y) that
models f(x, y), one needs to define some breakpoints in x-direction and y-direction. In
this illustration, the value of f(x, y) is known for a set of breakpoints {Bi,j = (xi, yj), i =
1, 2, . . . , 4, j = 1, 2, . . . , 4} (see Figure 2.11). Linear functions are then generated for ev-
ery combination of two consecutive breakpoints in x-direction and two consecutive break-
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points in y-direction. The PWL function g(x, y) for this example is expressed as follows:

g(x, y) =



g1,2,1,2(x, y), if x ∈ [x1, x2], y ∈ [y1, y2], {x, y} ∈ R2

g2,3,1,2(x, y), if x ∈ [x2, x3], y ∈ [y1, y2], {x, y} ∈ R2

g3,4,1,2(x, y), if x ∈ [x3, x4], y ∈ [y1, y2], {x, y} ∈ R2

g1,2,2,3(x, y), if x ∈ [x1, x2], y ∈ [y2, y3], {x, y} ∈ R2

g2,3,2,3(x, y), if x ∈ [x2, x3], y ∈ [y2, y3], {x, y} ∈ R2

g3,4,2,3(x, y), if x ∈ [x3, x4], y ∈ [y2, y3], {x, y} ∈ R2

g1,2,3,4(x, y), if x ∈ [x1, x2], y ∈ [y3, y4], {x, y} ∈ R2

g2,3,3,4(x, y), if x ∈ [x2, x3], y ∈ [y3, y4], {x, y} ∈ R2

g3,4,3,4(x, y), if x ∈ [x3, x4], y ∈ [y3, y4], {x, y} ∈ R2

(2.10)

where gi,i+1,j,j+1(x, y) is a linear function valid for any x within [xi, xi+1] and y within
[yj , yj+1]. For example, g1,2,1,2(x, y) is valid for any x within [x1, x2] and y within
[y1, y2]. The domain of this linear function is visualized by the grey area in Figure 2.11.

Figure 2.11: An illustration of two-dimensional PWL grid (Hoffmann, 2014)

Similarly, the fundamental of constructing the linear function gi,i+1,j,j+1(x, y) is a linear
interpolation. For two-dimensional linear interpolation, four breakpoints are employed,
i.e., Bi,j ; Bi+1,j ; Bi,j+1; and Bi+1,j+1. Hoffmann (2014) showed that gi,i+1,j,j+1(x, y)
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can be expressed as follows:

gi,i+1,j,j+1(x, y) = λi,jf(Bi,j)+λi+1,jf(Bi+1,j)+λi,j+1f(Bi,j+1)+λi+1,j+1f(Bi+1,j+1)
(2.11a)

where

x = λi,j · xi + λi+1,j · xi+1 + λi,j+1 · xi + λi+1,j+1 · xi+1 (2.11b)
y = λi,j · yj + λi+1,j · yj + λi,j+1 · yj+1 + λi+1,j+1 · yj+1 (2.11c)
1 = λi,j + λi+1,j + λi,j+1 + λi+1,j+1 (2.11d)
λi,j ;λi+1,j ;λi,j+1;λi+1,j+1 ≥ 0 (2.11e)
λi,j ;λi+1,j ;λi,j+1;λi+1,j+1 ∈ R (2.11f)

In Equation 2.11, λi,j can be interpreted as the weighting coefficient of breakpoint Bi,j .

By combining Equation 2.11 with Equation 2.10, the PWL function g(x, y) can be ex-
pressed as follows:

g(x, y) =

4∑
i=1

4∑
j=1

λi,j · f(xi, yj) (2.12a)

where

x =

4∑
i=1

4∑
j=1

λi,j · xi (2.12b)

y =

4∑
i=1

4∑
j=1

λi,j · yj (2.12c)

1 =

4∑
i=1

4∑
j=1

λi,j (2.12d)

λ = {λi,j , i = 1, 2, . . . , 4, j = 1, 2, . . . , 4} ≥ 0 (2.12e)

λ ∈ R4×4 (2.12f)

In addition, we define sets {ηx,i, i = 1, 2, . . . , 4} and {ηy,j , j = 1, 2, . . . , 4} as follows:

ηx,i =

4∑
j=1

λi,j , ∀i ∈ {1, 2, . . . , 4} (2.12g)

ηy,j =

4∑
i=1

λi,j , ∀j ∈ {1, 2, . . . , 4} (2.12h)

One can find the visualization of both terms ηx,i and ηy,j in Figure 2.12. To ensure that the
linear interpolation only involves two consecutive breakpoints in x-direction and two con-
secutive breakpoints in y-direction (i.e., breakpoints Bi,j , Bi+1,j , Bi,j+1, and Bi+1,j+1),
both sets {ηx,i, i = 1, 2, . . . , 4} and {ηy,j , j = 1, 2, . . . , 4} must be SOS2.
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(a) ηx,i (b) ηy,j

Figure 2.12: Visualization of ηx,i and ηy,j

To clarify the previous statement, let consider an illustration given in Figure 2.13. In
this example, we want to estimate the value of f(x, y) at the green dot shown in the
figure. When performing a linear interpolation, we know that we only want to involve
the adjacent breakpoints indicated by the purple dots. This means that we need only λ
of these breakpoints may be greater than zero, while λ of the other breakpoints equal to
zero. Consequently, we require only ηx,2, ηx,3, ηy,2, and ηy,3 are positive. This condition
is attained when both sets {ηx,i} and {ηy,j} are SOS2.

Figure 2.13: An illustration of SOS2 constraint for both sets {ηx,i, i = 1, 2, . . . , 4} and {ηy,j , j =
1, 2, . . . , 4} when carrying out a linear interpolation
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If one uses SOS1 constraint for the sets {ηx,i} or {ηy,j}, the inputs for the PWL function
g(x, y) are restricted to the breakpoints used for the PWL approximation. For example, let
us consider the set {ηy,j} to be SOS1. This constraint imposes that the input y for g(x, y)
can only be selected from the breakpoints defined for the y-direction. In the previous
illustration, y must be the element of a set {y1, y2, y3, y4}.

Generalization of the previous example defines the standard expression of two-dimensional
PWL approximation for a non-linear function f(x, y) as follows:

f(x, y) ≈ g(x, y) (2.13a)

≈
Nx∑
i=1

Ny∑
j=1

λi,j · f(xi, yj) (2.13b)

whereNx andNy are the numbers of breakpoints in x-direction and in y-direction, respec-
tively. In addition, the following conditions must be fulfilled.

x =

Nx∑
i=1

Ny∑
j=1

λi,j · xi (2.13c)

y =

Nx∑
i=1

Ny∑
j=1

λi,j · yj (2.13d)

1 =

Nx∑
i=1

Ny∑
j=1

λi,j (2.13e)

λ = {λi,j , i = 1, 2, . . . , Nx, j = 1, 2, . . . , Ny} ≥ 0 (2.13f)

λ ∈ RNx×Ny (2.13g)

ηx,i =

Ny∑
j=1

λi,j , ∀i ∈ {1, 2, . . . , Nx} (2.13h)

ηy,j =

Nx∑
i=1

λi,j , ∀j ∈ {1, 2, . . . , Ny} (2.13i)

ηx = {ηx,i, i = 1, 2, . . . , Nx} is SOS2 (2.13j)
ηy = {ηy,j , j = 1, 2, . . . , Ny} is SOS2 (2.13k)
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2.3.3 Three-Dimensional PWL Approximation

Let f(x, y, z) be a three-dimensional non-linear function defined on a domain D = {x ∈
[x1, xNx

], y ∈ [y1, yNy
], z ∈ [z1, zNz

], x, y, z ∈ R}. The concept of three-dimensional
PWL approximation is pretty much the same as the two-dimensional PWL approxima-
tion. Assume that the value of f(x, y, z) is known for a set of breakpoints {Bi,j,k =
(xi, yj , zk), i = 1, 2, . . . , Nx, j = 1, 2, . . . , Ny, k = 1, 2, . . . , Nz}. The standard ex-
pression of three-dimensional PWL approximation for a non-linear function f(x, y, z) is
provided as follows:

f(x, y, z) ≈ g(x, y, z) (2.14a)

≈
Nx∑
i=1

Ny∑
j=1

Nz∑
k=1

λi,j,k · f(xi, yj , zk) (2.14b)

where Nx, Ny , and Nz are the numbers of breakpoints in x-direction, in y-direction, and
in z-direction, respectively. In addition, the following conditions must be fulfilled.

x =

Nx∑
i=1

Ny∑
j=1

Nz∑
k=1

λi,j,k · xi (2.14c)

y =

Nx∑
i=1

Ny∑
j=1

Nz∑
k=1

λi,j,k · yj (2.14d)

z =

Nx∑
i=1

Ny∑
j=1

Nz∑
k=1

λi,j,k · zk (2.14e)

1 =

Nx∑
i=1

Ny∑
j=1

Nz∑
k=1

λi,j,k (2.14f)

λ = {λi,j,k, i = 1, 2, . . . , Nx, j = 1, 2, . . . , Ny, k = 1, 2, . . . , Nz} ≥ 0 (2.14g)

λ ∈ RNx×Ny×Nz (2.14h)

ηx,i =

Ny∑
j=1

Nz∑
k=1

λi,j,k, ∀i ∈ {1, 2, . . . , Nx} (2.14i)

ηy,j =

Nx∑
i=1

Nz∑
k=1

λi,j,k, ∀j ∈ {1, 2, . . . , Ny} (2.14j)

ηz,k =

Nx∑
i=1

Ny∑
j=1

λi,j,k, ∀k ∈ {1, 2, . . . , Nz} (2.14k)

ηx = {ηx,i, i = 1, 2, . . . , Nx} is SOS2 (2.14l)
ηy = {ηy,j , j = 1, 2, . . . , Ny} is SOS2 (2.14m)
ηz = {ηz,k, j = 1, 2, . . . , Nz} is SOS2 (2.14n)
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2.4 Latin Hypercube Sampling (LHS)

In uncertainty analysis, sampling is used to generate possible values from probability dis-
tributions. Each set of samples represents a possible combination for the inputs. Sampling
technique affects not only the quality of the uncertainty analysis, but also the time neces-
sitated to complete the analysis.

Random sampling or Monte Carlo sampling is a conventional sampling technique which
generates samples from a probability distribution using random numbers. With a huge
number of iterations, random sampling is able to recreate the input probability distribu-
tion. However, we may encounter a problem of clustering when only a few samples are
generated (UiO, 2019). The implication of this problem is that the samples taken do not
represent the input probability distribution properly, and it makes the results of the uncer-
tainty analysis less accurate.

Numerous techniques have been developed to resolve the drawback of random sampling.
One of those technique is Latin Hypercube sampling (LHS), which generates controlled
random samples. This sampling method can recreate the input probability distribution
through fewer iterations when compared to the random sampling method (UiO, 2019).
The fundamental idea of LHS in mitigating the clustering problem is stratification of the
input probability distribution. Sampling is then forced to represent values in each strata,
meaning that the sampling is forced to recreate the input probability distribution.

To have a better understanding on how LHS technique works, let us consider an example.
In this example, LHS technique is adapted to generate 5 sets of samples for 2 independent
variables, i.e. x and y. In addition, these variables are assumed to have normal distribu-
tions. The procedure of generating samples using LHS method is provided as follows:

1. The first step of LHS method is stratification of the input probability distribution.
In this step, the cumulative probability curves are divided into equal intervals on the
cumulative probability scale (0 to 1). The number of intervals is equal to the number
of samples to be generated. Illustration of this step is provided in Figure 2.14a. The
blue and the green numbers in this figure are the index of the intervals

2. For the first iteration, we can randomly select an interval to draw a sample for each
variable. In this example, variable x is sampled from interval #4, while variable y is
sampled from interval #1 (see Figure 2.14b).

3. After that, a set of samples is randomly taken from the selected intervals (see Fig-
ure 2.14c). Up to this stage, remember that we have sampled only the cumulative
probabilities of variable x and y.

4. For the second iteration, we again randomly select an interval to draw a sample
for each variable. However, the intervals that have been selected in the previous
iterations can not be chosen anymore. In this example, both variable x and variable
y are sampled from interval #2 (see Figure 2.14d).

5. Similar to the 3rd step, another set of samples is randomly taken from the selected
intervals (see Figure 2.14e).
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6. The 4th and the 5th steps are repeated until we get 5 sets of samples (see Fig-
ure 2.14f).

7. In the previous steps, we have generated 5 combinations of cumulative probabil-
ities for variable x and y. The final step of LHS is to convert the sampled cu-
mulative probabilities using the corresponding cumulative probability curves (see
Figure 2.14g and Figure 2.14h).

(a) 1st step (b) 2nd step

(c) 3rd step (d) 4th step

Figure 2.14: The procedure of generating samples using LHS method
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(e) 5th step (f) 6th step

(g) 7th step (h) 7th step

Figure 2.14: The procedure of generating samples using LHS method (cont.)

36



Chapter 3
Maximizing the Plateau Duration

There are a few possible development alternatives for the Safari field (Angga, 2018), i.e.,
FPSO, gravity-based structure (GBS), PDQ platform based on a fixed steel jacket, tie-back
to Grane oil field, and subsea-to-beach. However, in this study, the optimization algorithm
is only developed for FPSO alternative.

As we know, the Safari field consists of three non-communicating reservoirs, i.e. Løve,
Nesehorn, and Sebra. For the development with FPSO, the production from each reservoir
is tied to a constant-pressure separator at FPSO (see Figure 3.1). With these features,
the plateau duration of Safari field can be prolonged by adjusting the production splitting
between the three non-communicating reservoirs (Angga, 2018).

Figure 3.1: Layout of the production system of Safari field for FPSO development alternative
(Angga, 2018)
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An optimization problem which maximizes the plateau duration (tp) will be discussed in
this chapter. In this optimization problem, fluid flow rates, drilling schedule, and recovery
mechanism are defined as the variables to be decided upon. In addition, some constraints
(e.g., production constraints, injection constraints, and drilling constraints) are taken into
account in the optimization. This optimization problem is referred to as CASE-1.

The results of the optimization problem are then compared to the results of the reference
case (REF-CASE-1). The reference case has the same objective function as CASE-1, but it
only considers the fluid flow rates as the decision variables. Drilling schedule and recovery
mechanism are inputs for the reference case, and their values are similar to the ones used
for the specialization project (Angga, 2018). Since CASE-1 has more variables to play
with, it is expected that CASE-1 will provide a longer plateau duration than the reference
case. Brief comparisons between CASE-1 and REF-CASE-1 are shown in Table 3.1.

Table 3.1: Comparisons of objective function, decision variables, and parameters between CASE-1
and REF-CASE-1

CASE-1 REF-CASE-1
Objective Function Max: tp Max: tp

Production & Injection Rates

qo variable variable
qg variable variable
qw variable variable
qgi variable variable
qwi variable variable

Drilling Schedule
Nop variable parameter
Ngi variable parameter
Nwi variable parameter

Recovery Mechanism RM variable parameter

3.1 Formulation of the Optimization Problem

In this optimization, production potential curves are used to bound the oil production rate
of a particular reservoir at a particular time. There are some constraints reflecting that the
oil production rate (qo) has to be less than or equal to the oil production potential (qopp).
The oil production potential (qopp) is a non-linear function that depends on the cumula-
tive oil production (Np), the number of oil producer (Nop), and the recovery mechanism
(RM ). This non-linear function makes the initial formulation of the optimization prob-
lem is categorized as an NLP. Today, this class of optimization problem often remains
difficult to solve. Therefore, PWL approximation is implemented to transform the opti-
mization problem from an NLP into an MILP which is easier to solve. There are some
well-developed algorithms to solve an MILP efficiently (see subsection 2.2.5).

Mathematical formulation of CASE-1 is discussed in the following subsections.
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3.1.1 Parameters

Parameters are the constant quantities that affect the outcome of a mathematical object. In
this formulation, they represent the inputs required for the optimization. The parameters
involved in this formulation are listed, defined, and specified as follows:

• nr
definition: Number of reservoirs
value: 3
comment: Løve, Nesehorn, Sebra

• np
definition: Number of points resulted from discretizing the field lifetime
value: 18
comment: The field lifetime is specified from 1st January 2023 until 1st January
2040. With a timestep size of 1 year, the field lifetime time is discretized into 18
points.

• tup
definition: Number of operational days per year (unit: days/year)
value: 365

• qo_F _plateau
definition: Desired oil plateau rate for the field (unit: sm3/d)
value: 20000

• N̂op_pd
definition: Maximum number of pre-drilled oil producers
value: 4
comment: This number is decided by Aker Solutions beforehand.

• N̂i_pd
definition: Maximum number of pre-drilled injectors (gas injector or water injector)
value: 1
comment: This number is decided by Aker Solutions beforehand.

• N̂wt_py
definition: Maximum number of wells (producers & injectors) drilled each year
(unit: wells/year)
value: 4
comment: As informed by Aker Solutions, the drilling & completion time is ap-
proximately 3 months/well, regardless of the well type. With one rig assigned for
the field, at maximum four wells can be drilled each year.

• N̂gi,i, ∀i ∈ R
definition: Maximum number of gas injectors drilled at reservoir-i
value: see Table 3.2
comment: This number is decided by Aker Solutions beforehand.
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• N̂wi,i, ∀i ∈ R
definition: Maximum number of water injectors drilled at reservoir-i
value: See Table 3.2
comment: This number is decided by Aker Solutions beforehand.

Table 3.2: Maximum number of gas and water injectors for each reservoir

i N̂gi,i N̂wi,i

1 (Løve) 1 3
2 (Nesehorn) 0 2

3 (Sebra) 0 1

• zNgi,m,n, ∀m ∈ {1, 2} and ∀n ∈ {1, 2}
definition: The value of zNgi at breakpoint (m,n)
value: see Table 3.3
comment: 2D PWL approximation is implemented to represent a non-linear func-
tion RM = f(zNgi, zNwi). In this PWL approximation, index-m indicates the
breakpoints for zNgi, while index-n indicates the breakpoints for zNwi.

• zNwi,m,n, ∀m ∈ {1, 2} and ∀n ∈ {1, 2}
definition: The value of zNwi at breakpoint (m,n)
value: see Table 3.3

• RMds,m,n, ∀m ∈ {1, 2} and ∀n ∈ {1, 2}
definition: The value of RM , which indicates the recovery mechanism, at break-
point (m,n)
value: see Table 3.3
comment: The recovery mechanism depends on the value of zNgi and zNwi. Note
that every combination of zNgi and zNwi reflects a unique type of recovery mech-
anism.

Table 3.3: 2D PWL approximation to represent a non-linear function RM = f(zNgi, zNwi)

m n zNgi,m,n zNwi,m,n RMds,m,n

1 1 0 0 1 (Natural Depletion)
1 2 0 1 2 (Water Injection)
2 1 1 0 3 (Gas Injection)
2 2 1 1 4 (Water & Gas Injection)

• q̂gi_pgi
definition: Maximum gas injection rate for a gas injector (unit: 1000 sm3/d)
value: 4000
comment: It is assumed that 4 million sm3/d gas can be injected into the reservoirs
by every gas injector, regardless of the required surface pressure for the injection.
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• q̂wi_pwi

definition: Maximum water injection rate for a water injector (unit: sm3/d)
value: 6360
comment: It is assumed that 6360 sm3/d (≈ 40000 bbl/d) water can be injected into
the reservoirs by every water injector, regardless of the required surface pressure for
the injection.

• nbp_Np

definition: Number of breakpoints for the cumulative oil production (Np)
value: see Table 3.4

• nbp_Nop,i, ∀i ∈ R
definition: Number of breakpoints for the number of oil producers (Nop) corre-
sponds to reservoir-i
value: see Table 3.4

• nbp_RM,i, ∀i ∈ R
definition: Number of breakpoints for the recovery mechanism (RM ) corresponds
to reservoir-i
value: see Table 3.4

Table 3.4: Number of breakpoints for 3D PWL approximation which represents a non-linear func-
tion qopp = f(Np, Nop, RM)

i nbp_Np
nbp_Nop,i nbp_RM,i

1 (Løve)
10

5 4
2 (Nesehorn) 4 2

3 (Sebra) 3 2

• Np,i,j,k,l, ∀i ∈ R, ∀j ∈ VNp , ∀k ∈ VNop,i, and ∀l ∈ VRM,i

definition: Cumulative oil production of reservoir-i (Np,i) at breakpoint (j, k, l)
(unit: Mill. sm3)
value: see Table 3.5
comment: 3D PWL approximation is implemented to represent a non-linear func-
tion qopp = f(Np, Nop, RM). In this PWL approximation, index-j indicates the
breakpoints for Np, index-k indicates the breakpoints for Nop, and index-l indicates
the breakpoints for RM .

• Nop,i,j,k,l, ∀i ∈ R, ∀j ∈ VNp , ∀k ∈ VNop,i, and ∀l ∈ VRM,i

definition: Number of oil producers in reservoir-i (Nop,i) at breakpoint (j, k, l)
value: see Table 3.5

• RMpp,i,j,k,l, ∀i ∈ R, ∀j ∈ VNp
, ∀k ∈ VNop,i, and ∀l ∈ VRM,i

definition: Recovery mechanism of reservoir-i (RMi) at breakpoint (j, k, l)
value: see Table 3.5
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• qopp,i,j,k,l, ∀i ∈ R, ∀j ∈ VNp , ∀k ∈ VNop,i, and ∀l ∈ VRM,i

definition: Oil production potential of reservoir-i (qopp,i) at breakpoint (j, k, l) (unit:
sm3/d)
value: see Table 3.5

Table 3.5: 3D PWL approximation to represent a non-linear function qopp = f(Np, Nop, RM)

i j k l Np,i,j,k,l Nop,i,j,k,l RMpp,i,j,k,l

qopp,i,j,k,l
(Mill. sm3) (sm3/d)

1 1 1 1 0 0 1 0
1 2 1 1 1.65 0 1 0

1
... 1 1

...
...

...
...

1 9 1 1 23.10 0 1 0
1 10 1 1 27.61 0 1 0
1 1 2 1 0 1 1 1382.43

1
...

... 1
...

...
...

...
1 10 5 1 27.61 15 1 0
1 1 1 2 0 0 2 0

1
...

...
...

...
...

...
...

1 10 5 4 27.61 15 4 0
2 1 1 1 0 0 1 0

2
...

...
...

...
...

...
...

2 10 4 2 32.30 7 2 520.37
3 1 1 1 0 0 1 0

3
...

...
...

...
...

...
...

3 10 3 2 8.31 3 2 53.77

• Gp,i,j,k,l, ∀i ∈ R, ∀j ∈ VNp
, ∀k ∈ VNop,i, and ∀l ∈ VRM,i

definition: Cumulative gas production of reservoir-i (Gp,i) at breakpoint (j, k, l)
(unit: Mill. sm3)

• Wp,i,j,k,l, ∀i ∈ R, ∀j ∈ VNp
, ∀k ∈ VNop,i, and ∀l ∈ VRM,i

definition: Cumulative water production of reservoir-i (Wp,i) at breakpoint (j, k, l)
(unit: Mill. sm3)

• Gi,i,j,k,l, ∀i ∈ R, ∀j ∈ VNp
, ∀k ∈ VNop,i, and ∀l ∈ VRM,i

definition: Cumulative gas injection of reservoir-i (Gi,i) at breakpoint (j, k, l) (unit:
Mill. sm3)

• Wi,i,j,k,l, ∀i ∈ R, ∀j ∈ VNp
, ∀k ∈ VNop,i, and ∀l ∈ VRM,i

definition: Cumulative water injection of reservoir-i (Wi,i) at breakpoint (j, k, l)
(unit: Mill. sm3)
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3.1.2 Sets

The sets associated in this formulation are listed and described as follows:

• R = {1, ..., nr}
definition: A set of reservoirs
comment: "1" indicates Løve, "2" indicates Nesehorn, and "3" indicates Sebra.

• P = {1, ..., np}
definition: A set of points of time throughout the production period
comment: "1" represents 1st Jan 2023, "2" represents 1st Jan 2024, "3" represents
1st Jan 2025, and so on.

• VNp = {1, ..., nbp_Np}
definition: A set of breakpoints for Np

comment: As shown in Table 3.4, there are 10 Np breakpoints for every reservoir.
The Np breakpoints for each reservoir are provided in Table 3.6.

Table 3.6: Sets of Np breakpoints used for 3D PWL approximation

j
Np,i,j,k,l (Mill. sm3)

i = 1 i = 2 i = 3
(Løve) (Nesehorn) (Sebra)

1 0 0 0
2 1.65 0.62 0.45
3 2.63 1.09 0.97
4 4.12 3.33 1.14
5 6.27 4.03 1.39
6 9.59 5.27 4.29
7 14.09 18.79 5.63
8 18.60 25.54 6.97
9 23.10 29.48 7.83

10 27.61 32.30 8.31

• VNop,i = {1, ..., nbp_Nop,i}, ∀i ∈ R
definition: A set of breakpoints for Nop corresponds to reservoir-i
comment: As shown in Table 3.4, the number of Nop breakpoints varies between
the reservoirs. The Nop breakpoints for each reservoir are provided in Table 3.7. In
this 3D PWL approximation, the numbers of oil producers for Løve, Nesehorn, and
Sebra can be chosen up to 15, 7, and 3, respectively. These numbers are decided by
Aker Solutions beforehand.
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Table 3.7: Sets of Nop breakpoints used for 3D PWL approximation

k
Nop,i,j,k,l

i = 1 i = 2 i = 3
(Løve) (Nesehorn) (Sebra)

1 0 0 0
2 1 1 1
3 5 4 3
4 10 7 -
5 15 - -

• VRM,i = {1, ..., nbp_RM,i}, ∀i ∈ R
definition: A set of breakpoints for RM corresponds to reservoir-i
comment: As shown in Table 3.4, the number of RM breakpoints varies between
the reservoirs. The RM breakpoints for each reservoir are provided in Table 3.8. In
this 3D PWL approximation, all reservoirs can be developed with natural depletion
or water injection. However, developments with gas injection or water-gas injection
are only feasible for Løve. The options of recovery mechanism for each reservoir
are decided by Aker Solutions beforehand.

