Net present value: KPI typically used to evaluate and decide on projects and to compare development alternatives

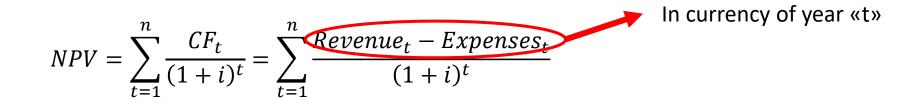
$$NPV = \sum_{t=1}^{n} \frac{CF_t}{(1+i)^t} = \sum_{t=1}^{n} \frac{Revenue_t - Expenses_t}{(1+i)^t}$$

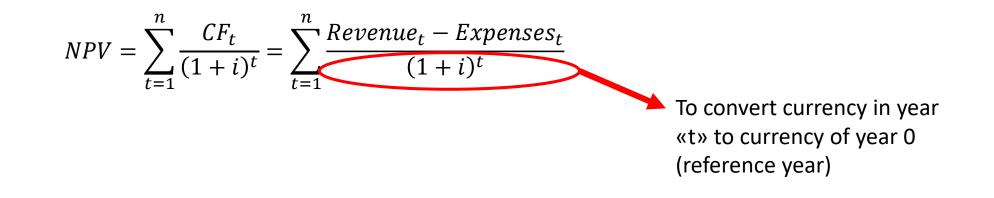
Discounted cash flow (DCF) method

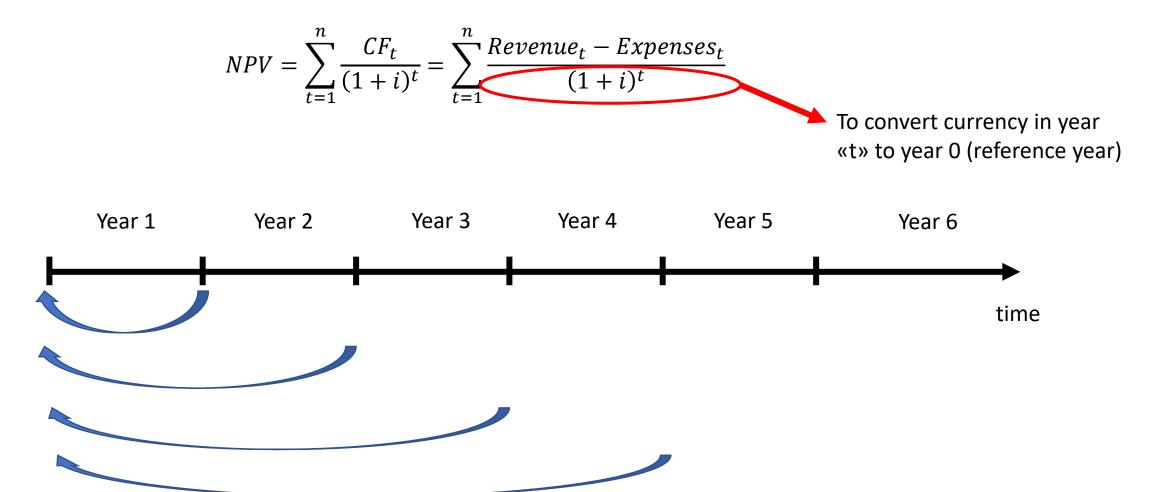
- Calculated on a yearly basis:
  - Typically end of year OR mid-year

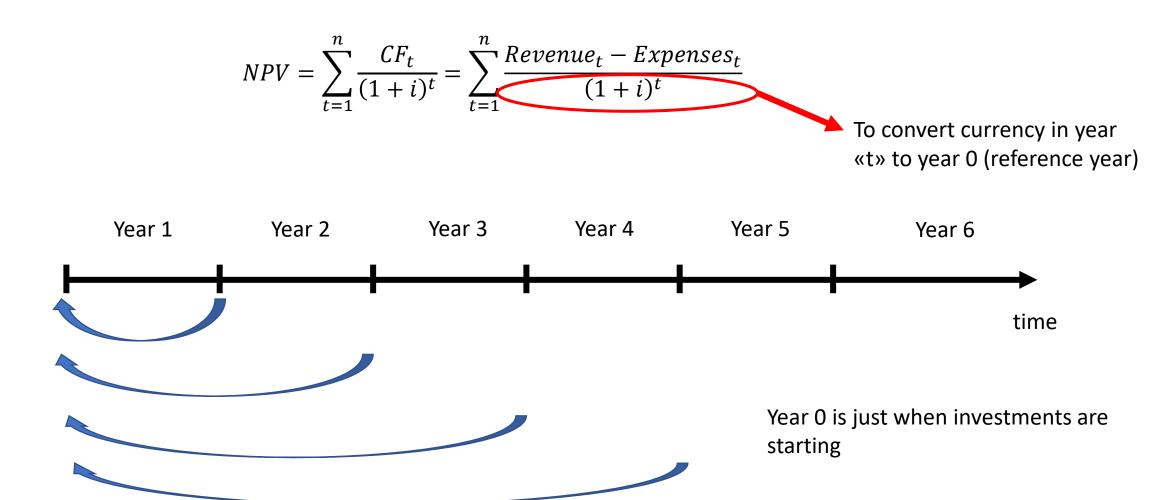
TPG4230 – Field development and operations – Prof Milan Stanko

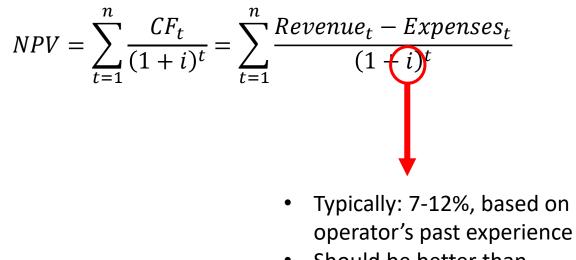
Net present value: KPI typically used to evaluate and decide on projects and to compare development alternatives


$$NPV = \sum_{t=1}^{n} \frac{CF_t}{(1+i)^t} = \sum_{t=1}^{n} \frac{Revenue_t - Expenses_t}{(1+i)^t}$$





Discounted cash flow (DCF) method


- Calculated on a yearly basis:
  - Typically end of year OR mid-year














 Should be better than investing the capital on other financial instruments

$$NPV = \sum_{t=1}^{n} \frac{CF_t}{(1+i)^t} = \sum_{t=1}^{n} \frac{Revenue_t - Expenses_t}{(1+i)^t}$$

