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Virtual field

Well+commingling system

Reservoir
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Virtual field

Well+commingling system

Reservoir

Managed by different teams in the company
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Alternatives to generate production profiles

-Reservoir only
-Reservoir + network (coupled)
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Reservoir model
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Reservoir modeling alternatives

-Material balance + IPR equation (what we did in the Snowhite
exercise)
-Decline (type) curves – assuming a trend of qfield versus time 
(e.g. exponential)
-Reservoir simulation
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Reservoir model

Gas 
producer

Oil producer Oil producer

Water injector

• 3D computer representation of a 

petroleum reservoir 

• Computes the variation of the pressures, 

saturations and other properties with 

time when fluids are retrieved from or 

injected into the domain

• Captures the flow in porous media in the 

reservoir, thermal effects, 

thermodynamic flashing
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Reservoir model
Gas 
producer

Oil producer Oil producer

Water injector

Boundary 
conditions (t):
-Well target rate

qw (t) and    
pwf min(t)

• Reservoir / system properties (Porosity, 
saturations, permeability, EOS, fluid 
composition, reservoir temperature, 
initial reservoir pressure)

• Well locations
• Well status (t)

• Boundary 
properties pwf (t), 
qw (t) 

• Block variables (t)
• Well variables (t)

Usually variables 
constant for the whole 
simulation time or on-
off (no regulation)
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Reservoir model
Gas 
producer

Oil producer Oil producer

Water injector

Boundary 
conditions (t):
-Well target rate

qw (t) and    
pwf min(t)

• Reservoir / system properties (Porosity, 
saturations, permeability, EOS, fluid 
composition, reservoir temperature, 
initial reservoir pressure)

• Well locations
• Well status (t)

• Boundary 
properties pwf (t), 
qw (t) 

• Block variables (t)
• Well variables (t)

Usually variables 
constant for the whole 
simulation time or on-
off (no regulation)
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TPU
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INPUT
A GOOD GUESS(ES) FOR 
pwfmin is required!!
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Progression in time
t=t1t=t0 t=t2

Reservoir model 
Operating mode 
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Input file - Example
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Network model
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Network model characteristics

Separator 
pressure, pSEP

Reservoir 
pressure, pR

Separator 
pressure, pSEP

Reservoir 
pressure, pR

VS.
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Network model

• Steady state (for a given condition in 

time), 1D Computer representation of a 

petroleum production network (wells, 

pipelines, equipment)

• Computes the pressure and temperature 

profiles in each flowline, the flow rate of 

each well, the conditions upstream and 

downstream of equipment

• Captures the single phase/multiphase 

flow along the production system, from 

the wells until the processing facilities 

Well

Manifold

Separator
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Network model – v1

Boundary conditions 
for injectors or 
producers:
-Well Inflow 
performance 
relationship (IPR)

• System Properties (pipe dimensions, 
layout, fluid composition, EOS, separator 
pressure, ambient temperature)

• Adjustable variables: choke opening, 
well routing, Inflow control valves, gas lift 
injection rate, diluent injection rate, 
pump frequency, compressor.

• Well flow rates
• Pressure and 

temperature 
along the system

These usually 
vary during the 
life of the field.

IN
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 ,...., 21 xxfnetwork

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Network model – v1 variation (requires an 
“optimizer”)

Boundary conditions 
for injectors or 
producers:
-Well Inflow 
performance 
relationship (IPR)
Desired well rates
-Adjustable variables 
will be changed to 
achieve well rates

• System Properties (pipe dimensions, 
layout, fluid composition, EOS, separator 
pressure, ambient temperature)

• Adjustable variables: choke opening, 
well routing, Inflow control valves, gas lift 
injection rate, diluent injection rate, 
pump frequency, compressor.

• Well flow rates
• Pressure and 

temperature 
along the system

These usually 
vary during the 
life of the field.
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
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Network model – v1 variation (requires an 
“optimizer”)
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Network model – v2

Boundary 
conditions for 
injectors or 
producers:
Desired well rates

• System Properties (pipe dimensions, 
layout, fluid composition, EOS, separator 
pressure, ambient temperature)

• Adjustable variables: choke opening, 
well routing, Inflow control valves, gas lift 
injection rate, diluent injection rate, 
pump frequency, compressor.

• Pressure and 
temperature 
along the system

• Pressure at the 
boundaries

These usually 
vary during the 
life of the field.

IN
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 ,...., 21 xxfnetwork

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Network model 

t=t1t=t0 t=t2
For a given time step

Operating mode 
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Coupling: 
Connecting reservoir and network model to 
achieve consistency at the interface.

Or, equivalently:
• Will I be able to produce the reservoir rates 

through the well and network?
• Find realistic values for pwfmin
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Model’s Interface: well’s bottomhole

Reservoir 
model

Network 
Model

INTERFACE
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Model’s Interface: wellhead
Network 
Model

INTERFACE

Requires a DP model 
for the wellbore (DP as 
a function of q) to 
translate pwh to pwf. It 
is usually given as a 
table of points 
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Integration strategies

• Explicit

t=t0
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Integration strategies

• Explicit

t=t1t=t0
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Integration strategies

• Explicit

t=t1t=t0
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Integration strategies

• Explicit

t=t1t=t0
t=t2
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Integration strategies

• Explicit
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Model’s Interface: well’s bottomhole

q, pwf

Inflow performance 
relationship (IPR)

p
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Explicit integration strategy

• Possible to integrate software from different 

providers

• IPR generation is required (by reservoir 

simulator or by the network simulator)

• Can lead to numerical instabilities. A small 

time-step might be required
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Integration strategies

• Implicit

t=t1t=t0
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Integration strategies

• Implicit

t=t1t=t0 t=t2
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Integration strategies

• Implicit

t=t1t=t0 t=t2

Here an IPR might not be needed
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Model’s Interface: well’s bottomhole

q, pwf

p

q, pwf
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Model’s Interface: wellhead

q, pwh

q
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Examples from the literature

No coupling
only minimum BHP

Coupled

From Al-Shaalan, 2002

Solution instability from SPE 71120
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Implicit integration strategy

• Difficult to integrate software from different 

providers (for efficient solving, the source code 

should be integrated)

• IPR generation is not required 

• More numerically stable, bigger time-steps can 

be used 
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Coupling strategy for choked wells

q,
R

whp
1Run
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q,

q,

R

whp

n

whp

1

2

Run

Run

Coupling strategy for choked wells
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q,

q,

R

whp

n

whp

n

wh

R

wh pp If

1

2

Run

Run

•Well is choked, proceed 
to next reservoir time 
step

Coupling strategy for choked wells
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Integration strategies

• Loose coupling with bottom-hole coupling –most typical
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Integration strategies

• Loose coupling with bottom-hole coupling –most typical

1. Assume pwfmin

2. Run reservoir simulation

Obtain profiles of q(t), pwf (t), IPR (t)

time
t=t1t=t0 t=t2
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3. Run network simulation with IPR(t) from step 2

4. Verify if qnetwork(t) == qreservoir(t). If not, provide pwf(t) as pwfmin(t) 
and repeat from step 1 

t=t1t=t0 t=t2 time

Loose coupling with bottom-hole coupling
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Loose coupling integration strategy

• Easy to integrate software from different 

providers 

• Practical for use for different engineering teams

• More time-consuming – several iterations are 

typically required to converge on a solution
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