Table 3.8: Sets of RM breakpoints used for 3D PWL approximation

l
RMpp,i,j,k,l

i = 1 i = 2 i = 3
(Løve) (Nesehorn) (Sebra)

1 1 (Natural Depletion) 1 1
2 2 (Water Injection) 2 2
3 3 (Gas Injection) - -
4 4 (Water & Gas Injection) - -

3.1.3 Variables

In contrary to parameters, variables are defined as the varying quantities that affect the
outcome of a mathematical object. In this formulation, variables can be seen as the outputs
of the optimization. The variables involved in this formulation are listed and defined as
follows:

• RMi, ∀i ∈ R
definition: Recovery mechanism of reservoir-i
comment: The recovery mechanism of reservoir-i is assumed constant throughout
the production period. The reason for this assumption is because the production
potential curves for a particular reservoir are valid only if the reservoir is produced
with a constant recovery mechanism during its lifetime.
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• zNgi,i, ∀i ∈ R
definition: Binary variable which relates the number of gas injectors in reservoir-i
with the recovery mechanism of reservoir-i.
comment: "zNgi = 0" when the reservoir is developed with natural depletion or
water injection, while "zNgi = 1" when the reservoir is developed with gas injection
or water-gas injection.

• zNwi,i, ∀i ∈ R
definition: Binary variable which relates the number of water injectors in reservoir-i
with the recovery mechanism of reservoir-i.
comment: "zNwi = 0" when the reservoir is developed with natural depletion
or gas injection, while "zNwi = 1" when the reservoir is developed with water
injection or water-gas injection.

• Nop,i,z, ∀i ∈ R and ∀z ∈ P
definition: Number of oil producers in reservoir-i at time-z

• Ngi,i,z, ∀i ∈ R and ∀z ∈ P
definition: Number of gas injectors in reservoir-i at time-z

• Nwi,i,z, ∀i ∈ R and ∀z ∈ P
definition: Number of water injectors in reservoir-i at time-z

• Nwt,i,z, ∀i ∈ R and ∀z ∈ P
definition: Total number of wells (producers & injectors) in reservoir-i at time-z

• qopp,i,z, ∀i ∈ R and ∀z ∈ P
definition: Oil production potential of reservoir-i at time-z (unit: sm3/d)

• qo,i,z, ∀i ∈ R and ∀z ∈ {2, ..., np}
definition: Oil production rate of reservoir-i at time-z (unit: sm3/d)

• qg,i,z, ∀i ∈ R and ∀z ∈ {2, ..., np}
definition: Gas production rate of reservoir-i at time-z (unit: 1000 sm3/d)

• qw,i,z, ∀i ∈ R and ∀z ∈ {2, ..., np}
definition: Water production rate of reservoir-i at time-z (unit: sm3/d)

• qgi,i,z, ∀i ∈ R and ∀z ∈ {2, ..., np}
definition: Gas injection rate of reservoir-i at time-z (unit: 1000 sm3/d)

• qwi,i,z, ∀i ∈ R and ∀z ∈ {2, ..., np}
definition: Water injection rate of reservoir-i at time-z (unit: sm3/d)

• Np,i,z, ∀i ∈ R and ∀z ∈ P
definition: Cumulative oil production of reservoir-i at time-z (unit: Mill. sm3)

• Gp,i,z, ∀i ∈ R and ∀z ∈ P
definition: Cumulative gas production of reservoir-i at time-z (unit: Mill. sm3)

• Wp,i,z, ∀i ∈ R and ∀z ∈ P
definition: Cumulative water production of reservoir-i at time-z (unit: Mill. sm3)
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• Gi,i,z, ∀i ∈ R and ∀z ∈ P
definition: Cumulative gas injection of reservoir-i at time-z (unit: Mill. sm3)

• Wi,i,z, ∀i ∈ R and ∀z ∈ P
definition: Cumulative water injection of reservoir-i at time-z (unit: Mill. sm3)

• Nop_F,z, ∀z ∈ P
definition: Number of oil producers in the field at time-z

• Ngi_F,z, ∀z ∈ P
definition: Number of gas injectors in the field at time-z

• Nwi_F,z, ∀z ∈ P
definition: Number of water injectors in the field at time-z

• Nwt_F,z, ∀z ∈ P
definition: Total number of wells (producers & injectors) in the field at time-z

• qopp_F,z, ∀z ∈ P
definition: Oil production potential of the field at time-z (unit: sm3/d)

• qo_F,z, ∀z ∈ {2, ..., np}
definition: Oil production rate of the field at time-z (unit: sm3/d)

• qg_F,z, ∀z ∈ {2, ..., np}
definition: Gas production rate of the field at time-z (unit: 1000 sm3/d)

• qw_F,z, ∀z ∈ {2, ..., np}
definition: Water production rate of the field at time-z (unit: sm3/d)

• qgi_F,z, ∀z ∈ {2, ..., np}
definition: Gas injection rate of the field at time-z (unit: 1000 sm3/d)

• qwi_F,z, ∀z ∈ {2, ..., np}
definition: Water injection rate of the field at time-z (unit: sm3/d)

• Np_F,z, ∀z ∈ P
definition: Cumulative oil production of the field at time-z (unit: Mill. sm3)

• Gp_F,z, ∀z ∈ P
definition: Cumulative gas production of the field at time-z (unit: Mill. sm3)

• Wp_F,z, ∀z ∈ P
definition: Cumulative water production of the field at time-z (unit: Mill. sm3)

• Gi_F,z, ∀z ∈ P
definition: Cumulative gas injection of the field at time-z (unit: Mill. sm3)

• Wi_F,z, ∀z ∈ P
definition: Cumulative water injection of the field at time-z (unit: Mill. sm3)

• λi,z,j,k,l, ∀i ∈ R, ∀z ∈ P, ∀j ∈ VNp
, ∀k ∈ VNop,i, and ∀l ∈ VRM,i

definition: Weighting coefficient of breakpoint (j,k,l) in the 3D PWL approximation
corresponds to reservoir-i at time-z
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• ηNp,i,z,j , ∀i ∈ R, ∀z ∈ P, and ∀j ∈ VNp

• ηNop,i,z,k, ∀i ∈ R, ∀z ∈ P, and ∀k ∈ VNop,i

• ηRM,i,z,l, ∀i ∈ R, ∀z ∈ P, and ∀l ∈ VRM,i

• ωi,m,n, ∀i ∈ R, ∀m ∈ {1, 2}, and ∀n ∈ {1, 2}
definition: Weighting coefficient of breakpoint (m,n) in the 2D PWL approximation
corresponds to reservoir-i

• τzNgi,i,m, ∀i ∈ R and ∀m ∈ {1, 2}

• τzNwi,i,n, ∀i ∈ R and ∀n ∈ {1, 2}

3.1.4 Objective Function

The objective function of the optimization problem is to maximize the plateau duration for
a given plateau rate. The objective function is expressed as follows:

minimize
∑

z∈{2,...,np}

(
qo_F _plateau − qo_F,z

)
(3.1)

Visually, the objective function is aimed to minimize the grey area in Figure 3.2.

Figure 3.2: Visualization of the objective function

3.1.5 Operational Constraints

• The field should be produced at any rates no higher than the desired plateau rate:

qo_F,z ≤ qo_F _plateau, ∀z ∈ {2, ..., np} (3.2)
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• Production potential defines the upper limit of the production rate. Thus, it must be
guaranteed that the production rate at any point in time never exceeds the production
potential. Since backward rectangular integration technique is utilized, the produc-
tion rate qo,i,z is assumed to last from time tz−1 until tz . It is also assumed that the
production potential is monotonic between time tz−1 and tz . Therefore, to assure
that the production rate is always less than or equal to the production potential, the
following two constraints are included:

qo,i,z ≤ qopp,i,z, ∀i ∈ R and ∀z ∈ {2, ..., np} (3.3a)

qo,i,z ≤ qopp,i,z−1, ∀i ∈ R and ∀z ∈ {2, ..., np} (3.3b)

• Backward rectangular integration method is also employed to estimate cumulative
gas & water injection (Gi & Wi). It means that the injection rates are also assumed
constant from time tz−1 until tz . One needs to ensure that these injection rates do
not surpass the injection capabilities, which are defined as the number of injectors
available multiplied by the maximum injection rate of each injector. Since the num-
bers of injectors are non-decreasing over time (see subsection 3.1.6), the injection
capabilities also never decrease. Consequently, to verify that the injection rates do
not exceed the injection capabilities, one only needs to impose that the injection ca-
pabilities at time tz−1 are higher or equal to the constant injection rates from time
tz−1 until tz:

qgi,i,z ≤ Ngi,i,z−1 · q̂gi_pgi, ∀i ∈ R and ∀z ∈ {2, ..., np} (3.4a)

qwi,i,z ≤ Nwi,i,z−1 · q̂wi_pwi, ∀i ∈ R and ∀z ∈ {2, ..., np} (3.4b)

3.1.6 Drilling Constraints

• The following three constraints reflect that the numbers of wells (oil producers, gas
injectors, or water injectors) are non-decreasing:

Nop,i,z −Nop,i,z−1 ≥ 0, ∀i ∈ R and ∀z ∈ {2, ..., np} (3.5a)

Ngi,i,z −Ngi,i,z−1 ≥ 0, ∀i ∈ R and ∀z ∈ {2, ..., np} (3.5b)

Nwi,i,z −Nwi,i,z−1 ≥ 0, ∀i ∈ R and ∀z ∈ {2, ..., np} (3.5c)

• The number of gas injectors (Ngi,i,z) is controlled by two factors, i.e., 1) the variable
zNgi,i that depends on the recovery mechanism, and 2) the maximum number of gas
injectors to drill (N̂gi,i):

Ngi,i,z ≤ zNgi,i · N̂gi,i, ∀i ∈ R and ∀z ∈ P (3.6a)

When the reservoir is developed with natural depletion or water injection, the vari-
able zNgi,i equals to zero, and it imposes Ngi,i,z to be zero. On the other hand,
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when the reservoir is developed with gas injection or water-gas injection, zNgi,i

equals to one, and thus Ngi,i,z can be any value as long as it is no higher than the in-
put value for N̂gi,i. Similarly, the number of water injectors (Nwi,i,z) has to satisfy
the following constraint:

Nwi,i,z ≤ zNwi,i · N̂wi,i, ∀i ∈ R and ∀z ∈ P (3.6b)

• The two following constraints are related to the pre-drilled wells, i.e., the number
of wells available at the beginning of the production period is no greater than the
maximum number of pre-drilled wells:

Nop_F,1 ≤ N̂op_pd (3.7a)

Ngi_F,1 +Nwi_F,1 ≤ N̂i_pd (3.7b)

• The following constraint represents that at most four wells can be drilled & com-
pleted each year:

Nwt_F,z −Nwt_F,z−1 ≤ N̂wt_py, ∀z ∈ {2, ..., np} (3.8)

3.1.7 Consistency Constraints

• At the commencement of the production period, the cumulative oil production (Np,i,1)
equals to zero. With the 3D PWL approximation, note that this constraint also im-
poses the cumulative production & injection of gas & water to be zero:

Np,i,1 = 0, ∀i ∈ R (3.9)

• The cumulative production & injection at a particular point in time is numerically
calculated using the backward rectangular integration technique. In this integration
method, the production & injection rates at time tz represent the constant production
& injection rates from time tz−1 until tz:

Np,i,z = Np,i,z−1 +
tup · qo,i,z

106
, ∀i ∈ R and ∀z ∈ {2, ..., np} (3.10a)

Gp,i,z = Gp,i,z−1 +
tup · qg,i,z

103
, ∀i ∈ R and ∀z ∈ {2, ..., np} (3.10b)

Wp,i,z = Wp,i,z−1 +
tup · qw,i,z

106
, ∀i ∈ R and ∀z ∈ {2, ..., np} (3.10c)

Gi,i,z = Gi,i,z−1 +
tup · qgi,i,z

103
, ∀i ∈ R and ∀z ∈ {2, ..., np} (3.10d)

Wi,i,z = Wi,i,z−1 +
tup · qwi,i,z

106
, ∀i ∈ R and ∀z ∈ {2, ..., np} (3.10e)
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• The total number of wells is defined as the summation of numbers of oil producers,
gas injectors, and water injectors:

Nwt,i,z = Nop,i,z +Ngi,i,z +Nwi,i,z, ∀i ∈ R and ∀z ∈ P (3.11)

• Any variable corresponds for the field is determined as the summation of the relevant
variable of each reservoir:

Nop_F,z =
∑
i∈R

Nop,i,z, ∀z ∈ P (3.12a)

Ngi_F,z =
∑
i∈R

Ngi,i,z, ∀z ∈ P (3.12b)

Nwi_F,z =
∑
i∈R

Nwi,i,z, ∀z ∈ P (3.12c)

Nwt_F,z =
∑
i∈R

Nwt,i,z, ∀z ∈ P (3.12d)

qopp_F,z =
∑
i∈R

qopp,i,z, ∀z ∈ P (3.12e)

qo_F,z =
∑
i∈R

qo,i,z, ∀z ∈ {2, ..., np} (3.12f)

qg_F,z =
∑
i∈R

qg,i,z, ∀z ∈ {2, ..., np} (3.12g)

qw_F,z =
∑
i∈R

qw,i,z, ∀z ∈ {2, ..., np} (3.12h)

qgi_F,z =
∑
i∈R

qgi,i,z, ∀z ∈ {2, ..., np} (3.12i)

qwi_F,z =
∑
i∈R

qwi,i,z, ∀z ∈ {2, ..., np} (3.12j)

Np_F,z =
∑
i∈R

Np,i,z, ∀z ∈ P (3.12k)

Gp_F,z =
∑
i∈R

Gp,i,z, ∀z ∈ P (3.12l)

Wp_F,z =
∑
i∈R

Wp,i,z, ∀z ∈ P (3.12m)

Gi_F,z =
∑
i∈R

Gi,i,z, ∀z ∈ P (3.12n)
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Wi_F,z =
∑
i∈R

Wi,i,z, ∀z ∈ P (3.12o)

• In addition, we have to verify that:

all variables are non-negative (3.13)

3.1.8 Integer & Binary Constraints

All variables that are restricted to be integers or to have 0-1 values are listed as follows:

RMi ∈ Z, ∀i ∈ R (3.14a)
zNgi,i ∈ {0, 1}, ∀i ∈ R (3.14b)
zNwi,i ∈ {0, 1}, ∀i ∈ R (3.14c)
Nop,i,z ∈ Z, ∀i ∈ R and ∀z ∈ P (3.14d)
Ngi,i,z ∈ Z, ∀i ∈ R and ∀z ∈ P (3.14e)
Nwi,i,z ∈ Z, ∀i ∈ R and ∀z ∈ P (3.14f)
Nwt,i,z ∈ Z, ∀i ∈ R and ∀z ∈ P (3.14g)
Nop_F,z ∈ Z, ∀z ∈ P (3.14h)
Ngi_F,z ∈ Z, ∀z ∈ P (3.14i)
Nwi_F,z ∈ Z, ∀z ∈ P (3.14j)
Nwt_F,z ∈ Z, ∀z ∈ P (3.14k)

3.1.9 Constraints Induced by PWL Approximations

• The oil production potential (qopp) is non-linearly dependent on the cumulative oil
production (Np), the number of oil producers (Nop), and the recovery mechanism
(RM ). To reformulate the problem into an MILP, 3D PWL approximation is used.
The fundamental and the standard expression of 3D PWL approximation are pro-
vided in section 2.3. In this formulation, the 3D PWL approximation is used to
estimate the production potential of each reservoir-i at each time-z. The implemen-
tation of the 3D PWL approximation is provided as follows:

Np,i,z =
∑

j∈VNp

∑
k∈VNop,i

∑
l∈VRM,i

λi,z,j,k,l ·Np,i,j,k,l, ∀i ∈ R and ∀z ∈ P

(3.15a)
Nop,i,z =

∑
j∈VNp

∑
k∈VNop,i

∑
l∈VRM,i

λi,z,j,k,l ·Nop,i,j,k,l, ∀i ∈ R and ∀z ∈ P

(3.15b)
RMi =

∑
j∈VNp

∑
k∈VNop,i

∑
l∈VRM,i

λi,z,j,k,l ·RMpp,i,j,k,l, ∀i ∈ R and ∀z ∈ P

(3.15c)
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qopp,i,z =
∑

j∈VNp

∑
k∈VNop,i

∑
l∈VRM,i

λi,z,j,k,l · qopp,i,j,k,l, ∀i ∈ R and ∀z ∈ P

(3.15d)
1 =

∑
j∈VNp

∑
k∈VNop,i

∑
l∈VRM,i

λi,z,j,k,l, ∀i ∈ R and ∀z ∈ P (3.15e)

ηNp,i,z,j =
∑

k∈VNop,i

∑
l∈VRM,i

λi,z,j,k,l, ∀i ∈ R, ∀z ∈ P, and ∀j ∈ VNp

(3.15f)
ηNop,i,z,k =

∑
j∈VNp

∑
l∈VRM,i

λi,z,j,k,l, ∀i ∈ R, ∀z ∈ P, and ∀k ∈ VNop,i

(3.15g)
ηRM,i,z,l =

∑
j∈VNp

∑
k∈VNop,i

λi,z,j,k,l, ∀i ∈ R, ∀z ∈ P, and ∀l ∈ VRM,i

(3.15h)

{ηNp,i,z,j , j ∈ VNp} is SOS2, ∀i ∈ R, ∀z ∈ P (3.15i)
{ηNop,i,z,k, k ∈ VNop,i} is SOS2, ∀i ∈ R, ∀z ∈ P (3.15j)
{ηRM,i,z,l, l ∈ VRM,i} is SOS1, ∀i ∈ R, ∀z ∈ P (3.15k)

In the implementation of 3D PWL approximation above, the set {ηRM,i,z,l, l ∈
VRM,i} is restricted to be SOS1. The reason of applying this constraint is to ensure
that the variableRMi is selected among theRM breakpoints (see Table 3.8). Again,
these RM breakpoints represent the feasible recovery mechanism options for each
reservoir.

• The cumulative gas production (Gp) is found to have a non-linear dependency on the
cumulative oil production (Np) and the recovery mechanism (RM ). For sure, one
can establish another 2D PWL approximation to estimate Gp. However, instead of
doing that, 3D PWL approximation is again implemented to represent the function
Gp = f(Np, Nop, RM). Note that, if the 3D PWL approximation has similar sets
of breakpoints as the 3D PWL approximation for qopp = f(Np, Nop, RM), one can
use the same variable λi,z,j,k,l to compute Gp, as expressed below. This approach
is considered more efficient since fewer variables are involved.

Gp,i,z =
∑

j∈VNp

∑
k∈VNop,i

∑
l∈VRM,i

λi,z,j,k,l ·Gp,i,j,k,l, ∀i ∈ R and ∀z ∈ P

(3.16a)
In similar fashion, Wp, Gi, Wi are determined as follows:

Wp,i,z =
∑

j∈VNp

∑
k∈VNop,i

∑
l∈VRM,i

λi,z,j,k,l ·Wp,i,j,k,l, ∀i ∈ R and ∀z ∈ P

(3.16b)
Gi,i,z =

∑
j∈VNp

∑
k∈VNop,i

∑
l∈VRM,i

λi,z,j,k,l ·Gi,i,j,k,l, ∀i ∈ R and ∀z ∈ P

(3.16c)
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Wi,i,z =
∑

j∈VNp

∑
k∈VNop,i

∑
l∈VRM,i

λi,z,j,k,l ·Wi,i,j,k,l, ∀i ∈ R and ∀z ∈ P

(3.16d)

• In this formulation, there is another non-linear function involved, i.e.,RM = f(zNgi, zNwi).
The non-linear function is illustrated in Figure 3.3. To have an MILP problem, 2D
PWL approximation is employed. For each reservoir-i, the 2D PWL approximation
is used to represent the relationship between the recovery mechanism (RM ) and the
values of variable zNgi & zNwi. The implementation of the 2D PWL approxima-
tion is provided as follows:

zNgi,i =
∑

m∈{1,2}

∑
n∈{1,2}

ωi,m,n · zNgi,m,n, ∀i ∈ R (3.17a)

zNwi,i =
∑

m∈{1,2}

∑
n∈{1,2}

ωi,m,n · zNwi,m,n, ∀i ∈ R (3.17b)

RMi =
∑

m∈{1,2}

∑
n∈{1,2}

ωi,m,n ·RMds,m,n, ∀i ∈ R (3.17c)

1 =
∑

m∈{1,2}

∑
n∈{1,2}

ωi,m,n, ∀i ∈ R (3.17d)

τzNgi,i,m =
∑

n∈{1,2}

ωi,m,n, ∀i ∈ R and ∀m ∈ {1, 2} (3.17e)

τzNwi,i,n =
∑

m∈{1,2}

ωi,m,n, ∀i ∈ R and ∀n ∈ {1, 2} (3.17f)

{τzNgi,i,m, m = 1, 2} is SOS1, ∀i ∈ R (3.17g)

{τzNwi,i,n, n = 1, 2} is SOS1, ∀i ∈ R (3.17h)

As expressed above, the sets {τzNgi,i,m, m = 1, 2} and {τzNwi,i,n, n = 1, 2}
are restricted to be SOS1. These constraints aim to ensure that the values of variable
zNgi and zNwi are chosen among the breakpoints (see Table 3.3), i.e., either zero
or one.

Figure 3.3: An illustration of a non-linear function RM = f(zNgi, zNwi)
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3.2 Implementation in AMPL

A Mathematical Programming Language, or commonly abbreviated as AMPL, is a pro-
gramming language designed to solve a wide range of optimization problems (AMPL,
2019a). AMPL closely resembles the symbolic algebraic notation that many modelers use
to describe mathematical programs. This makes it convenient to formulate and solve an
optimization problem in AMPL. In addition, AMPL offers various powerful solvers, such
as CPLEX, Gurobi, etc., to solve many classes of mathematical optimization.

In this study, the optimization problem CASE-1 is implemented in AMPL. The AMPL
implementation is divided into four modules/files, i.e., the model file, the data file, the
PWL table file, and the run file (see Figure 3.4).

Figure 3.4: Workflow of AMPL implementation for CASE-1

The optimization problem is formulated in the model file. Here, the parameters, the sets,
the variables, the objective function, and all the constraints are clearly stated. The model
file for CASE-1 is given in Appendix A.1.1. In the data file, all optimization parameters
-except the ones that are related to the production potential- are specified. Some of those
parameters are nr, np, tup, qo_F _plateau, drilling considerations, & injection limitations.
The data file for CASE-1 is provided in Appendix A.1.2. A PWL table is an input to any
software that performs PWL approximation. In this implementation, the PWL table file
contains a PWL table to carry out 3D PWL approximations for qopp, Gp, Wp, Gi, and Wi.
An illustration of the PWL table is presented in Table 3.5. In addition, the PWL table file
includes the numbers of breakpoints involved in the 3D PWL approximation.

The run file can be considered as the main file in the AMPL implementation. Once this run
file is executed, the model file, the data file, and the PWL table file are loaded. After that,
the run file decides on which solver to be used. The selected solver can be customized by
configuring the solver options. Description of each solver option can be found in AMPL
(2019b) and Gurobi (2019). After choosing the solver & configuring the solver options,
the run file declares the SOS2 & SOS1 constraints for some sets. Subsequently, the run
file commands to solve the optimization problem. Finally, the optimization results are
displayed and extracted into an output file (.out file). The run file for CASE-1 is provided
in Appendix A.1.3.

In addition, AMPL implementation for the reference case is provided in Appendix A.2.
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3.3 Results & Discussion

Before discussing the optimization results, let us discuss some terms commonly used in
optimization:

• Objective value→ the value of objective function under a particular solution.

• Best integer solution → a feasible solution that has been found so far to give the
highest (or the lowest) objective value. One can interpret the best integer solution as
the current best solution.

• Best integer→ the objective value of the best integer solution.

• Best bound→ the best objective value that a feasible solution could potentially have,
based on information the solver has discovered so far. With the best bound, one can
say that there might be a better solution than the best integer solution, but if there is,
it will not have an objective value better than the best bound.

• Relative gap→ the difference between the best bound and the best integer relative
to the best integer. Mathematically, it is calculated as follows:

Relative gap =
|best bound− best integer|

|best integer|
(3.18)

The optimality of a solution is proven when the best integer and the best bound
evaluate the same value, i.e., the solver could prove a relative gap of 0%.