- *Revenue*<sub>t</sub>: Sales of oil and gas (yearly production \* price per volume)
  - Tariffs to other companies for using your infrastructure (e.g. processing fluids for tie-backs)

$$NPV = \sum_{t=1}^{n} \frac{CF_t}{(1+i)^t} = \sum_{t=1}^{n} \frac{Revenue_t - Expenses_t}{(1+i)^t}$$

- *Revenue<sub>t</sub>*: Sales of oil and gas (yearly production \* price per volume)
  - Tariffs to other companies for using your infrastructure (e.g. processing fluids for tie-backs)

 Assuming 50 USD/bbl, a field with 150 kstbd, for a year this gives 7.5 E09 USD (20E06 USD per day)

$$NPV = \sum_{t=1}^{n} \frac{CF_t}{(1+i)^t} = \sum_{t=1}^{n} \frac{Revenue_t - Expenses_t}{(1+i)^t}$$

- *Revenue<sub>t</sub>*: Sales of oil and gas (yearly production \* price per volume)
  - Tariffs to other companies for using your infrastructure (e.g. processing fluids for tie-backs)

- Assuming 50 USD/bbl, a field with 150 kstbd, for a year this gives 7.5 E09 USD (20E06 USD per day)
- Assuming a gas price of 0.66 USD/m3 (Feb 2023), and a production of 20E06 Sm3/d, this gives for a year 4.8 E09 USD (13 E06 USD per day)

$$NPV = \sum_{t=1}^{n} \frac{CF_t}{(1+i)^t} = \sum_{t=1}^{n} \frac{Revenue_t - Expenses_t}{(1+i)^t}$$

- *Revenue<sub>t</sub>*: Sales of oil and gas (yearly production \* price per volume)
  - Tariffs to other companies for using your infrastructure (e.g. processing fluids for tiebacks)

- Usually assumed constant
- If gas, it is usually negotiated as part of a delivery contract

$$NPV = \sum_{t=1}^{n} \frac{CF_t}{(1+i)^t} = \sum_{t=1}^{n} \frac{Revenue_t - Expenses_t}{(1+i)^t}$$

- *Revenue<sub>t</sub>*: Sales of oil and gas (yearly production \* price per volume)
  - Tariffs to other companies for using your infrastructure (e.g. processing fluids for tie-backs)

During early years (4-8) there is no revenue!! (field doesn't exist)

$$NPV = \sum_{t=1}^{n} \frac{CF_t}{(1+i)^t} = \sum_{t=1}^{n} \frac{Revenue_t - Expenses_t}{(1+i)^t}$$

 $Expenses_t = DRILLEX_t + CAPEX_t + Depreciation_t + OPEX_t + TAX_t + ABEX_t$ 

$$NPV = \sum_{t=1}^{n} \frac{CF_t}{(1+i)^t} = \sum_{t=1}^{n} \frac{Revenue_t - Expenses_t}{(1+i)^t}$$

 $Expenses_t = DRILLEX_t + CAPEX_t + Depreciation_t + OPEX_t + TAX_t + ABEX_t$ 

The biggest expenses occur at the beginning, when there is a lot of construction and drilling

$$NPV = \sum_{t=1}^{n} \frac{CF_t}{(1+i)^t} = \sum_{t=1}^{n} \frac{Revenue_t - Expenses_t}{(1+i)^t}$$

 $Expenses_t = DRILLEX_t + CAPEX_t + Depreciation_t + OPEX_t + TAX_t + ABEX_t$ 

#### Exploration costs

All exploration costs are, as a starting point, deductible and may be off-set against profits from production.

Moreover, companies may claim an annual cash refund of the tax value of direct and indirect exploration costs under ordinary petroleum tax and special tax (this amounts to 78% of such costs), with the exception of finance costs, with the amount of the refund limited to the tax value of the net tax losses. This is an alternative to carrying the losses forward.

Source: oil and gas taxation in Norway. Deloitte

$$NPV = \sum_{t=1}^{n} \frac{CF_t}{(1+i)^t} = \sum_{t=1}^{n} \frac{Revenue_t - Expenses_t}{(1+i)^t}$$

 $Expenses_t = DRILLEX_t + CAPEX_t + Depreciation_t + OPEX_t + TAX_t + ABEX_t$ 

A deductible for taxes is an expense that a taxpayer or business can subtract from adjusted gross income, which reduces their income, thereby reducing the overall tax they need to pay.

https://www.investopedia.com > ... > Tax Deductions

Deductible Definition, Common Tax and Business Deductibles

$$NPV = \sum_{t=1}^{n} \frac{CF_t}{(1+i)^t} = \sum_{t=1}^{n} \frac{Revenue_t - Expenses_t}{(1+i)^t}$$

$$Expenses_t = DRILLEX_t + CAPEX_t + Depreciation_t + OPEX_t + TAX_t + ABEX_t$$

### Examples:

- Well plugging
- Removal of flowlines, pipelines offshore structure
- Cleaning
- monitoring

$$NPV = \sum_{t=1}^{n} \frac{CF_t}{(1+i)^t} = \sum_{t=1}^{n} \frac{Revenue_t - Expenses_t}{(1+i)^t}$$

 $Expenses_t = DRILLEX_t + CAPEX_t + Depreciation_t + OPEX_t + TAX_t + ABEX_t$ 

Are often neglected as they are deductible and they occur late in the life of the field (heavily discounted)

#### Abandonment costs

Abandonment costs are deductible when the costs are actually incurred. Accounting provisions made in order to meet future abandonment costs are not deductible.

Source: oil and gas taxation in Norway. Deloitte

$$NPV = \sum_{t=1}^{n} \frac{CF_t}{(1+i)^t} = \sum_{t=1}^{n} \frac{Revenue_t - Expenses_t}{(1+i)^t}$$

 $Expenses_t = DRILLEX_t + CAPEX_t + Depreciation_t \rightarrow OPEX_t + TAX_t + ABEX_t$ 

Capital allowances for investments made in productions facilities and pipelines and installations which are part of such production facilities and pipelines are calculated on a straight line basis over six years at a rate of 16.66% per year from the date the capital expenditure was incurred. The capital allowances are granted both when calculating the basis for ordinary petroleum tax and special tax.