Table 3.9: Comparisons of optimization results between CASE-1 and REF-CASE-1

CASE-1 REF-CASE-1
Objective value 190421 201293

Relative gap 1.53% 0.00%
Runtime (sec.) 43210 0.23
Runtime (hr.) 12.00 0.00

Number of variables 8113 3814
Number of constraints 2488 1986

As shown in Table 3.9, the best integer solution for CASE-1 gives an objective value of
190421. This best integer solution is obtained after running the optimization for 12 hours.
The relative gap of 1.53% indicates that there might exist a better feasible solution which
could lower objective value up to 187515. Of course, one can reduce this relative gap by
extending the optimization runtime. Unfortunately, due to the time limitation to complete
this project, we have to accept the best feasible solution found so far.

For the reference case, relative gap of 0.00% implies that the optimal solution has been
found. This optimal solution is obtained extremely quick since we include fewer variables.
The objective value of the optimal solution is 201293. When we compare this number to
the one belongs to CASE-1, it can be seen that CASE-1 produces a lower objective value
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than REF-CASE-1. The lower objective value simply means a longer plateau duration.
This finding is consistent with what we have expected, i.e., the plateau duration can be
prolonged further by involving more decision variables.

Some optimization results are presented below. More detailed drilling schedule (e.g. for
oil producers, gas injectors, and water injectors) and production profile (e.g. for each
reservoir) are also obtained, but they are not presented here.

Figure 3.5 compares the recovery mechanisms obtained from CASE-1 and the ones in-
putted for REF-CASE-1. As shown in the figures, the recovery mechanisms in both cases
are similar, i.e. water-gas injection for Løve and water injection for Nesehorn and Sebra.

(a) CASE-1 (b) REF-CASE-1

Figure 3.5: Comparison of recovery mechanisms between CASE-1 and REF-CASE-1

Drilling schedule resulted from CASE-1 and the one used in REF-CASE-1 are depicted
in Figure 3.6. In CASE-1, a longer plateau duration is attained by developing Løve and
Nesehorn simultaneously, and then followed by Sebra. On the other hand, for the refer-
ence case, the reservoirs are developed sequentially, i.e. started with Løve, followed by
Nesehorn, and ended by Sebra.

(a) CASE-1 (b) REF-CASE-1

Figure 3.6: Comparison of drilling schedule between CASE-1 and REF-CASE-1
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Figure 3.7 compares qo and qopp for both cases. As shown in the figures, the oil production
rates are always no greater than the oil production potential, which means the rates are
feasible to deliver. In addition, the increases of production potential at some points in time
are resulted from the drilling of new oil producers.

(a) CASE-1 (b) REF-CASE-1

Figure 3.7: Comparison of qo and qopp between CASE-1 and REF-CASE-1

The production & injection profiles for both cases are presented in Figure 3.8. By observ-
ing the injection rates, it is found that the injection constraints (Equation 3.4a and Equa-
tion 3.4b) are active in both cases. For Løve, the gas injection rate hits the gas injection
capability, while for Nesehorn and Sebra, there are limitations regarding the water injec-
tion. Those active injection constraints justify why the oil production rates never reach
the desired plateau rate, even though the production potential is sometimes way higher
than the desired plateau rate. If we observe Figure 3.6a, those active injection constraints
also justify why we drill fewer wells per year from 2028 onward. When the injection con-
straints are active, note that increasing the production potential by increasing the number
of oil producers will not contribute anything to the production profile.

(a) CASE-1 (b) REF-CASE-1

Figure 3.8: Comparison of production & injection profiles between CASE-1 and REF-CASE-1
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Chapter 4
Maximizing the NPV

In this chapter, an optimization problem which maximizes the Net Present Value (NPV)
will be discussed. This optimization problem is basically an extension of the optimization
problem presented in chapter 3. Fluid flow rates, drilling schedule, and recovery mech-
anism are the decision variables in this optimization problem. Similarly, few limitations
in production, injection, and drilling are taken into account. This optimization problem is
referred as CASE-2.

Another optimization problem called REF-CASE-2 is also established as a reference to
compare the results of CASE-2. The reference case has an identical objective function as
CASE-2, yet it only involves the fluid flow rates as the variables to decide. The reference
case requires drilling schedule and recovery mechanism as optimization inputs, and those
values are obtained from the specialization project (Angga, 2018). Brief comparisons
between CASE-2 and REF-CASE-2 are given in Table 4.1.

Table 4.1: Comparisons of objective function, decision variables, and parameters between CASE-2
and REF-CASE-2

CASE-2 REF-CASE-2
Objective Function Max: NPV Max: NPV

Production & Injection Rates

qo variable variable
qg variable variable
qw variable variable
qgi variable variable
qwi variable variable

Drilling Schedule
Nop variable parameter
Ngi variable parameter
Nwi variable parameter

Recovery Mechanism RM variable parameter
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4.1 Formulation of the Optimization Problem

Similar to the optimization problem presented in chapter 3, some non-linear functions,
such as qopp = f(Np, Nop, RM) and RM = f(zNgi, zNwi), are involved in this opti-
mization. Therefore, PWL approximations are again employed to convert the optimization
problem into an MILP. The mathematical formulation of CASE-2 will be discussed in the
following subsections.

4.1.1 Parameters

Except for the desired plateau rate qo_F _plateau, all parameters presented in subsection 3.1.1
are relevant for CASE-2. A few new parameters required to compute NPV are introduced.
Those additional parameters are listed, defined, and specified as follows:

• Po

definition: Oil price (unit: USD/bbl)
value: 60
comment: The oil price is assumed constant throughout the production period.

• XR
definition: Exchange rate (unit: NOK/USD)
value: 8.5
comment: A fixed exchange rate is used to convert any revenue or expense in USD
into an equivalent amount in NOK.

• V C
definition: Volume conversion constant (unit: bbl/m3)
value: 6.29

• d
definition: Discount rate
value: 12%
comment: This number is provided by Aker Solutions.

• Ap, ∀p ∈ {1, 2, . . . , 4}
definition: Fixed exploration expenditure at time-p
value: see Table 4.2
comment: A cost proxy model that is developed in the specialization project (Angga,
2018) is adapted for NPV calculation. In that proxy model, the exploration expen-
diture (ExpEx) is modeled as a fixed cost. The subscript p in Ap indicates when the
ExpEx is made (see Table 4.2 for the details).
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Table 4.2: Fixed expenditure for exploration activities (Angga, 2018)

p Ap Date of Expenditure(Mill. NOK)
1 665 1st Jan 2019
2 240 1st Jan 2020
3 380 1st Jan 2021
4 366 1st Jan 2022

• B
definition: Drilling cost per well (unit: Mill. NOK/well)
value: 480
comment: In the cost proxy model, the drilling cost is assumed constant for any
well type (producer/injector), any reservoir, and anytime the drilling commenced.

• Cp, ∀p ∈ {1, 2, . . . , 4}
definition: Fixed abandonment expenditure at time-p
value: see Table 4.3
comment: In the cost proxy model, the abandonment expenditure (AbEx) is ex-
pressed as follows:

AbEx = fixed cost + f(Nop_F,np
) + g(Ngi_F,np

, Nwi_F,np
) (4.1a)

The term "fixed cost" in Equation 4.1a is composed by parameters C1, C2, C3, and
C4. The subscript p in Cp also indicates when the AbEx is made (see Table 4.3 for
the details).

Table 4.3: Fixed expenditure for abandonment activities (Angga, 2018)

p Cp Date of Expenditure(Mill. NOK)
1 192 1st Jan 2019
2 449 1st Jan 2020
3 449 1st Jan 2021
4 192 1st Jan 2022

• Dq, ∀q ∈ {1, 2}
definition: D1 is the abandonment cost of an oil producer (unit: Mill. NOK/oil
producer), while D2 reflects the abandonment cost for every injector (unit: Mill.
NOK/injector)
value: D1 and D2 are equal to 12 and 5, respectively
comment: In Equation 4.1a, the AbEx is also influenced by two linear functions,
i.e., f(Nop_F,np) and g(Ngi_F,np , Nwi_F,np). Those functions are defined as fol-

61



lows:

f(Nop_F,np
) = D1 ·Nop_F,np

(4.1b)
g(Ngi_F,np

, Nwi_F,np
) = D2 · (Ngi_F,np

+Nwi_F,np
) (4.1c)

where Nop_F,np
, Ngi_F,np

, and Nwi_F,np
are the number of oil producers, gas injec-

tors, and water injectors, respectively, at the end of the field lifetime (time-z = np).

• Er, ∀r ∈ {1, 2}
definition: Coefficients of a linear function that estimates the capital cost of subsea
equipment
value: see Table 4.4
comment: In the cost proxy model, the capital expenditure (CapEx) for subsea
equipment is estimated as follows:

Subsea CapEx = E1 ·Nt_F + E2 ·Nx_F (4.2)

where Nt_F and Nx_F are the total number of subsea templates and subsea Xmas
trees in the field, respectively.

Table 4.4: All the coefficients in Equation 4.2 (Angga, 2018)

r Er Unit
1 484 Mill. NOK/template
2 50 Mill. NOK/Xmas tree

• Fs, ∀s ∈ {1, 2, 3}
definition: Coefficients of a linear function that determines the capital cost of an
offshore structure
value: see Table 4.5
comment: In the cost proxy model, the capital expenditure (CapEx) for the offshore
structure is expressed as follows:

Topside CapEx = F1 · q̂o_F + F2 · q̂g_F + F3 · q̂w_F (4.3)

where q̂o_F , q̂g_F , and q̂w_F are maximum oil, gas, and water production rate of the
field, respectively. Since the study is only focused on the development with FPSO,
the numbers presented in Table 4.5 are relevant for FPSO alternative.

Table 4.5: All the coefficients in Equation 4.3 (Angga, 2018)

s Fs Unit
1 0.10914 Mill. NOK/(sm3/d)
2 0.23848 Mill. NOK/(1000 sm3/d)
3 0.22074 Mill. NOK/(sm3/d)
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• Gt, ∀t ∈ {1, 2, . . . , 5}
definition: Constant and coefficients of a linear function that computes the operating
expense for a particular year
value: see Table 4.6
comment: In the cost proxy model, the operating expense (OpEx) for a particular
year is expressed as follows:

OpEx = G1 +G2 ·Nop_F +G3 · q̇o_F +G4 · q̇g_F +G5 · q̇w_F (4.4)

where Nop_F is the number of oil producers in the field at that year, while q̇o_F ,
q̇g_F , and q̇w_F are the average production rate of oil, gas, and water, respectively,
of the field at that year. Similarly, the numbers provided in Table 4.6 correspond for
the development with FPSO.

Table 4.6: All the constant and the coefficients in Equation 4.4 (Angga, 2018)

t Gt Unit
1 400 Mill. NOK
2 4 Mill. NOK/(oil producer)
3 0.007388 Mill. NOK/(sm3/d)
4 0.018289 Mill. NOK/(1000 sm3/d)
5 0.022829 Mill. NOK/(sm3/d)

4.1.2 Sets

The sets defined in this formulation are exactly the same as the sets defined in subsec-
tion 3.1.2.

4.1.3 Variables

In addition to the variables presented in subsection 3.1.3, there are other variables involved
in this formulation. Those additional variables are needed for NPV calculation, and they
are listed and defined as follows:

• PVe
definition: Present value of the exploration expenditure (unit: Mill. NOK)

• PVdp
definition: Present value of the drilling expenditure for the pre-drilled wells (unit:
Mill. NOK)

• PVa
definition: Present value of the abandonment expenditure (unit: Mill. NOK)

• Nt,i, ∀i ∈ R
definition: Number of subsea templates in reservoir-i
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• Nt_F
definition: Total number of subsea templates in the field

• Nx_F
definition: Total number of subsea Xmas trees in the field

• PVsc
definition: Present value of the capital expenditure for the subsea equipment (unit:
Mill. NOK)

• q̂o_F
definition: Maximum oil production rate of the field (unit: sm3/d)

• q̂g_F
definition: Maximum gas production rate of the field (unit: 1000 sm3/d)

• q̂w_F
definition: Maximum water production rate of the field (unit: sm3/d)

• PVtc
definition: Present value of the capital expenditure for the offshore structure (unit:
Mill. NOK)

• PVap
definition: Present value of all expenditures made prior to the first oil date, i.e., at
1st Jan 2023 (unit: Mill. NOK)

• PVd,z, ∀z ∈ {1, 2, . . . , (np − 1)}
definition: Present value of the drilling expenditure at time-z (unit: Mill. NOK)

• PVo,z, ∀z ∈ {2, 3, . . . , np}
definition: Present value of the operating expense at time-z (unit: Mill. NOK)

• PVr,z, ∀z ∈ {2, 3, . . . , np}
definition: Present value of the revenue at time-z (unit: Mill. NOK)

• DCFz, ∀z ∈ P
definition: Present value of the cash flow at time-z (unit: Mill. NOK)

• NPV
definition: Net present value (unit: Mill. NOK)

4.1.4 Objective Function

The objective function of the optimization problem is to maximize the net present value
(NPV). The objective function is expressed as follows:

maximize NPV (4.5)

It is important to note that the reference date for NPV calculation is 1st Jan 2019.
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4.1.5 Additional Constraints

The formulation of CASE-2 uses all the constraints presented in chapter 3, except for the
one related to the desired plateau rate (Equation 3.2). In addition to that, there are several
other constraints involved in this formulation. Those constraints are important for NPV
calculation, and they are discussed as follows:

Exploration Expenditure

The costs proxy model estimates the future values of the expenditures. Therefore, when
computing the present value, one needs to discount the future values with the specified
discount rate. In this study, the present date refers to 1st Jan 2019. Thus, the present value
of the ExpEx is found as follows:

PVe =
∑

p∈{1,2,...,4}

Ap

(1 + d)(p−1)
(4.6)

The exponent p − 1 denotes the number of periods (in our case, the number of years)
between the date of expenditure and the present date.

Drilling Expenditure

• As informed by Aker Solutions, all the pre-drilled wells are drilled in 2022, and the
associated DrillEx is made at 1st Jan 2022. Consequently, the present value of the
DrillEx for the pre-drilled wells is computed as follows:

PVdp =
B ·Nwt_F,1

(1 + d)3
(4.7)

The variable Nwt_F,1 points out the number of pre-drilled wells in the field.

• The drilling cost of all wells drilled within a particular year must be paid in the
beginning of that year. For instance, the drilling cost of all wells drilled in 2023
must be paid at 1st Jan 2023. Therefore, the present value of the DrillEx at time-z is
determined as follows:

PVd,z =
B · (Nwt_F,z+1 −Nwt_F,z)

(1 + d)(z+3)
, ∀z ∈ {1, 2, . . . , (np − 1)} (4.8)

The term (Nwt_F,z+1−Nwt_F,z) reflects the number of wells drilled between time-
z and z+1. The DrillEx for these wells must be made at time-z. Similarly, the
exponent z + 3 denotes the number of periods between the date of expenditure and
the present date.

Abandonment Expenditure

The present value of the AbEx is calculated as follows:

PVa =

( ∑
p∈{1,2,...,4}

Cp

(1 + d)(p−1)

)
+D1 ·Nop_F,np

+D2 ·(Ngi_F,np
+Nwi_F,np

) (4.9)
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where Nop_F,np , Ngi_F,np , and Nwi_F,np are the number of oil producers, gas injectors,
and water injectors, respectively, at the end of the field lifetime (time-z = np). In the
equation above, the leftmost term represents the present value of the fixed abandonment
expenditure, whereas the other two terms represent the present value of well plugging and
abandonment (P&A) cost. Since the expenditure for well P&A is made at once at 1st Jan
2019, the last two terms are not discounted.

Subsea Capital Expenditure

• As decided by Aker Solutions, all the oil producers are drilled from 4-slot subsea
templates. As consequence, the number of subsea templates varies, depending on
the number of oil producers. To find out the number of subsea templates required in
each reservoir, the following constraint is included:

Nop,i,np
≤ 4 ·Nt,i, ∀i ∈ R (4.10a)

where Nop,i,np
is the number of oil producers in reservoir-i at the end of the field

lifetime (time-z = np). Since we have an optimization problem to maximize NPV,
the optimization will eliminate the unnecessary cost. Therefore, as the number of
subsea templates affects the subsea CapEx, the optimization will give the smallest
value of Nt,i such that the constraint above is satisfied. With the number of subsea
templates in each reservoir, the number of all subsea templates in the field (Nt_F ) is
simply determined as follows:

Nt_F =
∑
i∈R

Nt,i (4.10b)

• Unlike the oil producers, all the injectors are drilled from different locations, sepa-
rated from the oil producers and from the other injectors. With this subsea config-
uration, each injector is equipped with subsea Xmas tree. Therefore, the number of
subsea Xmas trees in the field (Nx_F ) is obtained as follows:

Nx_F = Ngi_F,np +Nwi_F,np (4.11)

• In the cost proxy model, the subsea CapEx has linear dependency onNt_F andNx_F
(see Equation 4.2). Accordingly, the present value of subsea CapEx is determined
as follows:

PVsc =
∑

p∈{1,2,...,4}

E1 ·Nt_F + E2 ·Nx_F

4 · (1 + d)(p−1)
(4.12)

The term "4" in the denominator emerges because the subsea CapEx is evenly dis-
tributed from 2019 until 2022 (4 years).
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Topside Capital Expenditure

• In the cost proxy model, the topside CapEx depends on the maximum oil, gas, and
water production rate of the field (see Equation 4.3). Those maximum productions
rates are obtained by imposing the following constraints:

qo_F,z ≤ q̂o_F , ∀z ∈ {2, 3, . . . , np} (4.13a)
qg_F,z ≤ q̂g_F , ∀z ∈ {2, 3, . . . , np} (4.13b)
qw_F,z ≤ q̂w_F , ∀z ∈ {2, 3, . . . , np} (4.13c)

The idea of including the constraints above to determine the maximum oil, gas, and
water production rates is similar to the idea of determining Nt,i.

• With those maximum oil, gas, and water production rates, the present value of top-
side CapEx is obtained by the following expression:

PVtc =
∑

p∈{1,2,...,4}

F1 · q̂o_F + F2 · q̂g_F + F3 · q̂w_F

4 · (1 + d)(p−1)
(4.14)

Similarly, we have "4" in the denominator because the topside CapEx is equally
divided into 4 years of construction & installation period, i.e., from 2019 until 2022.

All Expenditures Prior to the First Oil Date

The variablePVap summarizes all expenditures made before the field enters the production
period, i.e., before 1st Jan 2023. One can determine the variable PVap using the following
expression:

PVap = PVe + PVdp + PVa + PVsc + PVtc (4.15)

Operating Expense

Referring to the cost proxy model for OpEx (see Equation 4.4), the present value of the
OpEx in a particular year is obtained as follows:

PVo,z =
G1 +G2 ·Nop_F,z−1 +G3 · qo_F,z +G4 · qg_F,z +G5 · qw_F,z

(1 + d)(z+3)
, ∀z ∈ {2, 3, . . . , np}

(4.16)
In the equation above, z is the element of a set {2, 3, . . . , np}. This is because the OpEx
for a particular year incurs at the end of that year. For example, the OpEx for year 2023
incurs at 1st Jan 2024.

In Equation 4.16, the term G2 · Nop_F,z−1 represents the well maintenance cost. For a
particular year (i.e., from time z − 1 until z), this well maintenance is only performed to
the oil producers that are available in the beginning of that year, i.e. at time z − 1. This is
the reason of having subscript z − 1 for Nop_F .

In the cost proxy model for OpEx (see Equation 4.4), the coefficients G3, G4, and G5 are
multiplied to the average field production rate of oil, gas, and water, respectively, at a par-
ticular year. Since we applies backward rectangular integration technique for computing
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the cumulative production, the production rate at time z reflects the constant production
rate from time z − 1 until z. In consequence, as shown in Equation 4.16, those average
production rates are substituted with the production rates at time z.

Revenue

In this optimization, the revenue only comes from the sales of oil production. The present
value of the revenue in a particular year is given as follows:

PVr,z =
Po ·XR · V C · (Np_F,z −Np_F,z−1)

(1 + d)(z+3)
, ∀z ∈ {2, 3, . . . , np} (4.17)

The term (Np_F,z−Np_F,z−1) in the equation above represents the volume oil production
in a particular year, i.e., from time z − 1 until time z. As for the OpEx, z is the element of
a set {2, 3, . . . , np} because the revenue in a particular year is acquired at the end of that
year.

Cash Flow & NPV

• The discounted values of the cash flow of various points in time are computed us-
ing the following equations. These equations simply imply the balance between
revenue, OpEx, and DrillEx.

DCF1 = −PVd,1 (4.18a)
DCFz = PVr,z − PVo,z − PVd,z, ∀z ∈ {2, 3, . . . , (np − 1)} (4.18b)
DCFnp

= PVr,np
− PVo,np

(4.18c)

• The NPV is finally determined using the following equation:

NPV = −PVap +
∑
z∈P

DCFz (4.19)

It is important to note that the variables DCFz and NPV are the only variables that
are not constrained to have non-negative values.

Integrality Constraints

To have physically logical optimization results, some of the variables are imposed to be
integers:

Nt,i ∈ Z, ∀i ∈ R (4.20a)
Nt_F ∈ Z (4.20b)
Nx_F ∈ Z (4.20c)
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4.2 Implementation in AMPL

The implementation of optimization problem CASE-2 in AMPL is very much alike to
the AMPL implementation of CASE-1 (see section 3.2). As shown in Figure 4.1, an
extra file (marked by the red box) is established. This file contains the additional inputs
required for NPV calculation, i.e., the parameters defined in subsection 4.1.1. The AMPL
implementations for both CASE-2 and REF-CASE-2 are provided in Appendix B.1 and
Appendix B.2, respectively.

Figure 4.1: Workflow of AMPL implementation for CASE-2

4.3 Results & Discussion

Comparisons of optimization results between CASE-2 and REF-CASE-2 are provided
in Table 4.7. As shown in this table, CASE-2 produces 84.44% higher NPV than the
reference case. This fact is in accordance to the previous conclusion, i.e., the objective
value can be further improved by considering more decision variables. Referring to the
value of relative gap, the solution obtained in CASE-2 is not guaranteed as the optimal
solution because there might exist other solutions which could enhance the NPV up to
37482 Mill. NOK (16.88% higher than the current best NPV). On the other side, the
relative gap for REF-CASE-2 points out that the optimal solution has been found and the
objective value cannot be improved anymore.

Table 4.7: Comparisons of optimization results between CASE-2 and REF-CASE-2

CASE-2 REF-CASE-2
Objective value (Mill. NOK) 32068 17387

Relative gap 16.88% 0.00%
Runtime (sec.) 43413 0.13
Runtime (hr.) 12 0.00

Number of variables 8197 3898
Number of constraints 2603 2101
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For CASE-2, the optimization process is intentionally stopped after 12 hours. Once it is
stopped, the relative gap is still fairly high (16.88%). A further investigation finds out that,
after approximately one hour of the simulation run, the best integer is no longer increasing,
while the best bound progresses very slowly. One can indeed extend the optimization run
to lessen the relative gap until it reaches a desired value.

Comparison of recovery mechanism between CASE-2 and REF-CASE-2 is presented in
Figure 4.2. As shown in Figure 4.2a, the optimization figures out that, for maximizing
the NPV, Løve should be developed with water-gas injection (RM = 4), while the pro-
duction of Nesehorn and Sebra should be supported by water injection (RM = 2). For
the reference case, we are fortunate since we input this optimal configuration of recovery
mechanisms.

(a) CASE-2 (b) REF-CASE-2

Figure 4.2: Comparison of recovery mechanisms between CASE-2 and REF-CASE-2

Figure 4.3 compares the drilling schedule between CASE-2 and REF-CASE-2. According
to Figure 4.3a, the optimization suggests developing all the reservoirs simultaneously in
order to maximize the NPV. It contradicts to the input drilling schedule for REF-CASE-2,
where the reservoirs are developed sequentially.

Another meaningful recommendation when including drilling schedule as decision vari-
able is to drill fewer wells (Nwt = 20 in CASE-2 & Nwt = 32 in REF-CASE-2). The
reason behind is, when maximizing the NPV, the optimization will rule out the unneces-
sary cost. Based on the production & injection profile of CASE-2, it is found that the
field production is limited by the processing capacity of produced water and by the water
injection capability. As consequence, drilling an extra oil producer will give no impact on
the production profile, and is a waste of money. The optimization process thus avoids to
drill an excessive number of oil producers.
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(a) CASE-2 (b) REF-CASE-2

Figure 4.3: Comparison of drilling schedule between CASE-2 and REF-CASE-2

The comparison of qo and qopp between CASE-2 and REF-CASE-2 is depicted in Fig-
ure 4.4. As shown in Figure 4.4a, the difference between qo and qopp is small in CASE-2.
In contrast, qopp is way higher than qo in the reference case. This huge discrepancy be-
tween qo and qopp in REF-CASE-2 is because of the excessive number of oil producers
and restricted production (due to some production & injection constraints).

Furthermore, if one compares the qo_F profile obtained in both cases, it is found that the
CASE-2 has a higher production in the early production period. This kind of production
profile typically provides a higher NPV because the revenues are discounted less. There-
fore, it can be inferred that including the drilling schedule as the decision variable makes it
possible to have a higher production in the early production period, which generally leads
to a higher NPV.

(a) CASE-2 (b) REF-CASE-2

Figure 4.4: Comparison of qo and qopp between CASE-2 and REF-CASE-2

If one observes the production & injection profile of each reservoir in both cases, it is
found that the production of Nesehorn and Sebra is restrained by water injection capabil-
ity. In addition, the field production is bounded by the processing capacity of produced
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water. This active constraint is identified from the flat qw_F in Figure 4.5. Increasing the
processing capacity of produced water (q̂w_F ) is not favored because of two factors, i.e.:

• It increases CapEx which significantly lowers the NPV since the CapEx incurs in
the beginning of the field development.