Source: oil and gas taxation in Norway. Deloitte

$$NPV = \sum_{t=1}^{n} \frac{CF_t}{(1+i)^t} = \sum_{t=1}^{n} \frac{Revenue_t - Expenses_t}{(1+i)^t}$$

 $Expenses_t \in DRILLEX_t + CAPEX_t + Depreciation_t + OPEX_t + TAX_t + ABEX_t$ 

### **Examples:**

- Drilling vessel renting (daily rate)
- Drilling materials (tubulars, cement, mud, completion, wellhead)
- Test during drilling (DST, logging, pressure tests, sampling)
- X-mas tree
- Drilling tools
- Salaries, insurance

$$NPV = \sum_{t=1}^{n} \frac{CF_t}{(1+i)^t} = \sum_{t=1}^{n} \frac{Revenue_t - Expenses_t}{(1+i)^t}$$

 $Expenses_t \in DRILLEX_t + CAPEX_t + Depreciation_t + OPEX_t + TAX_t + ABEX_t$ 

### **Examples:**

- Drilling vessel renting (daily rate)
- Drilling materials (tubulars, cement, mud, completion, wellhead)
- Test during drilling (DST, logging, pressure tests, sampling)
- X-mas tree
- Drilling tools
- Salaries, insurance

Cost per well:
30-180 E06 USD (offshore)
10-15 E06 (onshore)

# Example

| Item                             | Source                             | Cost (US\$)  |  |
|----------------------------------|------------------------------------|--------------|--|
| Wellhead                         | TechnipFMC quotation 7/4/17        | 362,500      |  |
| Conductor                        | LR data based on planned 2017 well | 320,000      |  |
| 20" Casing                       | Tenaris quotation 31/3/17          | 722.56/m     |  |
| 13-5/8" Casing                   | Tenaris quotation 31/3/17          | 342.76/m     |  |
| 9-5/8" Casing                    | Tenaris quotation 31/3/17          | 204.80/m     |  |
| 9-5/8" 13 Cr Casing              | Tenaris quotation 31/3/17          | 956.00/m     |  |
| Float equipment, etc. (full set) | LR data based on planned 2017 well | 366,000      |  |
| Total                            |                                    | 6,617,464.00 |  |

Table 8-5: Completion tangibles cost estimate

| Item                   | Source                             | Cost (US\$) |
|------------------------|------------------------------------|-------------|
| Well test equipment    | LR data based on planned 2017 well | 1,015,000   |
| SSTT                   | Expro quotation 10/4/17            | 750,000     |
| OHGP                   | LR data based on planned 2017 well | 925,000     |
| Upper completion       | LR data based on planned 2017 well | 625,000     |
| Xmas Tree              | TechnipFMC quotation 7/4/17        | 4,738,682   |
| FMC Installation costs | TechnipFMC quotation 7/4/17        | 1,300,000   |

Source: Karish-Tanin PDO

#### Table 8-4: Drilling tangibles cost estimate

## Example

Table 8-6: Total calculated drilling costs - 3 Karish Main development wells

| Certainty<br>level | Total days | Total<br>Services<br>Spread rate<br>(US\$ mln) | Total Rig<br>rate<br>(US\$ mIn) | Drilling<br>tangibles<br>(US\$ mln) | Completion<br>tangibles<br>(US\$ mln) | Total<br>Drillex<br>(US\$ mln) |
|--------------------|------------|------------------------------------------------|---------------------------------|-------------------------------------|---------------------------------------|--------------------------------|
| P90                | 379        | 95.22                                          | 94.75                           | 24.82                               | 35.07                                 | 248.86                         |
| P50                | 277        | 55.68                                          | 55.40                           | 19.86                               | 28.06                                 | 159.00                         |
| P10                | 241        | 36.33                                          | 36.15                           | 14.89                               | 21.04                                 | 108.41                         |

Source: Karish-Tanin PDO

$$NPV = \sum_{t=1}^{n} \frac{CF_t}{(1+i)^t} = \sum_{t=1}^{n} \frac{Revenue_t - Expenses_t}{(1+i)^t}$$

$$Expenses_t = DRILLEX_t \leftarrow CAPEX_t + Depreciation_t + OPEX_t + TAX_t + ABEX_t$$

### Examples:

- Engineering studies
- Processing facilities (separators, pumps, compressors, heat exchangers, control system, injection, oil, water and gas treatment
- Offshore structure (cost of platform or vessel, living quarters, power source, helideck)
- Subsea system (template, flowlines, pipelines, risers, umbilicals, metering)
- Export system
- Salaries, insurance

$$NPV = \sum_{t=1}^{n} \frac{CF_t}{(1+i)^t} = \sum_{t=1}^{n} \frac{Revenue_t - Expenses_t}{(1+i)^t}$$

$$Expenses_t = DRILLEX_t \leftarrow CAPEX_t + Depreciation_t + OPEX_t + TAX_t + ABEX_t$$

### Examples:

- Engineering studies
- Processing facilities (separators, pumps, compressors, heat exchangers, control system, injection, oil, water and gas treatment
- Offshore structure (cost of platform or vessel, living quarters, power source, helideck)
- Subsea system (template, flowlines, pipelines, risers, umbilicals, metering)
- Export system
- Salaries, insurance

There is usually a payment schedule for CAPEX over a few years for big items (FPSO, subsea equipment etc)

$$NPV = \sum_{t=1}^{n} \frac{CF_t}{(1+i)^t} = \sum_{t=1}^{n} \frac{Revenue_t - Expenses_t}{(1+i)^t}$$

 $Expenses_t = DRILLEX_t \leftarrow CAPEX_t + Depreciation_t + OPEX_t + TAX_t + ABEX_t$ 

### Examples:

- Engineering studies
- Processing facilities (separators, pumps, compressors, heat exchangers, control system, injection, oil, water and gas treatment
- Offshore structure (cost of platform or vessel, living quarters, power source, helideck)
- Subsea system (template, flowlines, pipelines, risers, umbilicals, metering)
- Export system
- Salaries, insurance

- Total cost:
   -O (1E09) USD
   Examples:
- -O(1E06) USD per km of subsea pipeline -FPSO 200 – 3000 1E06 USD

## Table 6-6 CAPEX Estimation Example (2007 Data)1. Subsea Equipment Cost

|                         | Subsea Trees                                         | Unit | Cost        |  |
|-------------------------|------------------------------------------------------|------|-------------|--|
| Subsea Tree Assembly    |                                                      | 3    | \$4,518,302 |  |
| (each)                  | 5-inch $\times$ 2-inch 10-ksi vertical tree assembly | 1    | included    |  |
|                         | Retrievable choke assembly                           | 1    | included    |  |
|                         | Tubing hanger 5-in. 10 ksi                           | 1    | included    |  |
|                         | High-pressure tree cap                               | 1    | included    |  |
|                         | 5-in. tubing head spool assembly                     | 1    | included    |  |
|                         | Insulation                                           | 1    | included    |  |
| Subsea H                | ardware                                              |      |             |  |
| Subsea N                | Manifold                                             |      |             |  |
|                         | (EE trim)                                            | 1    | \$5,760,82  |  |
| Suction                 | Pile                                                 |      |             |  |
|                         | Suction pile for manifold                            | 1    | \$1,000,00  |  |
| Production PLET         |                                                      | 2    | \$3,468,36  |  |
| Production Tree Jumpers |                                                      | 3    | \$975,17    |  |
| Pigging Loop            |                                                      | 1    | \$431,55    |  |
| Product                 | ion PLET Jumpers                                     | 2    | \$1,796,87  |  |
| Flying Leads            |                                                      |      | \$1,247,03  |  |
|                         | Hydraulic flying lead SUTA to tree                   |      |             |  |
|                         | Electrical flying lead SUTA to tree                  |      |             |  |
|                         | Hydraulic flying lead SCM to manifold                |      |             |  |
|                         | Electrical flying lead SUTA to manifold              |      |             |  |
| Other Su                | bsea Hardware                                        |      |             |  |
| Multiphase Flow Meter   |                                                      | 1    | \$924,250   |  |

Examples

Source: Yong Bai, Qiang Bai, Subsea engineering Handbook.

## Table 6-6CAPEX Estimation Example (2007 Data)—cont'd1. Subsea Equipment Cost

| Subsea Trees                                           | Unit                      | Cost            |
|--------------------------------------------------------|---------------------------|-----------------|
| Umbilicals                                             |                           |                 |
| Umbilical                                              |                           | \$11,606,659    |
| 25,000ft Length                                        |                           |                 |
| Risers                                                 |                           |                 |
| Riser                                                  |                           | \$6,987,752     |
| Prod. 8.625-in. $\times$ 0                             | $0.906-in. \times 65$     |                 |
| SCR, $2 \times 7500$ f                                 | ft                        |                 |
| Flowlines                                              |                           |                 |
| Flowline                                               |                           | \$4,743,849     |
| Dual 10-in. SMLS                                       | API 5L X-65,              |                 |
| flowline, 52,026                                       | ft                        |                 |
|                                                        | Total Procurement Cos     | st \$54,264,324 |
| 2. Testing Cost                                        |                           |                 |
| Subsea Hardware FAT,EFAT                               |                           | \$27,132,162    |
| Tree SIT & Commissioning                               |                           | \$875,000       |
| Manifold & PLET SIT                                    |                           | \$565,499       |
| Control System SIT                                     |                           | \$237,786       |
| ·                                                      | <b>Total Testing Cost</b> | \$28,810,447    |
| 3. Installation Cost                                   |                           |                 |
| <b>Tree</b> $3 \text{ days} \times \$1000 \text{k pe}$ | er day                    | \$3,000,000     |
| Manifold & Other hardware                              |                           | \$48,153        |
| <b>Jumpers</b> (1 day per jumper -                     | ⊢ downtime)               | \$32,102        |
| ROV Vessel Support                                     | -                         | \$1,518,000     |
| Other Installation Cost                                |                           | \$862,000       |
| Pipe-lay 52 0260ft                                     |                           | \$43 139 000    |
| ndbook.                                                |                           |                 |

Source: Yong Bai, Qiang Bai, Subsea engineering Handbook.

## Examples

$$NPV = \sum_{t=1}^{n} \frac{CF_t}{(1+i)^t} = \sum_{t=1}^{n} \frac{Revenue_t - Expenses_t}{(1+i)^t}$$

 $Expenses_t = DRILLEX_t + CAPEX_t + Depreciation_t + OPEX_t + DAX_t + ABEX_t$ 

#### Examples:

- Salaries
- Insurance
- Maintenance
- Equipment
- Well intervention
- Power consumption
- Production chemicals (MEG, inhibitors)
- Pigging
- Transportation and export

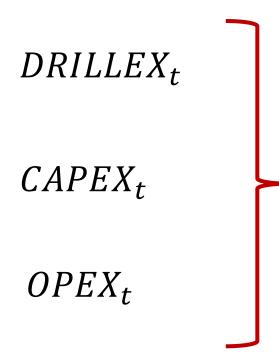
- Heavily depends on the size and type of facility
- It often dictates when to abandon (CF becomes negative)

$$NPV = \sum_{t=1}^{n} \frac{CF_t}{(1+i)^t} = \sum_{t=1}^{n} \frac{Revenue_t - Expenses_t}{(1+i)^t}$$

 $Expenses_t = DRILLEX_t + CAPEX_t + Depreciation_t + OPEX_t + DAX_t + ABEX_t$ 

#### Examples:

- Salaries
- Insurance
- Maintenance
- Equipment
- Well intervention
- Power consumption
- Production chemicals (MEG, inhibitors)
- Pigging
- Transportation and export


- Heavily depends on the size and type of facility
- It often dictates when to abandon (CF becomes negative)

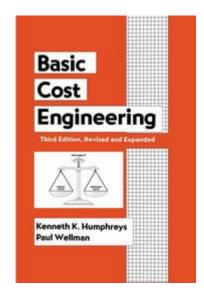
Annual OPEX = 
$$[A(\%) \times \text{cumulative CAPEX}(\$)] + \left[B\left(\frac{\$}{\text{bbl}}\right) \times \text{production}\left(\frac{\text{bbl}}{\text{year}}\right)\right]$$

$$NPV = \sum_{t=1}^{n} \frac{CF_t}{(1+i)^t} = \sum_{t=1}^{n} \frac{Revenue_t - Expenses_t}{(1+i)^t}$$



Should be adjusted by inflation




Function of number of wells, maximum production rates of oil, gas and water, development concept, type of fluids etc.

## Cost estimation – expected accuracy

- For DG1, +-40%
- For DG2, +-30%
- For DG3, +-20%

# Costing

- It is a profession and a discipline
- Internal company databases (based on previous projects)
- Provided by contractors and suppliers
- Commercial software
- Depending on the desired accuracy, can take significant time



$$C_{2} = C_{1} \left(\frac{S_{2}}{S_{1}}\right)^{n}$$
  

$$C_{1} = \text{cost of equipment of capacity } S_{1}$$
  

$$C_{2} = \text{cost of equipment of capacity } S_{2}$$

$$NPV = \sum_{t=1}^{n} \frac{CF_t}{(1+i)^t} = \sum_{t=1}^{n} \frac{Revenue_t - Expenses_t}{(1+i)^t}$$

$$Expenses_t = DRILLEX_t + CAPEX_t + Depreciation_t + OPEX_t + TAX_t + BEX_t$$

- Petroleum tax
- CO2 tax (in 2022 NOK 1.65 NOK/Sm3 gas)

The Norwegian petroleum tax system is based on the taxation of the entity rather than taxation of specific petroleum assets.