• It only slightly increases the field oil production rate and the increment of oil pro-
duction occurs at the late period of the field development, meaning that the increase
of oil production has minimal contribution on the NPV.

(a) CASE-2 (b) REF-CASE-2

Figure 4.5: Comparison of production & injection profiles between CASE-2 and REF-CASE-2

The comparison of DCF and its cumulative between CASE-2 and REF-CASE-2 is pro-
vided in Figure 4.6. In addition to 84.44% higher NPV, CASE-2 also produces a shorter
payout time (POT) than the reference case. As shown in the figure, it takes approximately
11 years to return the initial investment in REF-CASE-2, while the payout in CASE-2
happens only after 7 years (36.36% shorter). By comparing the NPV and the POT, it is
worthwhile to optimize not only the fluid flow rates, but also the drilling schedule and the
recovery mechanism as in CASE-2.

(a) CASE-2 (b) REF-CASE-2

Figure 4.6: Comparison of DCF & its cumulative between CASE-2 and REF-CASE-2
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Chapter 5
Improving the Computational
Efficiency & Accuracy

Several efforts have been deployed to make the formulations of the optimization problems
and their implementations in AMPL not only more efficient but also more accurate. These
efforts will be discussed in this chapter. The results of these efforts have actually been
adapted to the formulations and the AMPL implementations presented in chapter 3 and
chapter 4.

5.1 Reducing the Number of Breakpoints for PWL Ap-
proximation

In PWL approximation, the number of breakpoints correlates with the number of variables.
The more breakpoints involved means the more variables to decide, and thus leads to a
longer optimization process. One surely can reduce the number of breakpoints to shorten
the optimization runtime. However, if one uses too few breakpoints, the PWL function
might not be able to represent the non-linear behaviours of the original function, and it
causes inaccuracy of optimization results. Thus, the objective of this section is to reduce
the number of breakpoints so that it reduces the optimization runtime, while maintains
the accuracy of the optimal solution. In this study, 3D PWL approximation is used to
represent a non-linear function qopp = f(Np, Nop, RM). The reduction of the number of
breakpoints is applied for Np breakpoints and Nop breakpoints.
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5.1.1 Reducing the Number of Np Breakpoints

Methodology

This study is implemented using a simple optimization problem, i.e., to maximize the
plateau duration by adjusting only the oil production rate. The objective function, decision
variable, and parameters of the optimization problem are summarized in Table 5.1. As
presented in Table 5.2, seven cases are generated and run. The difference between these
cases is only the number of Np breakpoints (nbp_Np ).

Table 5.1: Objective function, decision variable, and parameters of the optimization problem used
in the reduction of nbp_Np study

Objective Function Max: tp

Production & Injection Rates

qo variable
qg not included
qw not included
qgi not included
qwi not included

Drilling Schedule
Nop parameter
Ngi not included
Nwi not included

Recovery Mechanism RM parameter

Table 5.2: List of cases for the reduction of nbp_Np study

Case nbp_Np

3 30
4 25
5 20
6 15
7 10
8 7
9 5

In this study, the Np breakpoints are separated with an equal interval. The spacing be-
tween two consecutive Np breakpoints depends on the number of Np breakpoints, and is
computed with the following expression:

∆Np =
Max Np

nbp_Np
− 1

(5.1)
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For example, when nbp_Np equals to ten, the Np breakpoints for the scenario Løve reser-
voir produced with 15 oil producers and water-gas injection are illustrated in Figure 5.1.
The red line in this figure represents the PWL function generated using those 10Np break-
points. The process of generating a PWL table with a reduced number of Np breakpoints
is accomplished using Excel VBA.

Figure 5.1: An illustration of Np breakpoints for a case with 10 Np breakpoints

Results

The more Np breakpoints involved, the better the PWL function represents the original
non-linear function, and the more accurate the optimization results are. Since Case 3
uses more Np breakpoints than the other cases, the results obtained from this case are
considered as the most accurate results, and defined as the references for comparison study.

To have a quantitative comparison, Relative Error (RE) is calculated. This RE indicates
how far the results of a particular case deviate from the results of the reference case. The
expression to compute RE is given as follows:

REi,z(case-x) =
|qo,i,z(case-x)− qo,i,z(ref. case)|

qo,i,z(ref. case)
(5.2)

where qo,i,z(case-x) is the oil production rate of reservoir-i at time-z that is obtained in
case-x.

The maximum RE of all cases are summarized in Table 5.3. As shown in the table, RE
generally goes up when fewer Np breakpoints are used. If we want to have RE no higher
than 10%, the number of Np breakpoints can be reduced up to 10.
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Table 5.3: Comparison of the maximum RE between case 4 to case 9

The relationship between the number of Np breakpoints and the optimization runtime is
presented in Figure 5.2. As shown in the figure, the runtime exponentially increases when
the PWL approximation utilizes more Np breakpoints. By reducing the number of Np

breakpoints from 30 to 10, we manage to make the optimization process 150 times faster.

Figure 5.2: Relationship between the number of Np breakpoints and the optimization runtime

A similar study is also carried out for another optimization problem. The optimization
problem has the objective function to maximize the plateau duration by configuring not
only the oil production rate but also the drilling schedule of the oil producers. It is found
that the optimization results of a case that uses 10 Np breakpoints are not significantly
different from the optimization results of another case that utilizes more Np breakpoints.
According to this finding, it is assumed that the number of Np breakpoints can be safely
reduced to 10 Np breakpoints in any optimization problems.
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5.1.2 Reducing the Number of Nop Breakpoints

Methodology

This study is implemented using an optimization problem identical to the one presented
in subsection 5.1.1. As presented in Table 5.4, seven cases are generated and run. The
difference between these cases is only the number of Nop breakpoints (nbp_Nop

). The
table also presents the Nop breakpoints correspond to each reservoir in all cases.

Table 5.4: List of cases for the reduction of nbp_Nop study

Case nbp_Nop,i

i = 1 (Løve) i = 2 (Nesehorn) i = 3 (Sebra)

10 16 8 4
{0, 1, 2, 3, . . . , 14, 15} {0, 1, 2, 3, . . . , 6, 7} {0, 1, 2, 3}

11 9 5 3
{0, 1, 3, 5, . . . , 13, 15} {0, 1, 3, 5, 7} {0, 1, 3}

12 7 4 3
{0, 1, 4, 7, 10, 13, 15} {0, 1, 4, 7} {0, 1, 3}

13 5 4 3
{0, 1, 5, 10, 15} {0, 1, 4, 7} {0, 1, 3}

14 4 3 3
{0, 1, 8, 15} {0, 1, 7} {0, 1, 3}

15 3 3 3
{0, 1, 15} {0, 1, 7} {0, 1, 3}

16 2 2 2
{0, 15} {0, 7} {0, 3}

Results

Case 10 is assumed to produce the most accurate results because the case uses more Nop

breakpoints than the other cases. Referring to the results of this case, RE is calculated
using Equation 5.2. The maximum RE of all cases are summarized in Table 5.5. As shown
in the table, RE generally increases when the PWL approximation involves fewer Nop

breakpoints. With a cutoff for the maximal RE of 10%, the number of Nop breakpoints
can be reduced to 5 for Løve, 4 for Nesehorn, and 3 for Sebra.

The optimization runtime is not relevant for comparison since this study is implemented
in an easy optimization problem. In each case, the optimal solution is found rapidly,
and no conclusion can be derived based on the relationship between the number of Nop

breakpoints and the optimization runtime. However, it is believed that the reduction of the
number of Nop breakpoints will give a huge reduction of optimization runtime in a more
complex optimization problem.
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Table 5.5: Comparison of the maximum RE between case 11 to case 16

5.2 Selecting the Np Breakpoints

In the previous section, we have talked about the optimum number of Np breakpoints.
This section discusses how to select the Np breakpoints, whether to separate them with an
equal interval or to manually select them.

Methodology

In the 3D PWL approximation, a unique set of Np breakpoints is applied to all possible
scenarios (all combinations ofNop andRM ) for a particular reservoir. For clarification, let
us see Figure 5.3. In this illustration, the same set of Np breakpoints is used to reproduce
the production potential curves of Løve reservoir with any number of oil producers and
any recovery mechanism. In the figure, the dots represent the original production potential
curves, while the solid lines represent the reproduced production potential curves with 10
Np breakpoints.

(a) Natural depletion (b) Water-gas injection

Figure 5.3: An illustration of a set of Np breakpoints used to reproduce the production potential
curves of Løve reservoir with any number of oil producers and any recovery mechanism
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In Figure 5.3, the production potential curves are reproduced with 10 Np breakpoints,
which is the optimum number of Np breakpoints as discussed in the previous section.
These Np breakpoints are separated with equal spacing. As shown in the figure, the re-
produced production potential curves with these Np breakpoints do not fit the original
production potential curves.

The Np breakpoints are not necessary to be separated with equal spacing, and they can in-
stead be selected manually to have better reproduction of the production potential curves.
An illustration of wisely-selected Np breakpoints is provided in Figure 5.4. The non-
uniform distances between the Np breakpoints are aimed to capture the characteristics of
the production potential curves of the natural depletion scenarios. The red circles in Fig-
ure 5.4 indicate that the reproduced production potential curves with the wisely-selected
Np breakpoints have a better match with the original production potential curves.

(a) Natural depletion (b) Water-gas injection

Figure 5.4: An illustration of wisely-selected Np breakpoints used to reproduce the production
potential curves of Løve reservoir

The chosen Np breakpoints are also utilized to replicate the Gp-Np, Wp-Np, Gi-Np, and
Wi-Np curves. Therefore, to have a good reproduction of those curves, we have to care-
fully select the Np breakpoints.

Figure 5.5 depicts the Gp-Np and Wp-Np curves that are reconstructed with 10 equally-
spaced Np breakpoints, whereas Figure 5.6 shows the reproduced Gp-Np and Wp-Np

curves using 10 wisely-selected Np breakpoints. By comparing these figures, we can see
that the wisely-selected NP breakpoints give a better reproduction of the Gp-Np and Wp-
Np curves (as indicated by the red circles in Figure 5.6).
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(a) Gp-Np curve of Løve reservoir produced
with natural depletion

(b) Wp-Np curve of Sebra reservoir produced
with water injection

Figure 5.5: The reproduced Gp-Np and Wp-Np curves using 10 equally-spaced Np breakpoints

(a) Gp-Np curve of Løve reservoir produced
with natural depletion

(b) Wp-Np curve of Sebra reservoir produced
with water injection

Figure 5.6: The reproduced Gp-Np and Wp-Np curves using 10 wisely-selected Np breakpoints

As previously discussed, a better reproduction of the production potential curves and
cumulative-Np curves is attained by wisely-selecting the Np breakpoints. This better re-
production makes the optimization results more accurate (lower RE).

5.3 Determining Gas Production Rate

This section discusses two methods for determining the gas production rate (qg). The first
method uses 2D interpolation, while the other one utilizes the Gp-Np curve. The more
efficient method is then adapted for the optimization problems presented in chapter 3 and
chapter 4.
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Methodology

Evaluation of both methods is carried out using a simple optimization problem. The ob-
jective function, decision variables, and parameters of the optimization problem are sum-
marized in Table 5.6. There is no constraint regarding the gas production rate. Therefore,
the gas production rate is only determined based on the oil production rate.

Table 5.6: Objective function, decision variables, and parameters of the optimization problem used
in the determination of qg study

Objective Function Max: tp

Production & Injection Rates

qo variable
qg variable
qw not included
qgi not included
qwi not included

Drilling Schedule
Nop parameter
Ngi not included
Nwi not included

Recovery Mechanism RM parameter

In the first method, the procedure for determining the gas production rate is provided as
follows:

1. Estimate the gas-oil ratio of reservoir-i at time-z (GORi,z) using GOR-Np curves
comment: For a particular reservoir, GORi,z is controlled by Np,i,z and RMi.
Therefore, we can estimate GORi,z using GOR-Np curves. The equation to com-
pute GORi,z is given as follows:

GORi,z =
∑

j∈VNp

∑
k∈VNop,i

∑
l∈VRM,i

λi,z,j,k,l ·GOR,i,j,k,l, ∀i ∈ R and ∀z ∈ P

(5.3)
The equation above is alike to Equation 3.16a, which is used to calculate Gp,i,z

based on Gp-Np curves.

2. Compute qg,i,z using 2D PWL approximation
comment: By definition, qg,i,z can be obtained by multiplying qo,i,z with GORi,z .
However, introducing this constraint into the formulation makes the optimization
problem becomes an MINLP (since we have a multiplication of variables). To re-
tain the optimization problem as an MILP, 2D PWL approximation is applied to
represent the non-linear function qg = f(qo, GOR). Visualization of the 2D in-
terpolation is provided in Figure 5.7. The additional constraints induced by the 2D
PWL approximation are fundamentally the same as Equation 2.13 presented in sub-
section 2.3.2.
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Figure 5.7: 2D PWL approximation to represent a non-linear function qg = f(qo, GOR)

In the second approach, the gas production rate is obtained by following the series of steps:

1. Estimate Gp,i,z using Gp-Np curves
comment: Gp,i,z is found to have a non-linear dependency on Np,i,z and RMi,
so we can estimate Gp using Gp-Np curves. Gp is computed with the following
expression:

Gp,i,z =
∑

j∈VNp

∑
k∈VNop,i

∑
l∈VRM,i

λi,z,j,k,l ·Gp,i,j,k,l, ∀i ∈ R and ∀z ∈ P

(5.4)

2. Using Gp,i,z , estimate qg,i,z based on backward rectangular integration technique
comment: In backward rectangular integration technique, Gp,i,z is computed as
follows:

Gp,i,z = Gp,i,z−1 +
tup · qg,i,z

103
, ∀i ∈ R and ∀z ∈ {2, ..., np} (5.5a)

In equivalent, the equation above is expressed as follows:

qg,i,z =
(Gp,i,z −Gp,i,z−1) · 103

tup
, ∀i ∈ R and ∀z ∈ {2, ..., np} (5.5b)

Results

Figure 5.8 compares the gas production profile provided by both methods. At a glance,
they look similar. To have a quantitative comparison, RE is computed with Equation 5.2.
The results from the second method are used as the reference since they are considered
more accurate. Erroneous outcomes of the first method might originate from improper
reproduction of the GOR-Np curves with the selected 10 Np breakpoints. The average
RE for all reservoirs and the field are presented in Table 5.7. According to this table, it is
concluded that both methods produce very similar outcomes.
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(a) Gas production profile of Løve reservoir (b) Gas production profile of the field

Figure 5.8: Comparison of the gas production profile obtained from both methods

Table 5.7: Average RE for all reservoirs and the field

Average RE [ref: results of method 2]
Løve 6.00%

Nesehorn 5.73%
Sebra 8.92%
Field 5.28%

Figure 5.9 compares the optimization runtime required by both methods. As shown in
this figure, the optimization problem can be solved considerably quicker when the second
method is applied. Based on the average RE and the optimization runtime, the second
method is inferred more efficient, and thus adapted for more complex optimization prob-
lems as presented in chapter 3 and chapter 4. In addition, the idea of the second method is
applied to determine qw, qgi, and qwi.

Figure 5.9: Comparison of the optimization runtime required by both methods
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5.4 Choosing the Numerical Integration Technique for Cal-
culating the Cumulative

Intuitively, trapezoidal integration technique would provide more accurate results than
rectangular integration technique. However, in our main optimization problems (presented
in chapter 3 and chapter 4), the cumulative production & injection at a particular point
in time is numerically calculated using the backward rectangular integration technique.
The reason of applying this integration technique instead of the trapezoidal integration
technique is explained in this section.

5.4.1 Cumulative Gas Production

Methodology

The study is conducted using the same optimization problem as in section 5.3. For the
case with backward rectangular integration technique, Equation 5.5a is used. In contrary,
for the case with trapezoidal integration technique, Equation 5.5a is replaced with the
following equation:

Gp,i,z = Gp,i,z−1 +
tup · (qg,i,z−1+qg,i,z)

2

103
, ∀i ∈ R and ∀z ∈ {2, ..., np} (5.6)

Results

Comparison of gas production profile between the case applying backward rectangular
integration technique and the case adapting trapezoidal integration technique is presented
in Figure 5.10. As shown in this figure, the gas production rate oscillates severely in
the case employing the trapezoidal integration technique. A further investigation finds
out that the oscillations occur because we have an under-determined system, i.e., fewer
equations than unknowns. Referring to Equation 5.6, note that we use np − 1 equations
(z ∈ {2, ..., np}) to determine the gas production rate of np points in time.

The oscillation issue does not emerge when the backward rectangular integration tech-
nique is applied. It is because we use np − 1 equations to determine the gas production
rate of np − 1 points in time (see Equation 5.5a). This integration technique is thus pre-
ferred to compute the gas cumulative production. For the same reason, the cumulative
water production (Wp) and the cumulative injection of gas and water (Gi & Wi) are also
computed using the backward rectangular integration technique.
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(a) Gas production profile of Løve reservoir (b) Gas production profile of the field

Figure 5.10: Comparison of gas production profile between the case applying backward rectangular
integration technique and the case adapting trapezoidal integration technique

5.4.2 Cumulative Oil Production

Methodology

The study is implemented using a simple optimization problem, i.e., to maximize the
plateau period of a single reservoir (Løve) production. The production of Løve is sup-
ported with water injection. Fifteen oil producers and a water injector are available from
the beginning of the production period. Maximization of the plateau duration is achieved
by configuring the oil production and water injection rates. The objective function, deci-
sion variables, and parameters of the optimization problem are summarized in Table 5.8.

Table 5.8: Objective function, decision variables, and parameters of the optimization problem used
in the evaluation of the numerical integration

Objective Function Max: tp

Production & Injection Rates

qo variable
qg not included
qw not included
qgi not included
qwi variable

Drilling Schedule
Nop parameter
Ngi not included
Nwi parameter

Recovery Mechanism RM parameter
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In this study, three cases are examined. Details of the cases are given as follows:

1. Case 21: Compute Np using trapezoidal integration technique and ignore the water
injection constraint

2. Case 22: Compute Np using trapezoidal integration technique and include the water
injection constraint

3. Case 23: ComputeNp using backward rectangular integration technique and include
the water injection constraint

The equations which computeNp with both integration techniques and the equation which
represents the water injection limitation are provided as follows:

• Computation of Np with trapezoidal integration technique

Np,z = Np,z−1 +
tup · (qo,z−1+qo,z)

2

106
, ∀z ∈ {2, ..., np} (5.7)

• Computation of Np with backward rectangular integration technique

Np,z = Np,z−1 +
tup · qo,z

106
, ∀z ∈ {2, ..., np} (5.8)

• Constraint regarding the water injection

qwi,z ≤ Nwi,z−1 · 6360, ∀z ∈ {2, ..., np} (5.9)

Results

Figure 5.11 compares the optimization outcomes (qopp, qo, and qwi profile) of the three
cases. As shown in Figure 5.11a, the trapezoidal integration technique works well when
the injection constraint is not active. The fact that the reservoir is always produced at its
potential makes sense since the production is not restricted by any production or injection
constraints.

In case 22, the oil production rate is found to oscillate. As shown in Figure 5.11b, qwi is
always at its upper limit (6360 sm3/d), and it can be seen as "something that we already
know". With the profile of qwi, Wi(t) can be easily determined. Subsequently, Np(t) is
obtained using theWi-Np curves. With the profile ofNp, qo is eventually determined using
Equation 5.7. Referring to the equation, note that we use np−1 equations (z ∈ {2, ..., np})
to determine the oil production rate of np points in time. It means we have an under-
determined system. This system makes the solution of a linear system non-unique, and it
is responsible for the oscillation occurrence in case 22.

The oscillation issue is mitigated once the backward rectangular integration method is used
(see Figure 5.11c). This integration technique is thus applied to compute the oil cumulative
production.
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(a) Case 21 (b) Case 22

(c) Case 23

Figure 5.11: Comparison of the optimization outcomes between case 21 to case 23

5.5 Optimizing the Parallel Computing

In parallel computing, a large problem is divided into smaller ones so that each processing
element can solve the smaller problem simultaneously with the other processing elements.
Parallel computing often helps to reduce computational time. In general, the more the CPU
cores involved, the shorter the runtime is. This section discusses the optimum number of
CPU cores for solving our main optimization problems.

Methodology

The study is carried out using an optimization problem which maximizes the plateau du-
ration. In this optimization problem, the production & injection rates and the drilling
schedule are the decision variables, while the recovery mechanism is the parameter. The
objective function, decision variables, and parameter of the optimization problem are sum-
marized in Table 5.9. The input values for RM of Løve, Nesehorn, and Sebra are 4, 2, and
2, respectively. Based on a study which implements a brute force method, this combination
of recovery mechanism would maximize the plateau duration as well as the NPV.
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Table 5.9: Objective function, decision variables, and parameter of the optimization problem used
in the evaluation of parallel computing

Objective Function Max: tp

Production & Injection Rates

qo variable
qg variable
qw variable
qgi variable
qwi variable

Drilling Schedule
Nop variable
Ngi variable
Nwi variable

Recovery Mechanism RM parameter

Four cases which use different number of CPU cores are generated and run (see Ta-
ble 5.10). With hyper-threading, a single physical CPU core appears as two logical CPU
cores (threads) to an operating system. Hyper-threading permits the two logical CPU cores
to share physical execution resources, and thus can speed things up.

Table 5.10: List of cases for the evaluation of parallel computing

Case Number of Number of
Cores Threads

24 16 32
25 8 16
26 4 8
27 2 4

In AMPL, the way to specify the number of threads to use is by modifying an solver option
called "threads". The value assigned to this option defines the maximum number of threads
for any of the parallel algorithms.

Running the optimization process until a desired relative gap (0.01%) is achieved requires
a lot of time. Therefore, to have an objective comparison, the optimization run is termi-
nated once it reaches 12 hours.

Results

Table 5.11: Comparison of objective value and relative gap between case 24 to case 27

Case Objective Relative Runtime
Value Gap (hr.)

24 190947 5.91% 12
25 190421 3.24% 12
26 190421 1.55% 12
27 190421 2.42% 12
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As shown in Table 5.11, the objective value is the same for case 25 to case 27. A smaller
relative gap in case 26 indicates a quicker optimization process. Accordingly, solving the
optimization problem with 4 cores (8 threads) is preferred.

The objective value of case 24 is the highest among the other cases, meaning that the
solution obtained in this case is suboptimal compared to the solutions obtained in other
cases. Slower optimization process when more CPU cores are involved might be due to
the inefficient partition of the problem in AMPL or the process within the hardware.

The conclusion of this study is assumed to hold for the optimization problem which max-
imizes the NPV.

5.6 Choosing the Solver Type

There are many solvers available to solve an MIPL problem. In this section, an investiga-
tion is carried out to evaluate the performance of two extensively used solvers, i.e. CPLEX
and Gurobi. In the end, the better solver for each optimization problem is decided.

Methodology

The study is conducted using two optimization problems, i.e., maximization of the plateau
duration and to maximization of the NPV. The optimization problems have the same deci-
sion variables and parameter as listed in Table 5.9.

In this study, four cases are considered (see Table 5.12). The differences between the cases
are only the objective function and the solver to use. It is important to mention that the
solvers use mostly its default settings when performing the optimization process. Similarly
to have a fair comparison, the optimization process is stopped after 12 hours.

Table 5.12: List of cases for the evaluation of solver type

Case Objective Function Solver
28 Max tp CPLEX
29 Max tp Gurobi
30 Max NPV CPLEX
31 Max NPV Gurobi

Results

As shown in Table 5.12, both case 28 and case 29 produce the same objective value.
However, case 29 provides a slightly lower relative gap than case 28, meaning that the
optimization process is quicker. Based on these results, Gurobi solver is preferred to solve
the optimization problem which maximizes the plateau duration.
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Identical objective values are obtained from case 30 and case 31. A smaller relative gap in
case 30 than in case 31 indicates a quicker optimization process. It is thus concluded that
CPLEX solver performs better in the optimization problem of NPV maximization.

Table 5.13: Comparison of objective value and relative gap between case 28 to case 31

Case Objective Relative Runtime
Value Gap (hr.)

28 190421 1.55% 12
29 190421 1.53% 12
30 32068 16.88% 12
31 32068 20.03% 12

5.7 Configuring the Solver Options

Modifying the solver options can affect not only the accuracy of the solution but also the
time to seek the solution. The objective of this section is to find out the configuration of
the solver options which can speed up the optimization process.

Methodology

The study is carried out using an optimization problem which maximizes the NPV. The
optimization problem has the same decision variables and parameter as listed in Table 5.9.
The study only uses the NPV maximization problem because we will use this optimiza-
tion problem for uncertainty analysis, where many similar optimization problems need to
be solved. Therefore, having a quicker optimization process is essential for uncertainty
analysis.

As figured out in section 5.6, CPLEX solver performs better for the NPV maximization
problem. Two CPLEX options are evaluated in this study, i.e., "mipemphasis" & "paral-
lelmode". "mipemphasis" controls trade-offs between speed, feasibility, optimality, and
moving bounds in MIP (IBM, 2019a), while "parallelmode" sets the parallel optimization
mode (IBM, 2019b). The values for "mipemphasis" & "parallelmode" and their descrip-
tions are given in Table 5.14 and Table 5.15.