### Neutral tax system

The petroleum taxation system is intended to be neutral, so that an investment project that is profitable for an investor before tax is also profitable after tax. This ensures substantial revenues for the Norwegian society and at the same time encourages companies to carry out all profitable projects.

To ensure a neutral tax system, only the company's net profit is taxable, and losses may be carried forward in the company tax. Special tax value of losses is reimbursed at the tax settlement, the year after it accrued. Neutral properties in the tax system are also important when defining investment based tax deductions.

Sources: oil and gas taxation in Norway. Deloitte https://www.norskpetroleum.no/en/economy/petroleum-tax

| Ordinary corporate tax                          | Special tax                            |
|-------------------------------------------------|----------------------------------------|
| Operating income (norm prices for oil)          | Operating income (norm prices for oil) |
| - Operating expenses                            | - Operating expenses                   |
| - Linear depreciation for investments (6 years) | - Depreciation for investments (100 %) |
| - Exploration expenses, R&D and decom.          | - Exploration expenses, R&D and decom. |
| - Environmental taxes and area fees             | - Environmental taxes and area fees    |
| - Net financial costs                           | - Calculated ordinary tax              |
| - (Loss carry forward)                          |                                        |
| = Corporation tax base (22 %)                   | = Special tax base (71,8 %)            |

The Petroleum Price Council is responsible for setting norm prices, which it does after collecting information from the companies and holding meetings with them. The norm price system applies to various types and qualities of petroleum. For gas, the actual sales prices are used.

Source: https://www.norskpetroleum.no/en/economy/petroleum-tax

#### Net present value

$$NPV = \sum_{t=1}^{n} \frac{CF_t}{(1+i)^t} = \sum_{t=1}^{n} \frac{Revenue_t - Expenses_t}{(1+i)^t}$$

$$Expenses_t = DRILLEX_t + CAPEX_t + Depreciation_t + OPEX_t + TAX_t + BEX_t$$

• CO2 tax (in 2022 NOK 1.65 NOK/Sm3 gas)

#### Net present value

$$NPV = \sum_{t=1}^{n} \frac{CF_t}{(1+i)^t} = \sum_{t=1}^{n} \frac{Revenue_t - Expenses_t}{(1+i)^t}$$

$$Expenses_t = DRILLEX_t + CAPEX_t + Depreciation_t + OPEX_t + TAX_t + BEX_t$$

• CO2 tax (in 2022 NOK 1.65 NOK/Sm3 gas)

Example:

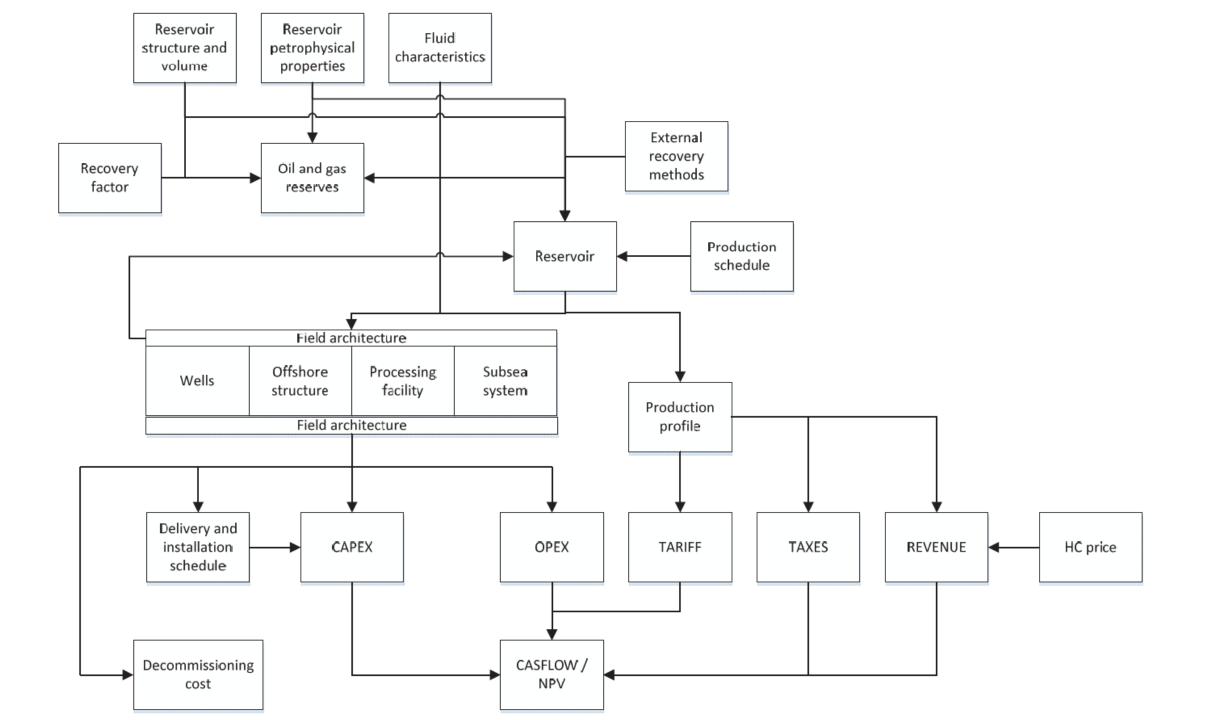
- Considering gas turbine efficiency 1 MWh/257 Sm3 gas (TPG4245 2022).
- For a field with 30 MW, in a year this represents 262 800 MWh, which represents 67 E06 Sm3 of gas.
- This will be taxed with ca 111 E06 USD.

#### Net present value - Royalties

$$NPV = \sum_{t=1}^{n} \frac{CF_t}{(1+i)^t} = \sum_{t=1}^{n} \frac{Revenue_t - Expenses_t}{(1+i)^t}$$

 $Expenses_t = DRILLEX_t + CAPEX_t + Depreciation_t + OPEX_t + TAX_t + ABEX_t$ 

- Used in some countries
- % from the production, not the profit!!


Net present value calculation- Who does what:

- Production profiles of oil, gas and condensate: petroleum engineers
- CAPEX: cost engineers (or suppliers) with input from facilities engineers, marine engineers
- DRILLEX: cost engineers (or suppliers) with input from drilling engineers
- Gas and oil prices: Market analyst
- Tax, Inflation, Exchange rate, discount rate: Finance department

Net present value calculation- Who does what:

- Production profiles of oil, gas and condensate: petroleum engineers
- CAPEX: cost engineers (or suppliers) with input from facilities engineers, marine engineers
- DRILLEX: cost engineers (or suppliers) with input from drilling engineers
- Gas and oil prices: Market analyst
- Tax, Inflation, Exchange rate, discount rate: Finance department

- Highly affected by the development strategy
- All are interconnected!!
- Take time to generate.
   If there are changes, it takes time to get new values



Example:

Higher production rates  $\rightarrow$ 

bigger separators and compressors  $\rightarrow$ 

more weight  $\rightarrow$ 

bigger offshore structure

# NPV estimation

Table 13.4-1: Hebron Platform Development Capital and Operating Estimates

Source: Hebron field PDO

#### CF versus time

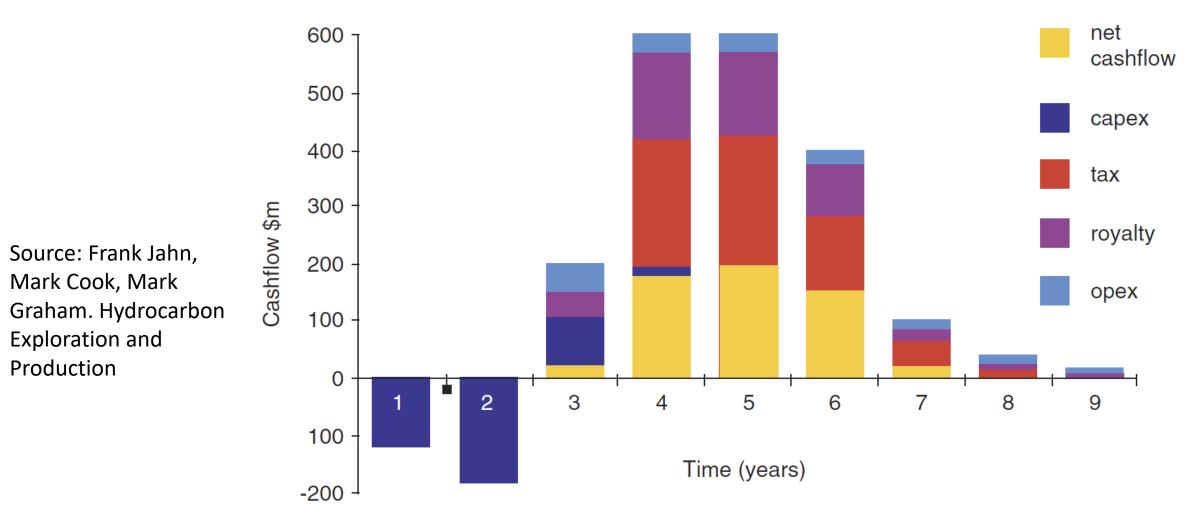
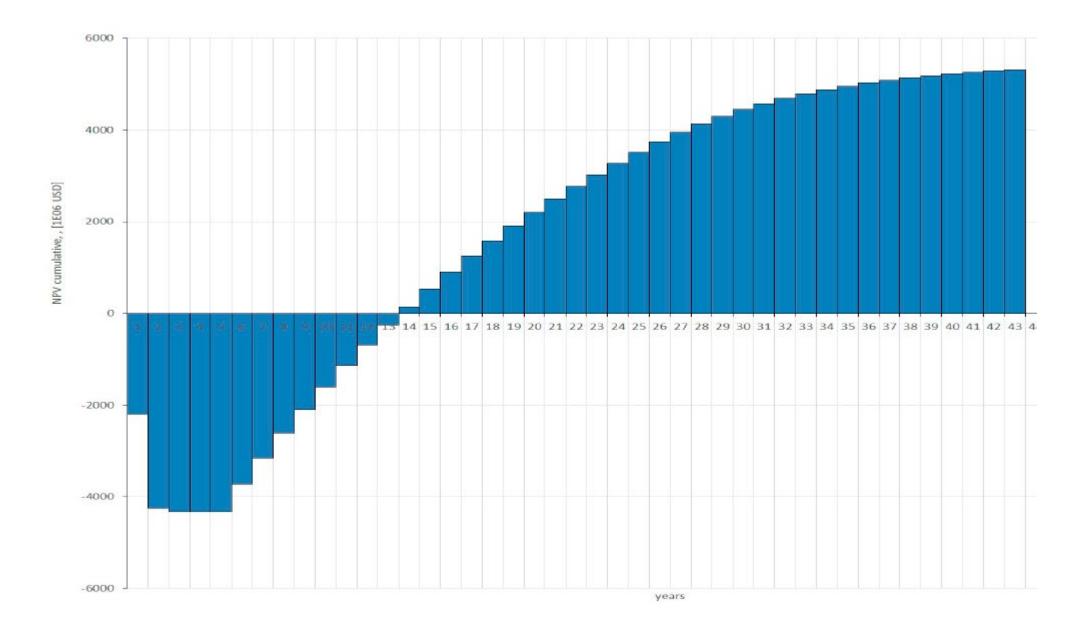
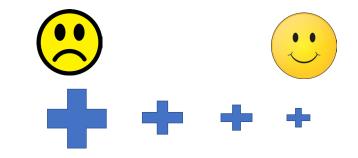





Figure 14.5 Components of a project cashflow.