Table 5.14: Values for "mipemphasis" and their descriptions (IBM, 2019a)

Value Description
0 Balance optimality and feasibility (default)
1 Emphasize feasibility over optimality
2 Emphasize optimality over feasibility
3 Emphasize moving best bound
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Table 5.15: Values for "parallelmode" and their descriptions (IBM, 2019b)

Value Description
-1 Enable opportunistic parallel search mode
0 Automatic: let CPLEX decide whether

to invoke deterministic or opportunistic
search (default)

1 Enable deterministic parallel search mode

Twelve cases are generated and run in this study (see Table 5.16. These cases combine the
possible values for "mipemphasis" and "parallelmode". To have an unbiased comparison,
the runtime of all cases is limited for 1 hour.

Table 5.16: List of cases for the evaluation of solver options

Case Value of "mipemphasis" Value of "parallelmode"
32 0 0
33 0 -1
34 0 1
35 1 0
36 1 -1
37 1 1
38 2 0
39 2 -1
40 2 1
41 3 0
42 3 -1
43 3 1

Results

Table 5.17 summarizes objective value and relative gap obtained by every case. By com-
paring the objective value and the relative gap, it can be said that the configuration of
CPLEX options in case 33 ("mipemphasis" = default & "parallelmode" = opportunistic
mode) accelerates the optimization process. The opportunistic setting speeds up the opti-
mization process because it entails less synchronization between threads and consequently
may provide better performance (IBM, 2019b). However, in opportunistic mode, the ac-
tual optimization may differ from run to run, including the solution time itself and the path
traveled in the search (IBM, 2019b). For this reason, it is preferred to run the CPLEX
solver with its default settings.
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Table 5.17: Comparison of objective value and relative gap between case 32 to case 43

Case Objective Relative Runtime
Value Gap (hr.)

32 31868 22.04% 1
33 31957 19.49% 1
34 31868 22.03% 1
35 25676 114.83% 1
36 22634 140.01% 1
37 24973 120.88% 1
38 30916 23.81% 1
39 29946 26.20% 1
40 30916 23.74% 1
41 25538 62.66% 1
42 31374 32.26% 1
43 26583 56.39% 1

5.8 Analyzing the Running Time

The main intention of this section is to see how the best integer solution improves with an
extended optimization runtime.

Methodology

The study is accomplished using two optimization problems identical to the ones presented
in section 5.6. As shown in Table 5.18, four cases are evaluated. The differences between
the cases are only the objective function and the limit of optimization runtime.

Table 5.18: List of cases for the runtime analysis

Case Objective Function Runtime Limit (hr.)
44 Max tp 12
45 Max tp 1
46 Max NPV 12
47 Max NPV 1

Results

As shown in Table 5.19, the objective value does not get better by prolonging the optimiza-
tion runtime from 1 hour to 12 hours. In term of best bound, extending the optimization
runtime manages to slightly move the best bound of the NPV maximization problem, but
it has no contribution to the other optimization problem. A further investigation finds out
that the cases with a longer optimization runtime deliver exactly the same results (produc-
tion profile, injection profile, and drilling schedule) as the cases with a shorter optimization
process. For instances, let us see Figure 5.12 and Figure 5.13.
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Table 5.19: Comparison of objective value, best bound, and relative gap between case 44 to case 47

Case Objective Best Relative Runtime
Value Bound Gap (hr.)

44 190421 187515 1.53% 12
45 190421 187515 1.53% 1
46 32068 37482 16.88% 12
47 32068 38684 20.63% 1

(a) Case 46 (b) Case 47

Figure 5.12: Comparison of drilling schedule between case 46 and case 47

(a) Case 46 (b) Case 47

Figure 5.13: Comparison of production & injection profile between case 46 and case 47

Based on the runtime analysis, it is assumed that running the optimization algorithm for
1 hour will provide the optimal solution to the optimization problem. This assumption is
beneficial for uncertainty analysis because many similar optimization problems need to be
solved.
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Chapter 6
Quantifying the Uncertainties

Uncertainties are a relevant topic to discuss when it comes to planning a field development.
In our case, uncertainties of the optimization results mostly originate from the imperfect
information used as the optimization inputs. This chapter is focused on discussing how
the uncertainties in in-place, development & operational cost, and oil price affect the opti-
mization results.

6.1 Proof of Concept

In the specialization project, it is shown how the NPV varies with the plateau rate (see
Figure 6.1). Referring to the figure, the plateau rate which produces the highest NPV is
considered as the optimal plateau rate. This section will discuss a concept proposed by
Stanko (2019) regarding the optimal plateau rate and also the proof of the concept.

Figure 6.1: Relationship between the plateau rate and the NPV (Angga, 2018)
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Concept

NPV is found by subtracting the present value of all the revenue with the present value
of all the development cost. In our cost proxy model, the development cost is made up
of six elements, i.e., ExpEx, AbEx, subsea CapEx, topside CapEx, DrillEx, and OpEx.
Therefore, NPV is calculated as follows:

NPV = PVar − PVe − PVa − PVsc − PVtc − PVad − PVao (6.1)

where PVar, PVad, and PVao are the present value of all revenues, all DrillEx, and all
OpEx, respectively. PVar, PVad, and PVao are computed as follows:

PVar =

np∑
z=2

PVr,z (6.2a)

PVad = PVdp +

np−1∑
z=1

PVd,z (6.2b)

PVao =

np∑
z=2

PVo,z (6.2c)

As observed in Figure 6.1, the maximum NPV corresponds to the point when:

∂NPV

∂qp_F
= 0 (6.3)

where qp_F is the field plateau rate. By substituting Equation 6.1 into Equation 6.3, the
following equation is acquired:

∂PVar
∂qp_F

− ∂PVe
∂qp_F

− ∂PVa
∂qp_F

− ∂PVsc
∂qp_F

− ∂PVtc
∂qp_F

− ∂PVad
∂qp_F

− ∂PVao
∂qp_F

= 0 (6.4)

In the cost proxy model, ExpEx is modeled as a fixed cost. Furthermore, AbEx, subsea
CapEx, and Drillex only depend on the number of wells and its drilling schedule. Since
the number of wells and the drilling schedule are fixed inputs for the study conducted in
the specialization project, AbEx, subsea CapEx, and DrillEx are identical for any plateau
rate. For these reasons, Equation 6.4 can be simplified as follows:

∂PVar
∂qp_F

− ∂PVtc
∂qp_F

− ∂PVao
∂qp_F

= 0 (6.5)
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Let us define PVtcao (the present value of the topside CapEx and the total OpEx) as:

PVtcao = Pvtc + PVao (6.6)

With the definition, Equation 6.5 can be written as:

∂PVar
∂qp_F

− ∂PVtcao
∂qp_F

= 0 (6.7a)

or equivalently expressed as:
∂PVar
∂qp_F

=
∂PVtcao
∂qp_F

(6.7b)

According to Equation 6.7b, it can be said that the maximum NPV occurs at a plateau
rate where the tangents of PVar-qp_F and PVtcao-qp_F curves have the same slope.

Proof

The relationships between NPV-PVar-PVtcao and plateau rate are depicted in Figure 6.2a.
As shown in the figure, the NPV curve (black line) indicates a maximum when qp_F
is around 20000 sm3/d. Both PVar curve (blue curve) and PVtcao curve (red curve)
monotonously increase with the plateau rate. The growth of PVar slows down as the
plateau rate rises. On the contrary, PVtcao seems to grow linearly with the plateau rate.
If we carefully observe the plateau rate which maximizes the NPV, the tangents of both
PVar and PVtcao curves have the same slope at this point.

To have a quantitative explanation, NPV
qp_F

, PVar

qp_F
, and PVtcao

qp_F
are estimated numerically

using central difference method, and the results are plotted in Figure 6.2b. As shown in
the figure, the NPV is maximized when NPV ′ reaches zero (as indicated by the green
arrows). At this plateau rate, the PV ′ar and PV ′tcao curves intersect each other, meaning
that the slopes of the tangents of both curves are equal. This corresponds to what has been
described earlier.

(a) NPV , PVar , PVtcao vs. qp_F (b) NPV ′, PV ′
ar , PV ′

tcao vs. qp_F

Figure 6.2: NPV , PVar , PVtcao, and their first derivatives vs. qp_F (base case)
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The concept is also tested to another case where the CapEx is double. The relationships
between NPV-PVar-PVtcao and plateau rate are provided in Figure 6.3a. As shown in the
figure, doubling the CapEx makes the PVtcao curve is shifted up. As a result, the NPV
curve is shifted down. In this case, the optimal plateau rate is found lower than the base
case, i.e., around 17500 sm3/d. Corresponds to the concept, both PVar and PVtcao curves
have the same gradient at this plateau rate.

The first derivatives of NPV, PVar, and PVtcao with respect to qp_F are presented in
Figure 6.3b. As shown in the figure, doubling the CapEx makes the PV ′tcao curve to shift
upward, and so the PV ′tcao curve cuts the PV ′ar curve at a lower plateau rate.

(a) NPV , PVar , PVtcao vs. qp_F (b) NPV ′, PV ′
ar , PV ′

tcao vs. qp_F

Figure 6.3: NPV , PVar , PVtcao, and their first derivatives vs. qp_F (CapEx is doubled)

6.2 The Change of Production Potential Curve with In-
Place

The uncertainty analysis carried out in this chapter includes in-place (N ) as one of the
uncertain parameters. Therefore, we need to know how a variation of in-place affects the
production potential curve, and thus alters the optimization results. This section will talk
about the change of production potential curve with in-place.

The study is carried out using one of the production scenarios, i.e., Løve reservoir that is
produced with 15 oil producers and under water-gas injection recovery mechanism. As
we know, the base value of Løve’s in-place is 75 Mill. sm3. Four new cases are created
and simulated using GAP, i.e., a module in the Integrated Production Modelling (IPM)
software that is designed to model a production network (Petroleum Experts, 2019). The
difference between the cases is only the in-place of Løve reservoir, i.e., 105 Mill. sm3, 90
Mill. sm3, 60 Mill. sm3, and 45 Mill. sm3.

98



The production potential curves obtained from various Løve’s in-places are exhibited in
Figure 6.4a. In this figure, uN represents the ratio of in-place in a particular case to the
base value

(
uN = N

N [Base]

)
. As shown in Figure 6.4a, if Løve’s in-place is higher than

its base value, the production potential curve would be stretched horizontally. On the
other hand, the production potential curve would be squeezed in the horizontal direction if
Løve’s in-place is lower than its base value.

The change ofGp-Np curve with in-place is shown in Figure 6.4b. As shown in the figure,
the Gp-Np curve is like being pulled horizontally if Løve’s in-place is higher than its base
value, and vice versa. This behaviour is not only discovered for Gp-Np curve but also for
Wp-Np, Gi-Np, and Wi-Np curves.

(a) Production potential curve (b) Gp-Np curve

Figure 6.4: The changes of production potential curve and Gp-Np curve with in-place

To evaluate how far the production potential curve being stretched or squeezed when the
in-place changes, the following approach is taken. Let us consider a particular qopp, e.g.,
5000 sm3/d. The cumulative oil production (Np) corresponds to this qopp is then deter-
mined for each case using their production potential curve (see Figure 6.5a). Np[Base] is
the Np found from the case where the in-place equals to its base value. In this example, it
is 13.35 Mill. sm3.

After that, Np

Np[Base] is computed and plotted against N
N [Base] (see Figure 6.5b). Based

on the relationship between Np

Np[Base] and N
N [Base] , it can be inferred that the change of

in-place by x% from its base value would shift Np of a particular qopp by x% from its
base value.

The study has been extended to evaluate qopp other than 5000 sm3/d. It is found that the
conclusion holds for any qopp. There is also a study which quantifies the changes of Gp-
Np, Wp-Np, Gi-Np, and Wi-Np curves with in-place. The results of this study are similar
to what we have found in Figure 6.5b.
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(a) Np corresponds to a particular qopp for var-
ious cases

(b) Relationship between Np

Np[Base]
and

N
N [Base]

Figure 6.5: An approach to evaluate how far the production potential curve being stretched or
squeezed when the in-place changes

6.3 Uncertain Parameters

The uncertainty analysis performed in this chapter involves 3 uncertain parameters, i.e.,
in-place, development & operational cost, and oil price. The details of each uncertain
parameter are provided as follows:

1. Uncertain parameter: in-place
Details:

• The uncertainty of in-place is represented with uN , which is defined as:

uN =
N

N [Base]
(6.8)

• The base values of Løve’s in-place, Nesehorn’s in-place, and Sebra’s in-place
are 75, 55, and 13 Mill. sm3, respectively.

• Changing uN alters the in-place of all reservoirs. This simplification is made
due to the time limitation in completing the uncertainty analysis. Of course,
one can assign in-place uncertainty to every reservoir independently. However,
it requires more cases to run, and thus takes a longer time to complete the
uncertainty analysis.

• The uncertainty of in-place is modeled with a normal distribution (see Fig-
ure 6.6a). The mean and the standard deviation of the normal distribution are
1 and 0.2, respectively.

• The distribution of uN refers to the in-place uncertainty of the Visund field,
which is obtained from its PDO report (Norsk Hydro Produksjon A/S, 1995).
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2. Uncertain parameter: development & operational cost
Details:

• The uncertainty of development & operational cost is represented with uC ,
which is defined as:

uC =
Cost

Cost[Base]
(6.9)

• The base values of the development & operational cost are the ones obtained
from the cost proxy model.

• Changing uC affects all the cost elements. This simplification is also made
due to the time limitation in completing the uncertainty analysis.

• The uncertainty of development & operational cost is modeled with a normal
distribution (see Figure 6.6a). The mean and the standard deviation of the
normal distribution are 1 and 0.2, respectively.

• The distribution of uC is typical to use for an early stage of field development
(Hall and Delille, 2011).

3. Uncertain parameter: oil price
Details:

• The uncertainty of oil price is represented with uPo
, which is defined as:

uPo
=

Po

Po[Base]
(6.10)

• The base value of the oil price is 60 USD/bbl, and it is constant throughout the
production period.

• The uncertainty of oil price is modeled with a uniform distribution (see Fig-
ure 6.7a). The minimum and the maximum of the uniform distribution are 0.4
and 1.6, respectively. This distribution type is chosen to represent a higher
degree of uncertainty possessed by the oil price.
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(a) Probability Density Function (PDF) (b) Cumulative Distribution Function (CDF)

Figure 6.6: PDF & CDF of the normal distribution

(a) Probability Density Function (PDF) (b) Cumulative Distribution Function (CDF)

Figure 6.7: PDF & CDF of the uniform distribution

6.4 Modifications of the Mathematical Formulation

As discussed in the previous section, 3 uncertain parameters are considered for the uncer-
tainty analysis, i.e., in-place, development & operational cost, and oil price. To include
those uncertainties in our optimization problem, some modifications are made to the math-
ematical formulation. This section is focused to explain those modifications.

Uncertainty of In-place

As discussed in section 6.2, a chance of in-place transforms the production potential
curves. One approach to include the in-place uncertainty in our optimization problem is by
applying 4D PWL approximation, where the production potential (qopp) is not only depen-
dent on Np, Nop, and RM , but also dependent on in-place (N ). However, this approach
is believed less efficient because a lot more variables are introduced, and it consequently
requires a longer optimization runtime to arrive at the optimal solution.
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Another approach is to use the existing PWL table, where the production potential (qopp)
is only determined by Np, Nop, and RM . To include the in-place uncertainty into our
optimization problem, the Equation 3.15a is replaced with the following equation:

Np,i,z = uN ·

( ∑
j∈VNp

∑
k∈VNop,i

∑
l∈VRM,i

λi,z,j,k,l ·Np,i,j,k,l

)
, ∀i ∈ R and ∀z ∈ P

(6.11)
This modification can be made because we have verified that the shift of Np from its base
value is linearly dependent on the uN (discussed in section 6.2). Note that the multiplier
uN in Equation 6.11 would would shift the Np breakpoints from its base values. Since
qopp corresponds to each Np breakpoint remains unchanged, applying the Equation 6.11
can be visualized as stretching or squeezing the production potential curves. One more
thing, we use uN as the multiplier because we have found that Np

Np[Base] = N
N [Base] = uN

(see Figure 6.5b).

Uncertainty of Development & Operational Cost

Including the uncertainty of development & operational cost into our optimization problem
is more straightforward. Correspond to its definition, uC is used as a multiplier to modify
the cost from its base value, i.e. the one that is estimated using the cost proxy model. The
followings are the list of equations replaced along with the replacements.

• Equation 4.6 is replaced with the following equation:

PVe = uC ·

( ∑
p∈{1,2,...,4}

Ap

(1 + d)(p−1)

)
(6.12a)

• Equation 4.7 is replaced with the following equation:

PVdp = uC ·

(
B ·Nwt_F,1

(1 + d)3

)
(6.12b)

• Equation 4.8 is replaced with the following equation:

PVd,z = uC ·

(
B · (Nwt_F,z+1 −Nwt_F,z)

(1 + d)(z+3)

)
, ∀z ∈ {1, 2, . . . , (np − 1)} (6.12c)

• Equation 4.9 is replaced with the following equation:

PVa = uC ·

(( ∑
p∈{1,2,...,4}

Cp

(1 + d)(p−1)

)
+D1 ·Nop_F,np

+D2 ·(Ngi_F,np
+Nwi_F,np

)

)
(6.12d)

• Equation 4.12 is replaced with the following equation:

PVsc = uC ·

( ∑
p∈{1,2,...,4}

E1 ·Nt_F + E2 ·Nx_F

4 · (1 + d)(p−1)

)
(6.12e)
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• Equation 4.14 is replaced with the following equation:

PVtc = uC ·

( ∑
p∈{1,2,...,4}

F1 · q̂o_F + F2 · q̂g_F + F3 · q̂w_F

4 · (1 + d)(p−1)

)
(6.12f)

• Equation 4.16 is replaced with the following equation:

PVo,z = uC ·

(
G1 +G2 ·Nop_F,z−1 +G3 · qo_F,z +G4 · qg_F,z +G5 · qw_F,z

(1 + d)(z+3)

)
,∀z ∈ {2, . . . , np}

(6.12g)

Uncertainty of Oil Price

To include the oil price uncertainty, Equation 4.17 is replaced with the following equation:

PVr,z = uPo
·

(
Po ·XR · V C · (Np_F,z −Np_F,z−1)

(1 + d)(z+3)

)
, ∀z ∈ {2, 3, . . . , np} (6.13)

In the equation above, note that we utilize uPo
as a multiplier to change the oil price from

its base value (60 USD/bbl).

6.5 Optimization Problem & Implementation in AMPL

The uncertainty analysis is carried out using an optimization problem which maximizes the
NPV. In this optimization problem, the fluid rates and the drilling schedule are the decision
variables, while the recovery mechanism is the parameter. The objective function, decision
variables, and parameter of the optimization problem are summarized in Table 6.1.

Table 6.1: Objective function, decision variables, and parameter of the optimization problem used
in the uncertainty analysis

Objective Function Max: NPV

Production & Injection Rates

qo variable
qg variable
qw variable
qgi variable
qwi variable

Drilling Schedule
Nop variable
Ngi variable
Nwi variable

Recovery Mechanism RM parameter
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The reason of including the recovery mechanism as optimization input is to reduce the
number of variables so that we have a lower relative gap after running the optimization for
a defined amount of time. To ensure that the optimization produces the highest NPV, the
input values for RM are carefully selected. The best combination of RM is found using
brute-force approach, where all possible combinations of RM are tested and compared.
According to the brute-force approach, the highest NPV is obtained from a case where
Løve is developed with water-gas injection, while Nesehorn and Sebra are developed with
water injection. In this uncertainty analysis, this combination of RM is adapted as opti-
mization inputs, and it is assumed that this combination ofRM always delivers the highest
NPV, regardless of the change in in-place, cost, and oil price.

Figure 6.8: Workflow of AMPL implementation of the optimization problem used in the uncertainty
analysis

The AMPL implementation of the optimization problem used in the uncertainty analysis
is very much similar to the AMPL implementation of CASE-2 (see section 4.2). As shown
in Figure 6.8, an extra file (marked by the red box) is established. This extra file is named
"Uncertainty.dat" file, and it contains the values of parameter uN , uC , and uPo . As we
know, there are many cases to be run in the uncertainty analysis. Those cases have different
input values for uN , uC , and uPo

. Therefore, each case has its own "Uncertainty.dat" file.

Each case in the uncertainty analysis also has their own run file. The run file of a par-
ticular case will import the model file and the other data files in addition to the unique
"Uncertainty.dat" file associated with that case. The model file and the data files other than
"Uncertainty.dat" are non-unique for a specific case, and thus used jointly by all cases. The
AMPL implementation of a case in the uncertainty analysis is provided in Appendix C.

The runtime for each case in the uncertainty analysis is restricted to not exceed 1 hour. To
obtain the best solution under this limited runtime, the conclusions derived in chapter 5
are adapted, e.g., using CPLEX solver with its default settings and employing 4 cores
(8 threads). In addition, according to the runtime analysis discussed in section 5.8, the
best solution found after running the optimization for 1 hour is assumed to be the optimal
solution of the optimization problem.
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There are many cases to be run in the uncertainty analysis. Starting the optimization runs
manually is an inefficient repetitive task. For this reason, a master run file is created. With
this file, all the cases can be executed with a single click. This master run file works by
automatically starting the optimization runs in series. Visualization of the master run file
is presented in Figure 6.9, while the AMPL script for this file is provided in Appendix C.5.

As mentioned before, the optimization run of every case utilizes 4 cores. If the computer
has 4 other idle cores, one can create two master run files and split the cases to be run.
AMPL allows these two master run files to be executed simultaneously. This routine is
beneficial because it shortens the total time required to complete the uncertainty analysis.

Figure 6.9: Visualization of master run file

6.6 Uncertainty Analysis Using LHS Method

Methodology

The uncertainty analysis presented in this section applies LHS method to generate samples.
This sampling method is preferred because it can recreate the input probability distribution
through fewer iterations when compared to the random sampling method. In other words,
for the same number of iterations, the LHS method will provide better accuracy of the
uncertainty analysis’ results.

In this uncertainty analysis, 100 sets of samples (100 combinations of uN , uC , and uPo
)

are involved. The procedure of generating these samples is almost similar to what has
been presented in section 2.4. However, to simplify the sampling process, the 1st step until
the 6th step are replaced with a Matlab function called "lhsdesign". This Matlab function
automatically generates 100 combinations of cumulative probabilities for uN , uC , and
uPo . The sampled cumulative probabilities are then converted to the values of uN , uC ,
and uPo

using the corresponding cumulative probability curves.
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Results

The results of the uncertainty analysis are presented using box plots. Box plots are typical
to use for displaying the distribution of data because they give a good indication of how the
values in the data are spread out. The elements of a box plot along with their definitions
are provided as follows:

• P25: A number where 25% of the data exceeds this number

• P50: A number where 50% of the data exceeds this number

• P75: A number where 75% of the data exceeds this number

• Upper Whisker (UW) & Lower Whisker (LW):

UW = min

{
max,

(
P25 + 1.5 · IQR

)}
(6.14a)

LW = max

{
min,

(
P75− 1.5 · IQR

)}
(6.14b)

where IQR = P25− P75

• Average

Visualization of the box plots’ components is provided in Figure 6.10.

Distribution of the optimal NPV is depicted in Figure 6.10. As shown in this figure, the
average and the median (P50) of the optimal NPV distribution are around 30000 Mill.
NOK. In addition to that, the optimal NPV mostly varies within the positive region. Based
on this optimal NPV distribution, it can be inferred that the development of the Safari field
is profitable to be executed.

Figure 6.10: Distribution of the optimal NPV (from LHS method)
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Distributions of the optimal drilling schedule (Nwt_F ) and the optimal oil production rate
(qo_F ) are provided in Figure 6.11. Referring to Figure 6.11a, it is found that the optimal
number of wells in 50% of the cases ranges from 15 (P75) to 22 (P25) wells.

(a) The optimal drilling schedule (b) The optimal oil production rate

Figure 6.11: Distributions of the optimization results (from LHS method)

6.7 Uncertainty Analysis Using Probability Tree

Methodology

Another uncertainty analysis is carried out during the study. In this analysis, the uncertain-
ties of the optimization results are quantified using the probability tree. In order to have
an objective comparison, the inputs for the uncertainty analysis which uses the probability
tree and which applies the LHS method should be equivalent. For this reason, we need to
make discrete approximations of the continuous probability distributions that we used for
the LHS.

McNamee and Celona (2008) present a widely used technique to discretize continuous
probability distributions. The first step of the technique is to select the number of out-
comes and the value of each outcome. In this analysis, we have chosen the number of
outcomes to be 3. We also have chosen the values of the outcomes, i.e., P90, P50, and
P10. Determinations of those values are illustrated in Figure 6.12a (for normal distribu-
tion) and Figure 6.12b (for uniform distribution).

The following step is to draw vertical lines at the output values on top of the cumulative
probability curve (see the red lines in Figure 6.13 and Figure 6.14). At last, we determine
the probability associated to each outcome. This is done by first shifting the green lines
in Figure 6.13 and Figure 6.14 such that the regions marked with the same color have the
same area. As indicated in the figures, the probability associated to an outcome is finally
found.
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(a) Normal distribution (b) Uniform distribution

Figure 6.12: Determination of the output values

Figure 6.13: Discrete probability distribution which approximates the normal distribution

Figure 6.14: Discrete probability distribution which approximates the uniform distribution
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Using the discrete probability distributions, the possible outcomes for the uncertain param-
eters (uN , uC , and uPo ) and its corresponding probabilities are defined as in Figure 6.15.
Because there are 3 uncertain parameters taken into account in this analysis and each un-
certain parameter has 3 possible outcomes, there are 27 (= 33) cases to be evaluated.