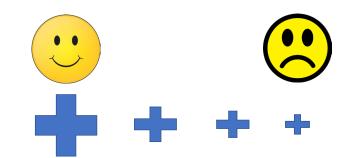
#### NPV versus time

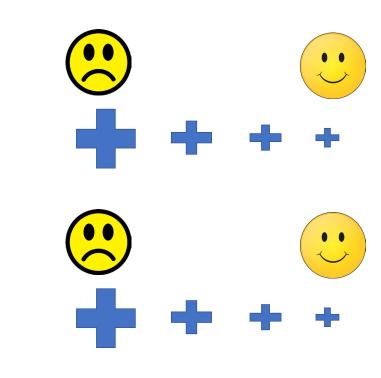


• Break-even price  $\rightarrow$  oil price that give NPV = 0



• Break-even price  $\rightarrow$  oil price that give NPV = 0


• NPV break-even  $\rightarrow$  time when NPV = 0

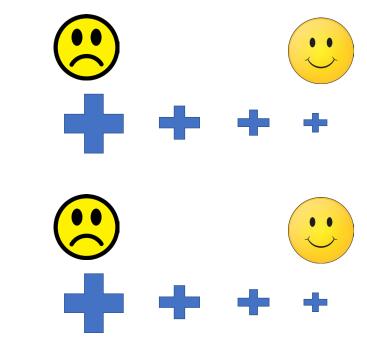


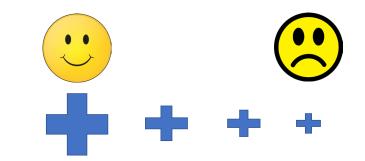

• Break-even price  $\rightarrow$  oil price that give NPV = 0

• NPV break-even  $\rightarrow$  time when NPV = 0

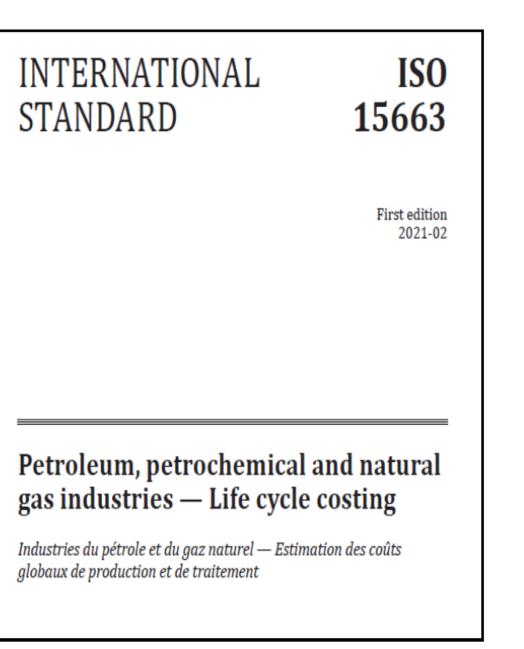
• Internal rate of return (IRR)  $\rightarrow$  discount rate for which NPV = 0



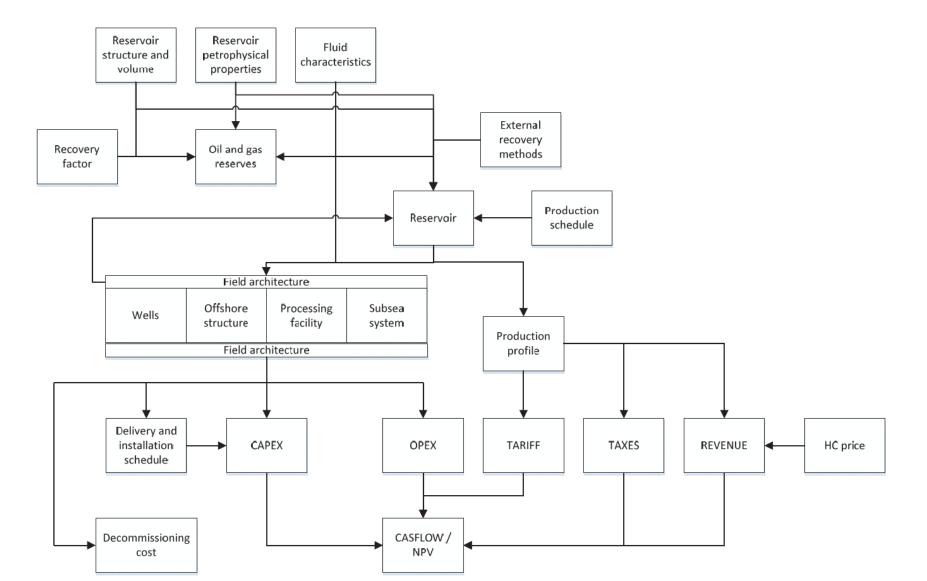




• Break-even price  $\rightarrow$  oil price that give NPV = 0

• NPV break-even  $\rightarrow$  time when NPV = 0


• Internal rate of return (IRR)  $\rightarrow$  discount rate for which NPV = 0

• OTHERS...






### Standards

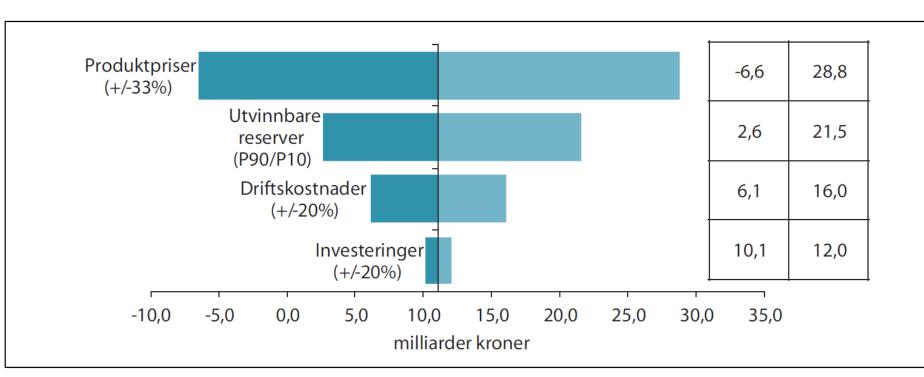


#### Handling uncertainty



# Handling uncertainty – from the standard

Industry practices:

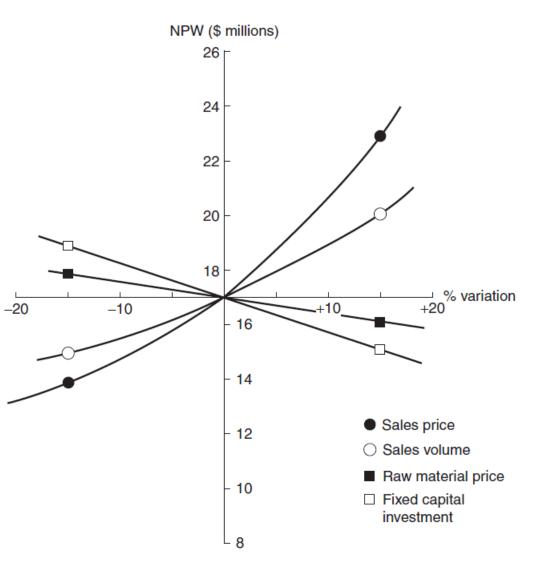

- Typical sensitivity analysis is performed changing inputs for CAPEX (e.g. +-15% and +-30%), product price (e.g. +-10% and +-20%), production start delay (e.g. 1 year). Results are calculated for NPV and IRR
- For production impact, worst and best production cases are performed
- Probabilistic approach with quantitative analysis very complex to be performed and very seldom used (for giant project only in case).
  - The results is a probabilistic curve for NPV and IRR using risked CAPEX and schedule, production, prices and discount rate as input
  - Deterministic NPV with P< P50 indicates good probability to achieve the deterministic result
- Sensitivity for CO2 tax scenarios is also performed