Figure 6.15: The possible outcomes for the uncertain parameters and its corresponding probabilities

Results

Similar to the previous section, the results of the uncertainty analysis are also presented
using box plots. In addition to box plots, the expected values (EV) are also computed
and presented. These expected values are basically probability-weighted averages. The
expected value of an optimization variable y is computed as follows:

EV [y] =

3∑
v=1

3∑
w=1

3∑
x=1

yv,w,x · JPv,w,x (6.15)

where yv,w,x is the value of an optimization variable obtained from a particular case (i.e.,
uN = uN,v, uC = uC,w, and uPo = uPo,x), while JPv,w,x is the joint probability
corresponds to that particular case. JPv,w,x itself is determined as follows:

JPv,w,x = P (uN,v) · P (uC,w) · P (uPo,x), ∀v, w, and x ∈ {1, 2, 3} (6.16)

Distributions of the optimal NPV, the optimal drilling schedule (Nwt_F ), and the optimal
oil production rate (qo_F ) are presented in Figure 6.16, Figure 6.17a, and Figure 6.17b,
respectively. If we compare these distributions to the ones we have in section 6.6, it can
be observed that both uncertainty analyses produce almost similar results. The only no-
table difference is that the uncertainty analysis using the LHS method produces slightly
wider ranges of upper whisker and lower whisker. It is reasonable because the uncertain
parameters (uN , uC , and uPo

) can vary further in the LHS method.

As mentioned earlier, there are 27 cases to be run in this probability tree analysis. The total
time to complete this analysis is much shorter when compared to the uncertainty analysis
using the LHS method (100 cases). Therefore, uncertainty analysis using the probability
tree is preferred because it requires a shorter total runtime and produces similar results as
the uncertainty analysis using the LHS method.
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Figure 6.16: Distribution of the optimal NPV (from probability tree)

(a) The optimal drilling schedule (b) The optimal oil production rate

Figure 6.17: Distributions of the optimization results (from probability tree)

6.8 An Empirical Equation to Estimate the Optimal NPV

In the previous uncertainty analyses, many optimization problems with different input
values for uN , uC , and uPo

have been solved. In this section, we will further evaluate
the optimal values for some variables so that we can generate an empirical equation to
estimate the optimal NPV.
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At first, we are going to investigate how the total development & operational cost cor-
relates with the ultimate recovery. To find out their relation, we need to determine the
present value of all development & operational cost (PVac) and the ultimate recovery
(Npu), which are computed with the following equations:

PVac = PVap +

np−1∑
z=1

PVd,z +

np∑
z=2

PVo,z (6.17)

Npu = Np_F,np (6.18)

The investigation is carried out using the results of 100 cases that are run in the uncertainty
analysis with the LHS method (section 6.6). After determining PVac and Npu in each
case, the relationship between PVac and Npu is acquired and it is depicted in Figure 6.18.
As shown in the figure, the total development & operational cost can be estimated with a
linear function of Npu. There is +/-40% uncertainty of this cost estimate. This uncertainty
corresponds to the input distribution for parameter uC .

Figure 6.18: Relationship between PVac and Npu

The optimal NPV can be empirically estimated using the following equation:

NPV = Po ·XR · V C ·Npu · FD − PVac (6.19)

where FD is the discount factor. This quantity correlates with how fast we produce the
field. A higher FD means a higher oil production in the early production period and vice
versa. By evaluating FD in each case

(
FD = NPV+PVac

Po·XR·V C·Npu

)
, it is found that FD is

around 32% and it does not vary significantly (see Figure 6.19). Based on these findings,
FD in Equation 6.19 can be considered as a constant.
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Figure 6.19: Distribution of FD

6.9 Rule of Thumb for Maximizing the NPV

This section discusses an empirical equation which estimates the optimal oil plateau rate or
the optimal oil processing capacity (q̂o_F ). As in the previous section, the empirical equa-
tion is obtained by evaluating the results of 100 cases that are involved in the uncertainty
analysis using the LHS method (section 6.6).

The oil plateau rate or the oil processing capacity (q̂o_F ) which maximizes the NPV can
be empirically estimated using the following equation:

q̂o_F =
IR ·Npu · 1000000

tup
(6.20)

where IR is the intake ratio. By evaluating IR in each case
(
IR =

q̂o_F ·tup

Npu·1000000

)
, it is

found that IR is around 12% and it does not vary significantly (see Figure 6.20). Based on
these findings, IR in Equation 6.20 can be considered as a constant.

Figure 6.20: Distribution of IR
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Chapter 7
Conclusion

1. An automated field development methodology based on mathematical optimization
has been developed in this study. One of the optimization problems is designed
to maximize the plateau duration by seeking the best configuration of production
& injection profile, drilling schedule, and recovery mechanism. Some constraints
concerning production, injection, and drilling are also considered in the optimiza-
tion. Formulation of the optimization problem adapts 2 main ideas, i.e. (1) to use
production potential curves as the proxy model of the production system and (2) to
use multi-dimensional PWL approximations for representing some non-linear func-
tions. According to the optimization results, the plateau period can be prolonged
further if the drilling schedule and recovery mechanism are also defined as decision
variables in addition to the fluid rates.

2. Another optimization problem is also established in this study. Basically, this opti-
mization problem is an extension of the previous optimization problem. However,
the optimization problem maximizes the Net Present Value (NPV) instead of the
plateau duration. A cost proxy model that is developed in the specialization project
is adapted for making an NPV calculation. The optimization results reveal that in-
cluding the drilling schedule and recovery mechanism as decision variables gives
84.44% higher NPV than just optimizing the fluid rates.

3. Several evaluations have been performed to make the formulations of the optimiza-
tion problems and their implementations in AMPL more efficient and more accurate.
By adapting the evaluations’ results, the optimization process becomes much faster.
A few recommendations from those evaluations are:

• to reduce the number of breakpoints in the PWL approximation and to wisely
select those breakpoints

• to use Gp-Np curve instead of 2D interpolation for determining the gas pro-
duction rate
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• to apply backward rectangular integration technique in estimating the cumula-
tive production/injection

• to employ 4 CPU cores in parallel when solving the optimization problems

• to utilize CPLEX solver with its default settings when solving the NPV maxi-
mization problem

4. Uncertainties of the optimization results have been quantified through uncertainty
analyses. Three uncertain parameters are considered, i.e., in-place, development &
operational cost, and oil price. To conduct an uncertainty analysis, two approaches
have been studied, i.e., using Latin Hypercube Sampling (LHS) method and using a
probability tree. Uncertainty analysis using a probability tree is preferred because it
is quicker and produces similar results as the other approach.
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Appendix A
AMPL Code for Maximizing the
Plateau Duration

A.1 CASE-1

A.1.1 Model File (CASE-1_Model.mod)

# Part 0: Index Description
# i = reservoirs
# j = breakpoints for Np
# k = breakpoints for Nop
# l = breakpoints for RM
# m = breakpoints for zNgi
# n = breakpoints for zNwi
# z = points in time during the production period
#--------------------------------------------------------------------------------

# Part 1: Declaration (var, set, param, etc)
param nr;
set R := 1..nr;
param np;
set P := 1..np;
param tup;
param qo_F_plateau;
param max_Nop_pd;
param max_Ni_pd;
param max_Nwt_py;
param max_Ngi {i in R};
param max_Nwi {i in R};
param zNgi_bar {m in {1,2}, n in {1,2}};
param zNwi_bar {m in {1,2}, n in {1,2}};
param RMds_bar {m in {1,2}, n in {1,2}};
param max_qgi_pgi;
param max_qwi_pwi;
param nbp_Np;
param nbp_Nop {i in R};
param nbp_RM {i in R};
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set V_Np := 1..nbp_Np;
set V_Nop {i in R} := 1..nbp_Nop[i];
set V_RM {i in R} := 1..nbp_RM[i];
param Np_bar {i in R, j in V_Np, k in V_Nop[i], l in V_RM[i]};
param Nop_bar {i in R, j in V_Np, k in V_Nop[i], l in V_RM[i]};
param RMpp_bar {i in R, j in V_Np, k in V_Nop[i], l in V_RM[i]};
param qopp_bar {i in R, j in V_Np, k in V_Nop[i], l in V_RM[i]};
param Gp_bar {i in R, j in V_Np, k in V_Nop[i], l in V_RM[i]};
param Wp_bar {i in R, j in V_Np, k in V_Nop[i], l in V_RM[i]};
param Gi_bar {i in R, j in V_Np, k in V_Nop[i], l in V_RM[i]};
param Wi_bar {i in R, j in V_Np, k in V_Nop[i], l in V_RM[i]};

var RM {i in R} integer >= 0;
var zNgi {i in R} binary >= 0;
var zNwi {i in R} binary >= 0;
var Nop {i in R, z in P} integer >= 0;
var Ngi {i in R, z in P} integer >= 0;
var Nwi {i in R, z in P} integer >= 0;
var Nwt {i in R, z in P} integer >= 0;
var qopp {i in R, z in P} >= 0;
var qo {i in R, z in {2..np}} >= 0;
var qg {i in R, z in {2..np}} >= 0;
var qw {i in R, z in {2..np}} >= 0;
var qgi {i in R, z in {2..np}} >= 0;
var qwi {i in R, z in {2..np}} >= 0;
var Np {i in R, z in P} >= 0;
var Gp {i in R, z in P} >= 0;
var Wp {i in R, z in P} >= 0;
var Gi {i in R, z in P} >= 0;
var Wi {i in R, z in P} >= 0;
var Nop_F {z in P} integer >= 0;
var Ngi_F {z in P} integer >= 0;
var Nwi_F {z in P} integer >= 0;
var Nwt_F {z in P} integer >= 0;
var qopp_F {z in P} >= 0;
var qo_F {z in {2..np}} >= 0;
var qg_F {z in {2..np}} >= 0;
var qw_F {z in {2..np}} >= 0;
var qgi_F {z in {2..np}} >= 0;
var qwi_F {z in {2..np}} >= 0;
var Np_F {z in P} >= 0;
var Gp_F {z in P} >= 0;
var Wp_F {z in P} >= 0;
var Gi_F {z in P} >= 0;
var Wi_F {z in P} >= 0;
var lambda {i in R, z in P, j in V_Np, k in V_Nop[i], l in V_RM[i]} >= 0;
var eta_Np {i in R, z in P, j in V_Np} >= 0;
var eta_Nop {i in R, z in P, k in V_Nop[i]} >= 0;
var eta_RM {i in R, z in P, l in V_RM[i]} >= 0;
var omega {i in R, m in {1,2}, n in {1,2}} >= 0;
var tau_zNgi {i in R, m in {1,2}} >= 0;
var tau_zNwi {i in R, n in {1,2}} >= 0;
#--------------------------------------------------------------------------------

# Part 2: Objective Function
minimize 3_1: sum{z in {2..np}} (qo_F_plateau - qo_F[z]);
#--------------------------------------------------------------------------------

# Part 3: Constraints
subject to 3_2 {z in {2..np}}: qo_F[z] <= qo_F_plateau;
subject to 3_3a {i in R, z in {2..np}}: qo[i,z] <= qopp[i,z];
subject to 3_3b {i in R, z in {2..np}}: qo[i,z] <= qopp[i,z-1];
subject to 3_4a {i in R, z in {2..np}}: qgi[i,z] <= Ngi[i,z-1]*max_qgi_pgi;
subject to 3_4b {i in R, z in {2..np}}: qwi[i,z] <= Nwi[i,z-1]*max_qwi_pwi;
subject to 3_5a {i in R, z in {2..np}}: Nop[i,z] - Nop[i,z-1] >= 0;
subject to 3_5b {i in R, z in {2..np}}: Ngi[i,z] - Ngi[i,z-1] >= 0;
subject to 3_5c {i in R, z in {2..np}}: Nwi[i,z] - Nwi[i,z-1] >= 0;
subject to 3_6a {i in R, z in P}: Ngi[i,z] <= zNgi[i]*max_Ngi[i];
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subject to 3_6b {i in R, z in P}: Nwi[i,z] <= zNwi[i]*max_Nwi[i];
subject to 3_7a: Nop_F[1] <= max_Nop_pd;
subject to 3_7b: Ngi_F[1] + Nwi_F[1] <= max_Ni_pd;
subject to 3_8 {z in {2..np}}: Nwt_F[z] - Nwt_F[z-1] <= max_Nwt_py;
subject to 3_9 {i in R}: Np[i,1] = 0;
subject to 3_10a {i in R, z in {2..np}}: Np[i,z] = Np[i,z-1] +

tup*qo[i,z]/1000000;
subject to 3_10b {i in R, z in {2..np}}: Gp[i,z] = Gp[i,z-1] + tup*qg[i,z]/1000;
subject to 3_10c {i in R, z in {2..np}}: Wp[i,z] = Wp[i,z-1] +

tup*qw[i,z]/1000000;
subject to 3_10d {i in R, z in {2..np}}: Gi[i,z] = Gi[i,z-1] + tup*qgi[i,z]/1000;
subject to 3_10e {i in R, z in {2..np}}: Wi[i,z] = Wi[i,z-1] +

tup*qwi[i,z]/1000000;
subject to 3_11 {i in R, z in P}: Nwt[i,z] = Nop[i,z] + Ngi[i,z] + Nwi[i,z];
subject to 3_12a {z in P}: Nop_F[z] = sum{i in R} Nop[i,z];
subject to 3_12b {z in P}: Ngi_F[z] = sum{i in R} Ngi[i,z];
subject to 3_12c {z in P}: Nwi_F[z] = sum{i in R} Nwi[i,z];
subject to 3_12d {z in P}: Nwt_F[z] = sum{i in R} Nwt[i,z];
subject to 3_12e {z in P}: qopp_F[z] = sum{i in R} qopp[i,z];
subject to 3_12f {z in {2..np}}: qo_F[z] = sum{i in R} qo[i,z];
subject to 3_12g {z in {2..np}}: qg_F[z] = sum{i in R} qg[i,z];
subject to 3_12h {z in {2..np}}: qw_F[z] = sum{i in R} qw[i,z];
subject to 3_12i {z in {2..np}}: qgi_F[z] = sum{i in R} qgi[i,z];
subject to 3_12j {z in {2..np}}: qwi_F[z] = sum{i in R} qwi[i,z];
subject to 3_12k {z in P}: Np_F[z] = sum{i in R} Np[i,z];
subject to 3_12l {z in P}: Gp_F[z] = sum{i in R} Gp[i,z];
subject to 3_12m {z in P}: Wp_F[z] = sum{i in R} Wp[i,z];
subject to 3_12n {z in P}: Gi_F[z] = sum{i in R} Gi[i,z];
subject to 3_12o {z in P}: Wi_F[z] = sum{i in R} Wi[i,z];
subject to 3_15a {i in R, z in P}: Np[i,z] = sum{j in V_Np, k in V_Nop[i], l in

V_RM[i]} lambda[i,z,j,k,l]*Np_bar[i,j,k,l];
subject to 3_15b {i in R, z in P}: Nop[i,z] = sum{j in V_Np, k in V_Nop[i], l in

V_RM[i]} lambda[i,z,j,k,l]*Nop_bar[i,j,k,l];
subject to 3_15c {i in R, z in P}: RM[i] = sum{j in V_Np, k in V_Nop[i], l in

V_RM[i]} lambda[i,z,j,k,l]*RMpp_bar[i,j,k,l];
subject to 3_15d {i in R, z in P}: qopp[i,z] = sum{j in V_Np, k in V_Nop[i], l

in V_RM[i]} lambda[i,z,j,k,l]*qopp_bar[i,j,k,l];
subject to 3_15e {i in R, z in P}: 1 = sum{j in V_Np, k in V_Nop[i], l in

V_RM[i]} lambda[i,z,j,k,l];
subject to 3_15f {i in R, z in P, j in V_Np}: eta_Np[i,z,j] = sum{k in V_Nop[i],

l in V_RM[i]} lambda[i,z,j,k,l];
subject to 3_15g {i in R, z in P, k in V_Nop[i]}: eta_Nop[i,z,k] = sum{j in

V_Np, l in V_RM[i]} lambda[i,z,j,k,l];
subject to 3_15h {i in R, z in P, l in V_RM[i]}: eta_RM[i,z,l] = sum{j in V_Np,

k in V_Nop[i]} lambda[i,z,j,k,l];
subject to 3_16a {i in R, z in P}: Gp[i,z] = sum{j in V_Np, k in V_Nop[i], l in

V_RM[i]} lambda[i,z,j,k,l]*Gp_bar[i,j,k,l];
subject to 3_16b {i in R, z in P}: Wp[i,z] = sum{j in V_Np, k in V_Nop[i], l in

V_RM[i]} lambda[i,z,j,k,l]*Wp_bar[i,j,k,l];
subject to 3_16c {i in R, z in P}: Gi[i,z] = sum{j in V_Np, k in V_Nop[i], l in

V_RM[i]} lambda[i,z,j,k,l]*Gi_bar[i,j,k,l];
subject to 3_16d {i in R, z in P}: Wi[i,z] = sum{j in V_Np, k in V_Nop[i], l in

V_RM[i]} lambda[i,z,j,k,l]*Wi_bar[i,j,k,l];
subject to 3_17a {i in R}: zNgi[i] = sum{m in {1,2}, n in {1,2}}

omega[i,m,n]*zNgi_bar[m,n];
subject to 3_17b {i in R}: zNwi[i] = sum{m in {1,2}, n in {1,2}}

omega[i,m,n]*zNwi_bar[m,n];
subject to 3_17c {i in R}: RM[i] = sum{m in {1,2}, n in {1,2}}

omega[i,m,n]*RMds_bar[m,n];
subject to 3_17d {i in R}: 1 = sum{m in {1,2}, n in {1,2}} omega[i,m,n];
subject to 3_17e {i in R, m in {1,2}}: tau_zNgi[i,m] = sum{n in {1,2}}

omega[i,m,n];
subject to 3_17f {i in R, n in {1,2}}: tau_zNwi[i,n] = sum{m in {1,2}}

omega[i,m,n];
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A.1.2 Data File (CASE-1_Data.dat)

param nr := 3;
param np := 18;
param tup := 365;
param qo_F_plateau := 20000;
param max_Nop_pd := 4;
param max_Ni_pd := 1;
param max_Nwt_py := 4;
param: max_Ngi max_Nwi :=
#i max_Ngi max_Nwi
1 1 3
2 0 2
3 0 1
;
param: zNgi_bar zNwi_bar RMds_bar :=
#m n zNgi_bar zNwi_bar RMds_bar
1 1 0 0 1
1 2 0 1 2
2 1 1 0 3
2 2 1 1 4
;
param max_qgi_pgi := 4000;
param max_qwi_pwi := 6360;

A.1.3 Run File (CASE-1_Run.run)

model CASE-1_Model.mod;
data CASE-1_Data.dat;
data PWL_Table.dat;

option solver gurobi;
option gurobi_options "threads=8 timelim=43200 outlev=1 mipgap=0.0001

nodefilestart=0.5 bestbound=1";

suffix sosno;
suffix ref;
param itersos2;
let itersos2 := 0;
for{i in R, z in P} {

let itersos2 := itersos2-1;
let {j in V_Np} eta_Np[i,z,j].sosno := itersos2;
let {j in V_Np} eta_Np[i,z,j].ref := Np_bar[i,j,1,1];

let itersos2 := itersos2-1;
let {k in V_Nop[i]} eta_Nop[i,z,k].sosno := itersos2;
let {k in V_Nop[i]} eta_Nop[i,z,k].ref := Nop_bar[i,1,k,1];

}
param itersos1;
let itersos1 := 0;
for{i in R, z in P} {

let itersos1 := itersos1+1;
let {l in V_RM[i]} eta_RM[i,z,l].sosno := itersos1;
let {l in V_RM[i]} eta_RM[i,z,l].ref := RMpp_bar[i,1,1,l];

}
for{i in R} {

let itersos1 := itersos1+1;
let {m in {1,2}} tau_zNgi[i,m].sosno := itersos1;
let {m in {1,2}} tau_zNgi[i,m].ref := zNgi_bar[m,1];

let itersos1 := itersos1+1;
let {n in {1,2}} tau_zNwi[i,n].sosno := itersos1;
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let {n in {1,2}} tau_zNwi[i,n].ref := zNwi_bar[1,n];
}

solve;

display qo_F_plateau >CASE-1_Results.out;
display RM >CASE-1_Results.out;
display Nop >CASE-1_Results.out;
.
.
.
close CASE-1_Results.out;

A.2 REF-CASE-1

A.2.1 Model File (REF-CASE-1_Model.mod)

# Part 0: Index Description
# i = reservoirs
# j = breakpoints for Np
# k = breakpoints for Nop
# l = breakpoints for RM
# z = points in time during the production period
#--------------------------------------------------------------------------------

# Part 1: Declaration (var, set, param, etc)
param nr;
set R := 1..nr;
param np;
set P := 1..np;
param tup;
param qo_F_plateau;
param Nop {i in R, z in P};
param Nwi {i in R, z in P};
param Ngi {i in R, z in P};
param RM {i in R, z in P};
param max_qgi_pgi;
param max_qwi_pwi;
param nbp_Np;
param nbp_Nop {i in R};
param nbp_RM {i in R};
set V_Np := 1..nbp_Np;
set V_Nop {i in R} := 1..nbp_Nop[i];
set V_RM {i in R} := 1..nbp_RM[i];
param Np_bar {i in R, j in V_Np, k in V_Nop[i], l in V_RM[i]};
param Nop_bar {i in R, j in V_Np, k in V_Nop[i], l in V_RM[i]};
param RMpp_bar {i in R, j in V_Np, k in V_Nop[i], l in V_RM[i]};
param qopp_bar {i in R, j in V_Np, k in V_Nop[i], l in V_RM[i]};
param Gp_bar {i in R, j in V_Np, k in V_Nop[i], l in V_RM[i]};
param Wp_bar {i in R, j in V_Np, k in V_Nop[i], l in V_RM[i]};
param Gi_bar {i in R, j in V_Np, k in V_Nop[i], l in V_RM[i]};
param Wi_bar {i in R, j in V_Np, k in V_Nop[i], l in V_RM[i]};

var Nwt {i in R, z in P} integer >= 0;
var qopp {i in R, z in P} >= 0;
var qo {i in R, z in {2..np}} >= 0;
var qg {i in R, z in {2..np}} >= 0;
var qw {i in R, z in {2..np}} >= 0;
var qgi {i in R, z in {2..np}} >= 0;
var qwi {i in R, z in {2..np}} >= 0;
var Np {i in R, z in P} >= 0;
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var Gp {i in R, z in P} >= 0;
var Wp {i in R, z in P} >= 0;
var Gi {i in R, z in P} >= 0;
var Wi {i in R, z in P} >= 0;
var Nop_F {z in P} integer >= 0;
var Ngi_F {z in P} integer >= 0;
var Nwi_F {z in P} integer >= 0;
var Nwt_F {z in P} integer >= 0;
var qopp_F {z in P} >= 0;
var qo_F {z in {2..np}} >= 0;
var qg_F {z in {2..np}} >= 0;
var qw_F {z in {2..np}} >= 0;
var qgi_F {z in {2..np}} >= 0;
var qwi_F {z in {2..np}} >= 0;
var Np_F {z in P} >= 0;
var Gp_F {z in P} >= 0;
var Wp_F {z in P} >= 0;
var Gi_F {z in P} >= 0;
var Wi_F {z in P} >= 0;
var lambda {i in R, z in P, j in V_Np, k in V_Nop[i]} >= 0;
var eta_Np {i in R, z in P, j in V_Np} >= 0;
var eta_Nop {i in R, z in P, k in V_Nop[i]} >= 0;
#--------------------------------------------------------------------------------

# Part 2: Objective Function
minimize 3_1: sum{z in {2..np}} (qo_F_plateau - qo_F[z]);
#--------------------------------------------------------------------------------

# Part 3: Constraints
subject to 3_2 {z in {2..np}}: qo_F[z] <= qo_F_plateau;
subject to 3_3a {i in R, z in {2..np}}: qo[i,z] <= qopp[i,z];
subject to 3_3b {i in R, z in {2..np}}: qo[i,z] <= qopp[i,z-1];
subject to 3_4a {i in R, z in {2..np}}: qgi[i,z] <= Ngi[i,z-1]*max_qgi_pgi;
subject to 3_4b {i in R, z in {2..np}}: qwi[i,z] <= Nwi[i,z-1]*max_qwi_pwi;
subject to 3_9 {i in R}: Np[i,1] = 0;
subject to 3_10a {i in R, z in {2..np}}: Np[i,z] = Np[i,z-1] +

tup*qo[i,z]/1000000;
subject to 3_10b {i in R, z in {2..np}}: Gp[i,z] = Gp[i,z-1] + tup*qg[i,z]/1000;
subject to 3_10c {i in R, z in {2..np}}: Wp[i,z] = Wp[i,z-1] +

tup*qw[i,z]/1000000;
subject to 3_10d {i in R, z in {2..np}}: Gi[i,z] = Gi[i,z-1] + tup*qgi[i,z]/1000;
subject to 3_10e {i in R, z in {2..np}}: Wi[i,z] = Wi[i,z-1] +

tup*qwi[i,z]/1000000;
subject to 3_11 {i in R, z in P}: Nwt[i,z] = Nop[i,z] + Ngi[i,z] + Nwi[i,z];
subject to 3_12a {z in P}: Nop_F[z] = sum{i in R} Nop[i,z];
subject to 3_12b {z in P}: Ngi_F[z] = sum{i in R} Ngi[i,z];
subject to 3_12c {z in P}: Nwi_F[z] = sum{i in R} Nwi[i,z];
subject to 3_12d {z in P}: Nwt_F[z] = sum{i in R} Nwt[i,z];
subject to 3_12e {z in P}: qopp_F[z] = sum{i in R} qopp[i,z];
subject to 3_12f {z in {2..np}}: qo_F[z] = sum{i in R} qo[i,z];
subject to 3_12g {z in {2..np}}: qg_F[z] = sum{i in R} qg[i,z];
subject to 3_12h {z in {2..np}}: qw_F[z] = sum{i in R} qw[i,z];
subject to 3_12i {z in {2..np}}: qgi_F[z] = sum{i in R} qgi[i,z];
subject to 3_12j {z in {2..np}}: qwi_F[z] = sum{i in R} qwi[i,z];
subject to 3_12k {z in P}: Np_F[z] = sum{i in R} Np[i,z];
subject to 3_12l {z in P}: Gp_F[z] = sum{i in R} Gp[i,z];
subject to 3_12m {z in P}: Wp_F[z] = sum{i in R} Wp[i,z];
subject to 3_12n {z in P}: Gi_F[z] = sum{i in R} Gi[i,z];
subject to 3_12o {z in P}: Wi_F[z] = sum{i in R} Wi[i,z];
subject to 3_15a {i in R, z in P}: Np[i,z] = sum{j in V_Np, k in V_Nop[i]}

lambda[i,z,j,k]*Np_bar[i,j,k,RM[i,z]];
subject to 3_15b {i in R, z in P}: Nop[i,z] = sum{j in V_Np, k in V_Nop[i]}

lambda[i,z,j,k]*Nop_bar[i,j,k,RM[i,z]];
subject to 3_15d {i in R, z in P}: qopp[i,z] = sum{j in V_Np, k in V_Nop[i]}

lambda[i,z,j,k]*qopp_bar[i,j,k,RM[i,z]];
subject to 3_15e {i in R, z in P}: 1 = sum{j in V_Np, k in V_Nop[i]}

lambda[i,z,j,k];
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subject to 3_15f {i in R, z in P, j in V_Np}: eta_Np[i,z,j] = sum{k in V_Nop[i]}
lambda[i,z,j,k];

subject to 3_15g {i in R, z in P, k in V_Nop[i]}: eta_Nop[i,z,k] = sum{j in
V_Np} lambda[i,z,j,k];

subject to 3_16a {i in R, z in P}: Gp[i,z] = sum{j in V_Np, k in V_Nop[i]}
lambda[i,z,j,k]*Gp_bar[i,j,k,RM[i,z]];

subject to 3_16b {i in R, z in P}: Wp[i,z] = sum{j in V_Np, k in V_Nop[i]}
lambda[i,z,j,k]*Wp_bar[i,j,k,RM[i,z]];

subject to 3_16c {i in R, z in P}: Gi[i,z] = sum{j in V_Np, k in V_Nop[i]}
lambda[i,z,j,k]*Gi_bar[i,j,k,RM[i,z]];

subject to 3_16d {i in R, z in P}: Wi[i,z] = sum{j in V_Np, k in V_Nop[i]}
lambda[i,z,j,k]*Wi_bar[i,j,k,RM[i,z]];

A.2.2 Data File (REF-CASE-1_Data.dat)

param nr := 3;
param np := 18;
param tup := 365;
param qo_F_plateau := 20000;
param: Nop Ngi Nwi RM :=
#i z Nop Ngi Nwi RM
1 1 4 1 0 3
1 2 7 1 1 4
1 3 10 1 2 4
.
.
.
;
param max_qgi_pgi := 4000;
param max_qwi_pwi := 6360;

A.2.3 Run File (REF-CASE-1_Run.run)

model REF-CASE-1_Model.mod;
data REF-CASE-1_Data.dat;
data PWL_Table.dat;

option solver gurobi;
option gurobi_options "threads=8 timelim=43200 outlev=1 mipgap=0.0001

nodefilestart=0.5 bestbound=1";

suffix sosno;
suffix ref;
param itersos2;
let itersos2 := 0;
for{i in R, z in P} {

let itersos2 := itersos2-1;
let {j in V_Np} eta_Np[i,z,j].sosno := itersos2;
let {j in V_Np} eta_Np[i,z,j].ref := Np_bar[i,j,1,1];

let itersos2 := itersos2-1;
let {k in V_Nop[i]} eta_Nop[i,z,k].sosno := itersos2;
let {k in V_Nop[i]} eta_Nop[i,z,k].ref := Nop_bar[i,1,k,1];

}

solve;

display qo_F_plateau >REF-CASE-1_Results.out;
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display RM >REF-CASE-1_Results.out;
display Nop >REF-CASE-1_Results.out;
.
.
.
close REF-CASE-1_Results.out;
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Appendix B
AMPL Code for Maximizing the
NPV

B.1 CASE-2

B.1.1 Model File (CASE-2_Model.mod)

# Part 0: Index Description
# i = reservoirs
# j = breakpoints for Np
# k = breakpoints for Nop
# l = breakpoints for RM
# m = breakpoints for zNgi
# n = breakpoints for zNwi
# p = points in time prior to the production period
# z = points in time during the production period
#--------------------------------------------------------------------------------

# Part 1: Declaration (var, set, param, etc)
param nr;
set R := 1..nr;
param np;
set P := 1..np;
param tup;
param max_Nop_pd;
param max_Ni_pd;
param max_Nwt_py;
param max_Ngi {i in R};
param max_Nwi {i in R};
param zNgi_bar {m in {1,2}, n in {1,2}};
param zNwi_bar {m in {1,2}, n in {1,2}};
param RMds_bar {m in {1,2}, n in {1,2}};
param max_qgi_pgi;
param max_qwi_pwi;
param nbp_Np;
param nbp_Nop {i in R};
param nbp_RM {i in R};
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set V_Np := 1..nbp_Np;
set V_Nop {i in R} := 1..nbp_Nop[i];
set V_RM {i in R} := 1..nbp_RM[i];
param Np_bar {i in R, j in V_Np, k in V_Nop[i], l in V_RM[i]};
param Nop_bar {i in R, j in V_Np, k in V_Nop[i], l in V_RM[i]};
param RMpp_bar {i in R, j in V_Np, k in V_Nop[i], l in V_RM[i]};
param qopp_bar {i in R, j in V_Np, k in V_Nop[i], l in V_RM[i]};
param Gp_bar {i in R, j in V_Np, k in V_Nop[i], l in V_RM[i]};
param Wp_bar {i in R, j in V_Np, k in V_Nop[i], l in V_RM[i]};
param Gi_bar {i in R, j in V_Np, k in V_Nop[i], l in V_RM[i]};
param Wi_bar {i in R, j in V_Np, k in V_Nop[i], l in V_RM[i]};
param Po;
param XR;
param VC;
param d;
param A {p in {1,2,3,4}};
param B;
param C {p in {1,2,3,4}};
param D {q in {1,2}};
param E {r in {1,2}};
param F {s in {1,2,3}};
param G {t in {1,2,3,4,5}};

var RM {i in R} integer >= 0;
var zNgi {i in R} binary >= 0;
var zNwi {i in R} binary >= 0;
var Nop {i in R, z in P} integer >= 0;
var Ngi {i in R, z in P} integer >= 0;
var Nwi {i in R, z in P} integer >= 0;
var Nwt {i in R, z in P} integer >= 0;
var qopp {i in R, z in P} >= 0;
var qo {i in R, z in {2..np}} >= 0;
var qg {i in R, z in {2..np}} >= 0;
var qw {i in R, z in {2..np}} >= 0;
var qgi {i in R, z in {2..np}} >= 0;
var qwi {i in R, z in {2..np}} >= 0;
var Np {i in R, z in P} >= 0;
var Gp {i in R, z in P} >= 0;
var Wp {i in R, z in P} >= 0;
var Gi {i in R, z in P} >= 0;
var Wi {i in R, z in P} >= 0;
var Nop_F {z in P} integer >= 0;
var Ngi_F {z in P} integer >= 0;
var Nwi_F {z in P} integer >= 0;
var Nwt_F {z in P} integer >= 0;
var qopp_F {z in P} >= 0;
var qo_F {z in {2..np}} >= 0;
var qg_F {z in {2..np}} >= 0;
var qw_F {z in {2..np}} >= 0;
var qgi_F {z in {2..np}} >= 0;
var qwi_F {z in {2..np}} >= 0;
var Np_F {z in P} >= 0;
var Gp_F {z in P} >= 0;
var Wp_F {z in P} >= 0;
var Gi_F {z in P} >= 0;
var Wi_F {z in P} >= 0;
var lambda {i in R, z in P, j in V_Np, k in V_Nop[i], l in V_RM[i]} >= 0;
var eta_Np {i in R, z in P, j in V_Np} >= 0;
var eta_Nop {i in R, z in P, k in V_Nop[i]} >= 0;
var eta_RM {i in R, z in P, l in V_RM[i]} >= 0;
var omega {i in R, m in {1,2}, n in {1,2}} >= 0;
var tau_zNgi {i in R, m in {1,2}} >= 0;
var tau_zNwi {i in R, n in {1,2}} >= 0;
var PVe >= 0;
var PVdp >= 0;
var PVa >= 0;
var Nt {i in R} integer >= 0;
var Nt_F integer >= 0;
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var Nx_F integer >= 0;
var PVsc >= 0;
var max_qo_F >= 0;
var max_qg_F >= 0;
var max_qw_F >= 0;
var PVtc >= 0;
var PVap >= 0;
var PVd {z in {1..(np-1)}} >= 0;
var PVo {z in {2..np}} >= 0;
var PVr {z in {2..np}} >= 0;
var DCF {z in P};
var NPV;
#--------------------------------------------------------------------------------

# Part 2: Objective Function
maximize 4_5: NPV;
#--------------------------------------------------------------------------------

# Part 3: Constraints
subject to 3_3a {i in R, z in {2..np}}: qo[i,z] <= qopp[i,z];
subject to 3_3b {i in R, z in {2..np}}: qo[i,z] <= qopp[i,z-1];
subject to 3_4a {i in R, z in {2..np}}: qgi[i,z] <= Ngi[i,z-1]*max_qgi_pgi;
subject to 3_4b {i in R, z in {2..np}}: qwi[i,z] <= Nwi[i,z-1]*max_qwi_pwi;
subject to 3_5a {i in R, z in {2..np}}: Nop[i,z] - Nop[i,z-1] >= 0;
subject to 3_5b {i in R, z in {2..np}}: Ngi[i,z] - Ngi[i,z-1] >= 0;
subject to 3_5c {i in R, z in {2..np}}: Nwi[i,z] - Nwi[i,z-1] >= 0;
subject to 3_6a {i in R, z in P}: Ngi[i,z] <= zNgi[i]*max_Ngi[i];
subject to 3_6b {i in R, z in P}: Nwi[i,z] <= zNwi[i]*max_Nwi[i];
subject to 3_7a: Nop_F[1] <= max_Nop_pd;
subject to 3_7b: Ngi_F[1] + Nwi_F[1] <= max_Ni_pd;
subject to 3_8 {z in {2..np}}: Nwt_F[z] - Nwt_F[z-1] <= max_Nwt_py;
subject to 3_9 {i in R}: Np[i,1] = 0;
subject to 3_10a {i in R, z in {2..np}}: Np[i,z] = Np[i,z-1] +

tup*qo[i,z]/1000000;
subject to 3_10b {i in R, z in {2..np}}: Gp[i,z] = Gp[i,z-1] + tup*qg[i,z]/1000;
subject to 3_10c {i in R, z in {2..np}}: Wp[i,z] = Wp[i,z-1] +

tup*qw[i,z]/1000000;
subject to 3_10d {i in R, z in {2..np}}: Gi[i,z] = Gi[i,z-1] + tup*qgi[i,z]/1000;
subject to 3_10e {i in R, z in {2..np}}: Wi[i,z] = Wi[i,z-1] +

tup*qwi[i,z]/1000000;
subject to 3_11 {i in R, z in P}: Nwt[i,z] = Nop[i,z] + Ngi[i,z] + Nwi[i,z];
subject to 3_12a {z in P}: Nop_F[z] = sum{i in R} Nop[i,z];
subject to 3_12b {z in P}: Ngi_F[z] = sum{i in R} Ngi[i,z];
subject to 3_12c {z in P}: Nwi_F[z] = sum{i in R} Nwi[i,z];
subject to 3_12d {z in P}: Nwt_F[z] = sum{i in R} Nwt[i,z];
subject to 3_12e {z in P}: qopp_F[z] = sum{i in R} qopp[i,z];
subject to 3_12f {z in {2..np}}: qo_F[z] = sum{i in R} qo[i,z];
subject to 3_12g {z in {2..np}}: qg_F[z] = sum{i in R} qg[i,z];
subject to 3_12h {z in {2..np}}: qw_F[z] = sum{i in R} qw[i,z];
subject to 3_12i {z in {2..np}}: qgi_F[z] = sum{i in R} qgi[i,z];
subject to 3_12j {z in {2..np}}: qwi_F[z] = sum{i in R} qwi[i,z];
subject to 3_12k {z in P}: Np_F[z] = sum{i in R} Np[i,z];
subject to 3_12l {z in P}: Gp_F[z] = sum{i in R} Gp[i,z];
subject to 3_12m {z in P}: Wp_F[z] = sum{i in R} Wp[i,z];
subject to 3_12n {z in P}: Gi_F[z] = sum{i in R} Gi[i,z];
subject to 3_12o {z in P}: Wi_F[z] = sum{i in R} Wi[i,z];
subject to 3_15a {i in R, z in P}: Np[i,z] = sum{j in V_Np, k in V_Nop[i], l in

V_RM[i]} lambda[i,z,j,k,l]*Np_bar[i,j,k,l];
subject to 3_15b {i in R, z in P}: Nop[i,z] = sum{j in V_Np, k in V_Nop[i], l in

V_RM[i]} lambda[i,z,j,k,l]*Nop_bar[i,j,k,l];
subject to 3_15c {i in R, z in P}: RM[i] = sum{j in V_Np, k in V_Nop[i], l in

V_RM[i]} lambda[i,z,j,k,l]*RMpp_bar[i,j,k,l];
subject to 3_15d {i in R, z in P}: qopp[i,z] = sum{j in V_Np, k in V_Nop[i], l

in V_RM[i]} lambda[i,z,j,k,l]*qopp_bar[i,j,k,l];
subject to 3_15e {i in R, z in P}: 1 = sum{j in V_Np, k in V_Nop[i], l in

V_RM[i]} lambda[i,z,j,k,l];
subject to 3_15f {i in R, z in P, j in V_Np}: eta_Np[i,z,j] = sum{k in V_Nop[i],

l in V_RM[i]} lambda[i,z,j,k,l];
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subject to 3_15g {i in R, z in P, k in V_Nop[i]}: eta_Nop[i,z,k] = sum{j in
V_Np, l in V_RM[i]} lambda[i,z,j,k,l];

subject to 3_15h {i in R, z in P, l in V_RM[i]}: eta_RM[i,z,l] = sum{j in V_Np,
k in V_Nop[i]} lambda[i,z,j,k,l];

subject to 3_16a {i in R, z in P}: Gp[i,z] = sum{j in V_Np, k in V_Nop[i], l in
V_RM[i]} lambda[i,z,j,k,l]*Gp_bar[i,j,k,l];

subject to 3_16b {i in R, z in P}: Wp[i,z] = sum{j in V_Np, k in V_Nop[i], l in
V_RM[i]} lambda[i,z,j,k,l]*Wp_bar[i,j,k,l];

subject to 3_16c {i in R, z in P}: Gi[i,z] = sum{j in V_Np, k in V_Nop[i], l in
V_RM[i]} lambda[i,z,j,k,l]*Gi_bar[i,j,k,l];

subject to 3_16d {i in R, z in P}: Wi[i,z] = sum{j in V_Np, k in V_Nop[i], l in
V_RM[i]} lambda[i,z,j,k,l]*Wi_bar[i,j,k,l];

subject to 3_17a {i in R}: zNgi[i] = sum{m in {1,2}, n in {1,2}}
omega[i,m,n]*zNgi_bar[m,n];

subject to 3_17b {i in R}: zNwi[i] = sum{m in {1,2}, n in {1,2}}
omega[i,m,n]*zNwi_bar[m,n];

subject to 3_17c {i in R}: RM[i] = sum{m in {1,2}, n in {1,2}}
omega[i,m,n]*RMds_bar[m,n];

subject to 3_17d {i in R}: 1 = sum{m in {1,2}, n in {1,2}} omega[i,m,n];
subject to 3_17e {i in R, m in {1,2}}: tau_zNgi[i,m] = sum{n in {1,2}}

omega[i,m,n];
subject to 3_17f {i in R, n in {1,2}}: tau_zNwi[i,n] = sum{m in {1,2}}

omega[i,m,n];
subject to 4_6: PVe = sum{p in {1,2,3,4}} A[p]/(1+d)^(p-1);
subject to 4_7: PVdp = B*Nwt_F[1]/(1+d)^3;
subject to 4_8 {z in {1..(np-1)}}: PVd[z] = B*(Nwt_F[z+1] -

Nwt_F[z])/(1+d)^(z+3);
subject to 4_9: PVa = (sum{p in {1,2,3,4}} C[p]/(1+d)^(p-1)) + D[1]*Nop_F[np] +

D[2]*(Ngi_F[np] + Nwi_F[np]);
subject to 4_10a {i in R}: Nop[i,np] <= 4*Nt[i];
subject to 4_10b: Nt_F = sum{i in R} Nt[i];
subject to 4_11: Nx_F = Ngi_F[np] + Nwi_F[np];
subject to 4_12: PVsc = sum{p in {1,2,3,4}} (E[1]*Nt_F +

E[2]*Nx_F)/(4*(1+d)^(p-1));
subject to 4_13a {z in {2..np}}: qo_F[z] <= max_qo_F;
subject to 4_13b {z in {2..np}}: qg_F[z] <= max_qg_F;
subject to 4_13c {z in {2..np}}: qw_F[z] <= max_qw_F;
subject to 4_14: PVtc = sum{p in {1,2,3,4}} (F[1]*max_qo_F + F[2]*max_qg_F +

F[3]*max_qw_F)/(4*(1+d)^(p-1));
subject to 4_15: PVap = PVe + PVdp + PVa + PVsc + PVtc;
subject to 4_16 {z in {2..np}}: PVo[z] = (G[1] + G[2]*Nop_F[z-1] + G[3]*qo_F[z]

+ G[4]*qg_F[z] + G[5]*qw_F[z])/(1+d)^(z+3);
subject to 4_17 {z in {2..np}}: PVr[z] = Po*XR*VC*(Np_F[z] -

Np_F[z-1])/(1+d)^(z+3);
subject to 4_18a: DCF[1] = -PVd[1];
subject to 4_18b {z in {2..(np-1)}}: DCF[z] = PVr[z] - PVo[z] - PVd[z];
subject to 4_18c: DCF[np] = PVr[np] - PVo[np];
subject to 4_19: NPV = -PVap + (sum{z in P} DCF[z]);

B.1.2 Data File (CASE-2_Data.dat)

param nr := 3;
param np := 18;
param tup := 365;
param max_Nop_pd := 4;
param max_Ni_pd := 1;
param max_Nwt_py := 4;
param: max_Ngi max_Nwi :=
#i max_Ngi max_Nwi
1 1 3
2 0 2
3 0 1
;
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param: zNgi_bar zNwi_bar RMds_bar :=
#m n zNgi_bar zNwi_bar RMds_bar
1 1 0 0 1
1 2 0 1 2
2 1 1 0 3
2 2 1 1 4
;
param max_qgi_pgi := 4000;
param max_qwi_pwi := 6360;

B.1.3 Data File (CASE-2_Econ.dat)

param Po := 60;
param XR := 8.5;
param VC := 6.29;
param d := 0.12;
param: A :=
1 665
2 240
3 380
4 366
;
param B := 480;
param: C :=
1 192
2 449
3 449
4 192
;
param: D :=
1 12
2 5
;
param: E :=
1 484
2 50
;
param: F :=
1 0.10914
2 0.23848
3 0.22074
;
param: G :=
1 400
2 4
3 0.007388
4 0.018289
5 0.022829
;

B.1.4 Run File (CASE-2_Run.run)

model CASE-2_Model.mod;
data CASE-2_Data.dat;
data CASE-2_Econ.dat;
data PWL_Table.dat;

option solver cplex;
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option cplex_options "threads=8 timelimit=43200 mipdisplay=2 mipgap=0.0001
nodefile=3 bestbound return_mipgap=1";

suffix sosno;
suffix ref;
param itersos2;
let itersos2 := 0;
for{i in R, z in P} {

let itersos2 := itersos2-1;
let {j in V_Np} eta_Np[i,z,j].sosno := itersos2;
let {j in V_Np} eta_Np[i,z,j].ref := Np_bar[i,j,1,1];

let itersos2 := itersos2-1;
let {k in V_Nop[i]} eta_Nop[i,z,k].sosno := itersos2;
let {k in V_Nop[i]} eta_Nop[i,z,k].ref := Nop_bar[i,1,k,1];

}
param itersos1;
let itersos1 := 0;
for{i in R, z in P} {

let itersos1 := itersos1+1;
let {l in V_RM[i]} eta_RM[i,z,l].sosno := itersos1;
let {l in V_RM[i]} eta_RM[i,z,l].ref := RMpp_bar[i,1,1,l];

}
for{i in R} {

let itersos1 := itersos1+1;
let {m in {1,2}} tau_zNgi[i,m].sosno := itersos1;
let {m in {1,2}} tau_zNgi[i,m].ref := zNgi_bar[m,1];

let itersos1 := itersos1+1;
let {n in {1,2}} tau_zNwi[i,n].sosno := itersos1;
let {n in {1,2}} tau_zNwi[i,n].ref := zNwi_bar[1,n];

}

solve;

display RM >CASE-2_Results.out;
display Nop >CASE-2_Results.out;
display Ngi >CASE-2_Results.out;
.
.
.
close CASE-2_Results.out;

B.2 REF-CASE-2

B.2.1 Model File (REF-CASE-2_Model.mod)

# Part 0: Index Description
# i = reservoirs
# j = breakpoints for Np
# k = breakpoints for Nop
# l = breakpoints for RM
# p = points in time prior to the production period
# z = points in time during the production period
#--------------------------------------------------------------------------------

# Part 1: Declaration (var, set, param, etc)
param nr;
set R := 1..nr;
param np;
set P := 1..np;
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param tup;
param Nop {i in R, z in P};
param Nwi {i in R, z in P};
param Ngi {i in R, z in P};
param RM {i in R, z in P};
param max_qgi_pgi;
param max_qwi_pwi;
param nbp_Np;
param nbp_Nop {i in R};
param nbp_RM {i in R};
set V_Np := 1..nbp_Np;
set V_Nop {i in R} := 1..nbp_Nop[i];
set V_RM {i in R} := 1..nbp_RM[i];
param Np_bar {i in R, j in V_Np, k in V_Nop[i], l in V_RM[i]};
param Nop_bar {i in R, j in V_Np, k in V_Nop[i], l in V_RM[i]};
param RMpp_bar {i in R, j in V_Np, k in V_Nop[i], l in V_RM[i]};
param qopp_bar {i in R, j in V_Np, k in V_Nop[i], l in V_RM[i]};
param Gp_bar {i in R, j in V_Np, k in V_Nop[i], l in V_RM[i]};
param Wp_bar {i in R, j in V_Np, k in V_Nop[i], l in V_RM[i]};
param Gi_bar {i in R, j in V_Np, k in V_Nop[i], l in V_RM[i]};
param Wi_bar {i in R, j in V_Np, k in V_Nop[i], l in V_RM[i]};
param Po;
param XR;
param VC;
param d;
param A {p in {1,2,3,4}};
param B;
param C {p in {1,2,3,4}};
param D {q in {1,2}};
param E {r in {1,2}};
param F {s in {1,2,3}};
param G {t in {1,2,3,4,5}};

var Nwt {i in R, z in P} integer >= 0;
var qopp {i in R, z in P} >= 0;
var qo {i in R, z in {2..np}} >= 0;
var qg {i in R, z in {2..np}} >= 0;
var qw {i in R, z in {2..np}} >= 0;
var qgi {i in R, z in {2..np}} >= 0;
var qwi {i in R, z in {2..np}} >= 0;
var Np {i in R, z in P} >= 0;
var Gp {i in R, z in P} >= 0;
var Wp {i in R, z in P} >= 0;
var Gi {i in R, z in P} >= 0;
var Wi {i in R, z in P} >= 0;
var Nop_F {z in P} integer >= 0;
var Ngi_F {z in P} integer >= 0;
var Nwi_F {z in P} integer >= 0;
var Nwt_F {z in P} integer >= 0;
var qopp_F {z in P} >= 0;
var qo_F {z in {2..np}} >= 0;
var qg_F {z in {2..np}} >= 0;
var qw_F {z in {2..np}} >= 0;
var qgi_F {z in {2..np}} >= 0;
var qwi_F {z in {2..np}} >= 0;
var Np_F {z in P} >= 0;
var Gp_F {z in P} >= 0;
var Wp_F {z in P} >= 0;
var Gi_F {z in P} >= 0;
var Wi_F {z in P} >= 0;
var lambda {i in R, z in P, j in V_Np, k in V_Nop[i]} >= 0;
var eta_Np {i in R, z in P, j in V_Np} >= 0;
var eta_Nop {i in R, z in P, k in V_Nop[i]} >= 0;
var PVe >= 0;
var PVdp >= 0;
var PVa >= 0;
var Nt {i in R} integer >= 0;
var Nt_F integer >= 0;
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var Nx_F integer >= 0;
var PVsc >= 0;
var max_qo_F >= 0;
var max_qg_F >= 0;
var max_qw_F >= 0;
var PVtc >= 0;
var PVap >= 0;
var PVd {z in {1..(np-1)}} >= 0;
var PVo {z in {2..np}} >= 0;
var PVr {z in {2..np}} >= 0;
var DCF {z in P};
var NPV;
#--------------------------------------------------------------------------------