## Sensitivity analysis

Varying one at a time: «Ceteris paribus» principle

## Sensitivity analysis

#### Tornado chart




Source: Proposisjon til Stortinget: Utbygging og drift av Aasta Hansteen-feltet

Figur 2.3 Sensitivitetsanalyser

### Sensitivity analysis

Spider plots

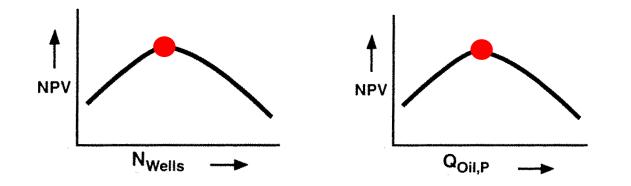


# Sensitivity analysis - defficiencies

- There could be uncertainties that occur simultaneously
- Probability of occurrence?

# Field development goal

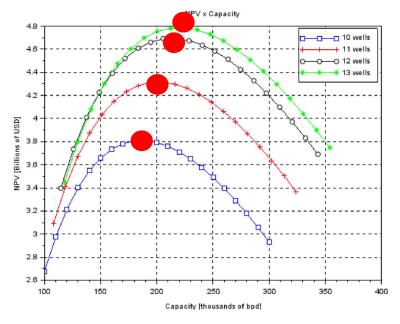
Find field design to maximize NPV


# Field development goal

#### Find field design to maximize NPV

There is an optimal production scheduling and drilling schedule that maximize NPV

| Action                             | Advantages                                  | Disadvantages                               |
|------------------------------------|---------------------------------------------|---------------------------------------------|
| Higher HC rates during early times | Gives higher revenue                        | Gives higher cost<br>(CAPEX, OPEX)          |
| Drill more wells                   | Allows for higher rates, extends field life | Gives higher cost<br>(DRILLEX, CAPEX, OPEX) |

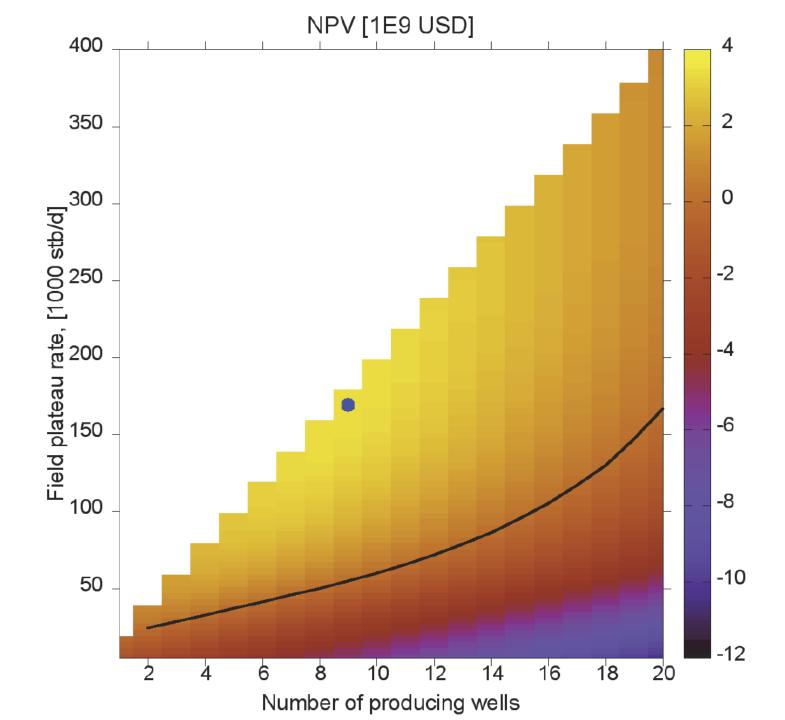




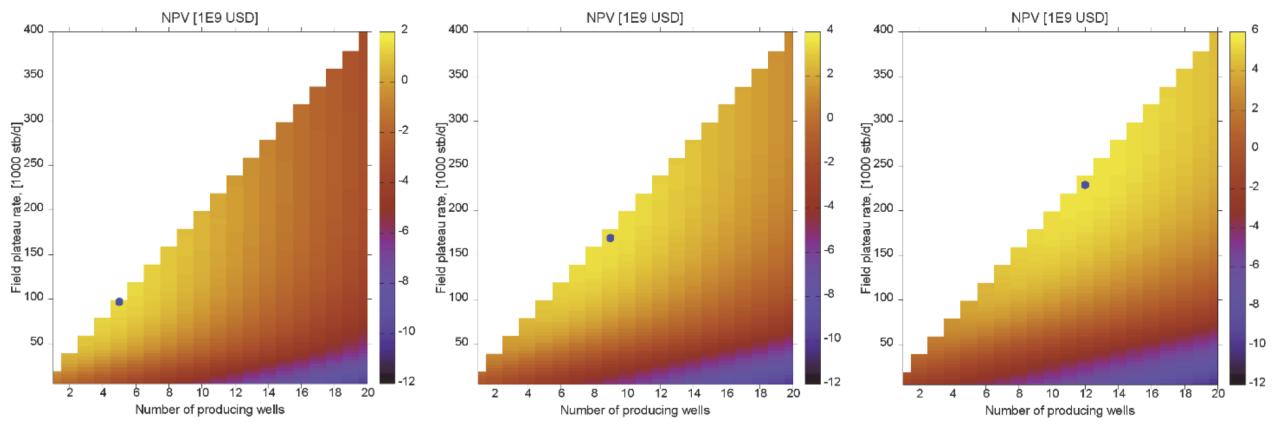

Variation of NPV with plateau rate and number of wells:

Choosing between rocks, hard places and a lot more: the economic interface

Helge Hove Haldorsen




#### OTC-28898-MS


#### A Cost Reduction Methodology for Offshore Projects

G. C. Nunes, Rio Petroleo Consulting Group; A. H. da Silva and L. G. Esch, Universidade do Estado do Rio de Janeiro

#### Example from Milan's Compendium section 5.2.3.



Effect of uncertainties



a) N= 0.6 base

b) N= base

c) N= 1.4 · base