# Part 2: Objective Function
maximize 4_5: NPV;
#--------------------------------------------------------------------------------

# Part 3: Constraints
subject to 3_3a {i in R, z in {2..np}}: qo[i,z] <= qopp[i,z];
subject to 3_3b {i in R, z in {2..np}}: qo[i,z] <= qopp[i,z-1];
subject to 3_4a {i in R, z in {2..np}}: qgi[i,z] <= Ngi[i,z-1]*max_qgi_pgi;
subject to 3_4b {i in R, z in {2..np}}: qwi[i,z] <= Nwi[i,z-1]*max_qwi_pwi;
subject to 3_9 {i in R}: Np[i,1] = 0;
subject to 3_10a {i in R, z in {2..np}}: Np[i,z] = Np[i,z-1] +

tup*qo[i,z]/1000000;
subject to 3_10b {i in R, z in {2..np}}: Gp[i,z] = Gp[i,z-1] + tup*qg[i,z]/1000;
subject to 3_10c {i in R, z in {2..np}}: Wp[i,z] = Wp[i,z-1] +

tup*qw[i,z]/1000000;
subject to 3_10d {i in R, z in {2..np}}: Gi[i,z] = Gi[i,z-1] + tup*qgi[i,z]/1000;
subject to 3_10e {i in R, z in {2..np}}: Wi[i,z] = Wi[i,z-1] +

tup*qwi[i,z]/1000000;
subject to 3_11 {i in R, z in P}: Nwt[i,z] = Nop[i,z] + Ngi[i,z] + Nwi[i,z];
subject to 3_12a {z in P}: Nop_F[z] = sum{i in R} Nop[i,z];
subject to 3_12b {z in P}: Ngi_F[z] = sum{i in R} Ngi[i,z];
subject to 3_12c {z in P}: Nwi_F[z] = sum{i in R} Nwi[i,z];
subject to 3_12d {z in P}: Nwt_F[z] = sum{i in R} Nwt[i,z];
subject to 3_12e {z in P}: qopp_F[z] = sum{i in R} qopp[i,z];
subject to 3_12f {z in {2..np}}: qo_F[z] = sum{i in R} qo[i,z];
subject to 3_12g {z in {2..np}}: qg_F[z] = sum{i in R} qg[i,z];
subject to 3_12h {z in {2..np}}: qw_F[z] = sum{i in R} qw[i,z];
subject to 3_12i {z in {2..np}}: qgi_F[z] = sum{i in R} qgi[i,z];
subject to 3_12j {z in {2..np}}: qwi_F[z] = sum{i in R} qwi[i,z];
subject to 3_12k {z in P}: Np_F[z] = sum{i in R} Np[i,z];
subject to 3_12l {z in P}: Gp_F[z] = sum{i in R} Gp[i,z];
subject to 3_12m {z in P}: Wp_F[z] = sum{i in R} Wp[i,z];
subject to 3_12n {z in P}: Gi_F[z] = sum{i in R} Gi[i,z];
subject to 3_12o {z in P}: Wi_F[z] = sum{i in R} Wi[i,z];
subject to 3_15a {i in R, z in P}: Np[i,z] = sum{j in V_Np, k in V_Nop[i]}

lambda[i,z,j,k]*Np_bar[i,j,k,RM[i,z]];
subject to 3_15b {i in R, z in P}: Nop[i,z] = sum{j in V_Np, k in V_Nop[i]}

lambda[i,z,j,k]*Nop_bar[i,j,k,RM[i,z]];
subject to 3_15d {i in R, z in P}: qopp[i,z] = sum{j in V_Np, k in V_Nop[i]}

lambda[i,z,j,k]*qopp_bar[i,j,k,RM[i,z]];
subject to 3_15e {i in R, z in P}: 1 = sum{j in V_Np, k in V_Nop[i]}

lambda[i,z,j,k];
subject to 3_15f {i in R, z in P, j in V_Np}: eta_Np[i,z,j] = sum{k in V_Nop[i]}

lambda[i,z,j,k];
subject to 3_15g {i in R, z in P, k in V_Nop[i]}: eta_Nop[i,z,k] = sum{j in

V_Np} lambda[i,z,j,k];
subject to 3_16a {i in R, z in P}: Gp[i,z] = sum{j in V_Np, k in V_Nop[i]}

lambda[i,z,j,k]*Gp_bar[i,j,k,RM[i,z]];
subject to 3_16b {i in R, z in P}: Wp[i,z] = sum{j in V_Np, k in V_Nop[i]}

lambda[i,z,j,k]*Wp_bar[i,j,k,RM[i,z]];
subject to 3_16c {i in R, z in P}: Gi[i,z] = sum{j in V_Np, k in V_Nop[i]}

lambda[i,z,j,k]*Gi_bar[i,j,k,RM[i,z]];
subject to 3_16d {i in R, z in P}: Wi[i,z] = sum{j in V_Np, k in V_Nop[i]}

lambda[i,z,j,k]*Wi_bar[i,j,k,RM[i,z]];
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subject to 4_6: PVe = sum{p in {1,2,3,4}} A[p]/(1+d)^(p-1);
subject to 4_7: PVdp = B*Nwt_F[1]/(1+d)^3;
subject to 4_8 {z in {1..(np-1)}}: PVd[z] = B*(Nwt_F[z+1] -

Nwt_F[z])/(1+d)^(z+3);
subject to 4_9: PVa = (sum{p in {1,2,3,4}} C[p]/(1+d)^(p-1)) + D[1]*Nop_F[np] +

D[2]*(Ngi_F[np] + Nwi_F[np]);
subject to 4_10a {i in R}: Nop[i,np] <= 4*Nt[i];
subject to 4_10b: Nt_F = sum{i in R} Nt[i];
subject to 4_11: Nx_F = Ngi_F[np] + Nwi_F[np];
subject to 4_12: PVsc = sum{p in {1,2,3,4}} (E[1]*Nt_F +

E[2]*Nx_F)/(4*(1+d)^(p-1));
subject to 4_13a {z in {2..np}}: qo_F[z] <= max_qo_F;
subject to 4_13b {z in {2..np}}: qg_F[z] <= max_qg_F;
subject to 4_13c {z in {2..np}}: qw_F[z] <= max_qw_F;
subject to 4_14: PVtc = sum{p in {1,2,3,4}} (F[1]*max_qo_F + F[2]*max_qg_F +

F[3]*max_qw_F)/(4*(1+d)^(p-1));
subject to 4_15: PVap = PVe + PVdp + PVa + PVsc + PVtc;
subject to 4_16 {z in {2..np}}: PVo[z] = (G[1] + G[2]*Nop_F[z-1] + G[3]*qo_F[z]

+ G[4]*qg_F[z] + G[5]*qw_F[z])/(1+d)^(z+3);
subject to 4_17 {z in {2..np}}: PVr[z] = Po*XR*VC*(Np_F[z] -

Np_F[z-1])/(1+d)^(z+3);
subject to 4_18a: DCF[1] = -PVd[1];
subject to 4_18b {z in {2..(np-1)}}: DCF[z] = PVr[z] - PVo[z] - PVd[z];
subject to 4_18c: DCF[np] = PVr[np] - PVo[np];
subject to 4_19: NPV = -PVap + (sum{z in P} DCF[z]);

B.2.2 Data File (REF-CASE-2_Data.dat)

param nr := 3;
param np := 18;
param tup := 365;
param: Nop Ngi Nwi RM :=
#i z Nop Ngi Nwi RM
1 1 4 1 0 3
1 2 7 1 1 4
1 3 10 1 2 4
.
.
.
;
param max_qgi_pgi := 4000;
param max_qwi_pwi := 6360;

B.2.3 Data File (REF-CASE-2_Econ.dat)

param Po := 60;
param XR := 8.5;
param VC := 6.29;
param d := 0.12;
param: A :=
1 665
2 240
3 380
4 366
;
param B := 480;
param: C :=
1 192
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2 449
3 449
4 192
;
param: D :=
1 12
2 5
;
param: E :=
1 484
2 50
;
param: F :=
1 0.10914
2 0.23848
3 0.22074
;
param: G :=
1 400
2 4
3 0.007388
4 0.018289
5 0.022829
;

B.2.4 Run File (REF-CASE-2_Run.run)

model REF-CASE-2_Model.mod;
data REF-CASE-2_Data.dat;
data REF-CASE-2_Econ.dat;
data PWL_Table.dat;

option solver cplex;
option cplex_options "threads=8 timelimit=43200 mipdisplay=2 mipgap=0.0001

nodefile=3 bestbound return_mipgap=1";

suffix sosno;
suffix ref;
param itersos2;
let itersos2 := 0;
for{i in R, z in P} {

let itersos2 := itersos2-1;
let {j in V_Np} eta_Np[i,z,j].sosno := itersos2;
let {j in V_Np} eta_Np[i,z,j].ref := Np_bar[i,j,1,1];

let itersos2 := itersos2-1;
let {k in V_Nop[i]} eta_Nop[i,z,k].sosno := itersos2;
let {k in V_Nop[i]} eta_Nop[i,z,k].ref := Nop_bar[i,1,k,1];

}

solve;

display RM >REF-CASE-2_Results.out;
display Nop >REF-CASE-2_Results.out;
display Ngi >REF-CASE-2_Results.out;
.
.
.
close REF-CASE-2_Results.out;
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Appendix C
AMPL Code for Uncertainty
Analysis

C.1 Model File (CASE-1xx_Model.mod)

# Part 0: Index Description
# i = reservoirs
# j = breakpoints for Np
# k = breakpoints for Nop
# l = breakpoints for RM
# p = points in time prior to the production period
# z = points in time during the production period
#--------------------------------------------------------------------------------

# Part 1: Declaration (var, set, param, etc)
param nr;
set R := 1..nr;
param np;
set P := 1..np;
param tup;
param max_Nop_pd;
param max_Ni_pd;
param max_Nwt_py;
param max_Ngi {i in R};
param max_Nwi {i in R};
param RM {i in R};
param zNgi {i in R};
param zNwi {i in R};
param max_qgi_pgi;
param max_qwi_pwi;
param nbp_Np;
param nbp_Nop {i in R};
param nbp_RM {i in R};
set V_Np := 1..nbp_Np;
set V_Nop {i in R} := 1..nbp_Nop[i];
set V_RM {i in R} := 1..nbp_RM[i];
param Np_bar {i in R, j in V_Np, k in V_Nop[i], l in V_RM[i]};
param Nop_bar {i in R, j in V_Np, k in V_Nop[i], l in V_RM[i]};
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param RMpp_bar {i in R, j in V_Np, k in V_Nop[i], l in V_RM[i]};
param qopp_bar {i in R, j in V_Np, k in V_Nop[i], l in V_RM[i]};
param Gp_bar {i in R, j in V_Np, k in V_Nop[i], l in V_RM[i]};
param Wp_bar {i in R, j in V_Np, k in V_Nop[i], l in V_RM[i]};
param Gi_bar {i in R, j in V_Np, k in V_Nop[i], l in V_RM[i]};
param Wi_bar {i in R, j in V_Np, k in V_Nop[i], l in V_RM[i]};
param Po;
param XR;
param VC;
param d;
param A {p in {1,2,3,4}};
param B;
param C {p in {1,2,3,4}};
param D {q in {1,2}};
param E {r in {1,2}};
param F {s in {1,2,3}};
param G {t in {1,2,3,4,5}};
param u_N;
param u_C;
param u_Po;

var Nop {i in R, z in P} integer >= 0;
var Ngi {i in R, z in P} integer >= 0;
var Nwi {i in R, z in P} integer >= 0;
var Nwt {i in R, z in P} integer >= 0;
var qopp {i in R, z in P} >= 0;
var qo {i in R, z in {2..np}} >= 0;
var qg {i in R, z in {2..np}} >= 0;
var qw {i in R, z in {2..np}} >= 0;
var qgi {i in R, z in {2..np}} >= 0;
var qwi {i in R, z in {2..np}} >= 0;
var Np {i in R, z in P} >= 0;
var Gp {i in R, z in P} >= 0;
var Wp {i in R, z in P} >= 0;
var Gi {i in R, z in P} >= 0;
var Wi {i in R, z in P} >= 0;
var Nop_F {z in P} integer >= 0;
var Ngi_F {z in P} integer >= 0;
var Nwi_F {z in P} integer >= 0;
var Nwt_F {z in P} integer >= 0;
var qopp_F {z in P} >= 0;
var qo_F {z in {2..np}} >= 0;
var qg_F {z in {2..np}} >= 0;
var qw_F {z in {2..np}} >= 0;
var qgi_F {z in {2..np}} >= 0;
var qwi_F {z in {2..np}} >= 0;
var Np_F {z in P} >= 0;
var Gp_F {z in P} >= 0;
var Wp_F {z in P} >= 0;
var Gi_F {z in P} >= 0;
var Wi_F {z in P} >= 0;
var lambda {i in R, z in P, j in V_Np, k in V_Nop[i]} >= 0;
var eta_Np {i in R, z in P, j in V_Np} >= 0;
var eta_Nop {i in R, z in P, k in V_Nop[i]} >= 0;
var PVe >= 0;
var PVdp >= 0;
var PVa >= 0;
var Nt {i in R} integer >= 0;
var Nt_F integer >= 0;
var Nx_F integer >= 0;
var PVsc >= 0;
var max_qo_F >= 0;
var max_qg_F >= 0;
var max_qw_F >= 0;
var PVtc >= 0;
var PVap >= 0;
var PVd {z in {1..(np-1)}} >= 0;
var PVo {z in {2..np}} >= 0;
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var PVr {z in {2..np}} >= 0;
var DCF {z in P};
var NPV;
#--------------------------------------------------------------------------------

# Part 2: Objective Function
maximize 4_5: NPV;
#--------------------------------------------------------------------------------

# Part 3: Constraints
subject to 3_3a {i in R, z in {2..np}}: qo[i,z] <= qopp[i,z];
subject to 3_3b {i in R, z in {2..np}}: qo[i,z] <= qopp[i,z-1];
subject to 3_4a {i in R, z in {2..np}}: qgi[i,z] <= Ngi[i,z-1]*max_qgi_pgi;
subject to 3_4b {i in R, z in {2..np}}: qwi[i,z] <= Nwi[i,z-1]*max_qwi_pwi;
subject to 3_5a {i in R, z in {2..np}}: Nop[i,z] - Nop[i,z-1] >= 0;
subject to 3_5b {i in R, z in {2..np}}: Ngi[i,z] - Ngi[i,z-1] >= 0;
subject to 3_5c {i in R, z in {2..np}}: Nwi[i,z] - Nwi[i,z-1] >= 0;
subject to 3_6a {i in R, z in P}: Ngi[i,z] <= zNgi[i]*max_Ngi[i];
subject to 3_6b {i in R, z in P}: Nwi[i,z] <= zNwi[i]*max_Nwi[i];
subject to 3_7a: Nop_F[1] <= max_Nop_pd;
subject to 3_7b: Ngi_F[1] + Nwi_F[1] <= max_Ni_pd;
subject to 3_8 {z in {2..np}}: Nwt_F[z] - Nwt_F[z-1] <= max_Nwt_py;
subject to 3_9 {i in R}: Np[i,1] = 0;
subject to 3_10a {i in R, z in {2..np}}: Np[i,z] = Np[i,z-1] +

tup*qo[i,z]/1000000;
subject to 3_10b {i in R, z in {2..np}}: Gp[i,z] = Gp[i,z-1] + tup*qg[i,z]/1000;
subject to 3_10c {i in R, z in {2..np}}: Wp[i,z] = Wp[i,z-1] +

tup*qw[i,z]/1000000;
subject to 3_10d {i in R, z in {2..np}}: Gi[i,z] = Gi[i,z-1] + tup*qgi[i,z]/1000;
subject to 3_10e {i in R, z in {2..np}}: Wi[i,z] = Wi[i,z-1] +

tup*qwi[i,z]/1000000;
subject to 3_11 {i in R, z in P}: Nwt[i,z] = Nop[i,z] + Ngi[i,z] + Nwi[i,z];
subject to 3_12a {z in P}: Nop_F[z] = sum{i in R} Nop[i,z];
subject to 3_12b {z in P}: Ngi_F[z] = sum{i in R} Ngi[i,z];
subject to 3_12c {z in P}: Nwi_F[z] = sum{i in R} Nwi[i,z];
subject to 3_12d {z in P}: Nwt_F[z] = sum{i in R} Nwt[i,z];
subject to 3_12e {z in P}: qopp_F[z] = sum{i in R} qopp[i,z];
subject to 3_12f {z in {2..np}}: qo_F[z] = sum{i in R} qo[i,z];
subject to 3_12g {z in {2..np}}: qg_F[z] = sum{i in R} qg[i,z];
subject to 3_12h {z in {2..np}}: qw_F[z] = sum{i in R} qw[i,z];
subject to 3_12i {z in {2..np}}: qgi_F[z] = sum{i in R} qgi[i,z];
subject to 3_12j {z in {2..np}}: qwi_F[z] = sum{i in R} qwi[i,z];
subject to 3_12k {z in P}: Np_F[z] = sum{i in R} Np[i,z];
subject to 3_12l {z in P}: Gp_F[z] = sum{i in R} Gp[i,z];
subject to 3_12m {z in P}: Wp_F[z] = sum{i in R} Wp[i,z];
subject to 3_12n {z in P}: Gi_F[z] = sum{i in R} Gi[i,z];
subject to 3_12o {z in P}: Wi_F[z] = sum{i in R} Wi[i,z];
subject to 6_10 {i in R, z in P}: Np[i,z] = u_N*(sum{j in V_Np, k in V_Nop[i]}

lambda[i,z,j,k]*Np_bar[i,j,k,RM[i]]);
subject to 3_15b {i in R, z in P}: Nop[i,z] = sum{j in V_Np, k in V_Nop[i]}

lambda[i,z,j,k]*Nop_bar[i,j,k,RM[i]];
subject to 3_15d {i in R, z in P}: qopp[i,z] = sum{j in V_Np, k in V_Nop[i]}

lambda[i,z,j,k]*qopp_bar[i,j,k,RM[i]];
subject to 3_15e {i in R, z in P}: 1 = sum{j in V_Np, k in V_Nop[i]}

lambda[i,z,j,k];
subject to 3_15f {i in R, z in P, j in V_Np}: eta_Np[i,z,j] = sum{k in V_Nop[i]}

lambda[i,z,j,k];
subject to 3_15g {i in R, z in P, k in V_Nop[i]}: eta_Nop[i,z,k] = sum{j in

V_Np} lambda[i,z,j,k];
subject to 3_16a {i in R, z in P}: Gp[i,z] = sum{j in V_Np, k in V_Nop[i]}

lambda[i,z,j,k]*Gp_bar[i,j,k,RM[i]];
subject to 3_16b {i in R, z in P}: Wp[i,z] = sum{j in V_Np, k in V_Nop[i]}

lambda[i,z,j,k]*Wp_bar[i,j,k,RM[i]];
subject to 3_16c {i in R, z in P}: Gi[i,z] = sum{j in V_Np, k in V_Nop[i]}

lambda[i,z,j,k]*Gi_bar[i,j,k,RM[i]];
subject to 3_16d {i in R, z in P}: Wi[i,z] = sum{j in V_Np, k in V_Nop[i]}

lambda[i,z,j,k]*Wi_bar[i,j,k,RM[i]];
subject to 6_11a: PVe = u_C*(sum{p in {1,2,3,4}} A[p]/(1+d)^(p-1));
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subject to 6_11b: PVdp = u_C*(B*Nwt_F[1]/(1+d)^3);
subject to 6_11c {z in {1..(np-1)}}: PVd[z] = u_C*(B*(Nwt_F[z+1] -

Nwt_F[z])/(1+d)^(z+3));
subject to 6_11d: PVa = u_C*((sum{p in {1,2,3,4}} C[p]/(1+d)^(p-1)) +

D[1]*Nop_F[np] + D[2]*(Ngi_F[np] + Nwi_F[np]));
subject to 4_10a {i in R}: Nop[i,np] <= 4*Nt[i];
subject to 4_10b: Nt_F = sum{i in R} Nt[i];
subject to 4_11: Nx_F = Ngi_F[np] + Nwi_F[np];
subject to 6_11e: PVsc = u_C*(sum{p in {1,2,3,4}} (E[1]*Nt_F +

E[2]*Nx_F)/(4*(1+d)^(p-1)));
subject to 4_13a {z in {2..np}}: qo_F[z] <= max_qo_F;
subject to 4_13b {z in {2..np}}: qg_F[z] <= max_qg_F;
subject to 4_13c {z in {2..np}}: qw_F[z] <= max_qw_F;
subject to 6_11f: PVtc = u_C*(sum{p in {1,2,3,4}} (F[1]*max_qo_F + F[2]*max_qg_F

+ F[3]*max_qw_F)/(4*(1+d)^(p-1)));
subject to 4_15: PVap = PVe + PVdp + PVa + PVsc + PVtc;
subject to 6_11g {z in {2..np}}: PVo[z] = u_C*((G[1] + G[2]*Nop_F[z-1] +

G[3]*qo_F[z] + G[4]*qg_F[z] + G[5]*qw_F[z])/(1+d)^(z+3));
subject to 6_12 {z in {2..np}}: PVr[z] = u_Po*(Po*XR*VC*(Np_F[z] -

Np_F[z-1])/(1+d)^(z+3));
subject to 4_18a: DCF[1] = -PVd[1];
subject to 4_18b {z in {2..(np-1)}}: DCF[z] = PVr[z] - PVo[z] - PVd[z];
subject to 4_18c: DCF[np] = PVr[np] - PVo[np];
subject to 4_19: NPV = -PVap + (sum{z in P} DCF[z]);

C.2 Data File (CASE-1xx_Data.dat)

param nr := 3;
param np := 18;
param tup := 365;
param max_Nop_pd := 4;
param max_Ni_pd := 1;
param max_Nwt_py := 4;
param: max_Ngi max_Nwi :=
#i max_Ngi max_Nwi
1 1 3
2 0 2
3 0 1
;
param: RM zNgi zNwi:=
#i RM zNgi zNwi
1 4 1 1
2 2 0 1
3 2 0 1
;
param max_qgi_pgi := 4000;
param max_qwi_pwi := 6360;

C.3 Data File (CASE-1xx_Econ.dat)

param Po := 60;
param XR := 8.5;
param VC := 6.29;
param d := 0.12;
param: A :=
1 665

142



2 240
3 380
4 366
;
param B := 480;
param: C :=
1 192
2 449
3 449
4 192
;
param: D :=
1 12
2 5
;
param: E :=
1 484
2 50
;
param: F :=
1 0.10914
2 0.23848
3 0.22074
;
param: G :=
1 400
2 4
3 0.007388
4 0.018289
5 0.022829
;

C.4 Files Related to CASE-101

C.4.1 Data File (CASE-101_Uncertainty.dat)

param u_N := 0.855240;
param u_C := 1.118941;
param u_Po := 0.924041;

C.4.2 Run File (CASE-101_Run.run)

model CASE-1xx_Model.mod;
data CASE-1xx_Data.dat;
data CASE-1xx_Econ.dat;
data CASE-101_Uncertainty.dat;
data PWL_Table.dat;

option solver cplex;
option cplex_options "threads=8 timelimit=3600 mipdisplay=2 mipgap=0.0001

nodefile=3 bestbound return_mipgap=1";

suffix sosno;
suffix ref;
param itersos2;
let itersos2 := 0;
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for{i in R, z in P} {
let itersos2 := itersos2-1;
let {j in V_Np} eta_Np[i,z,j].sosno := itersos2;
let {j in V_Np} eta_Np[i,z,j].ref := Np_bar[i,j,1,1];

let itersos2 := itersos2-1;
let {k in V_Nop[i]} eta_Nop[i,z,k].sosno := itersos2;
let {k in V_Nop[i]} eta_Nop[i,z,k].ref := Nop_bar[i,1,k,1];

}

solve;

display u_N, u_C, u_Po >CASE-101_Results.out;
display RM >CASE-101_Results.out;
display Nop >CASE-101_Results.out;
.
.
.
close CASE-101_Results.out;

C.5 Run File (MASTER_Run.run)

include CASE-101_Run.run;
reset;

include CASE-102_Run.run;
reset;

.

.

.

include CASE-200_Run.run;
reset;
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