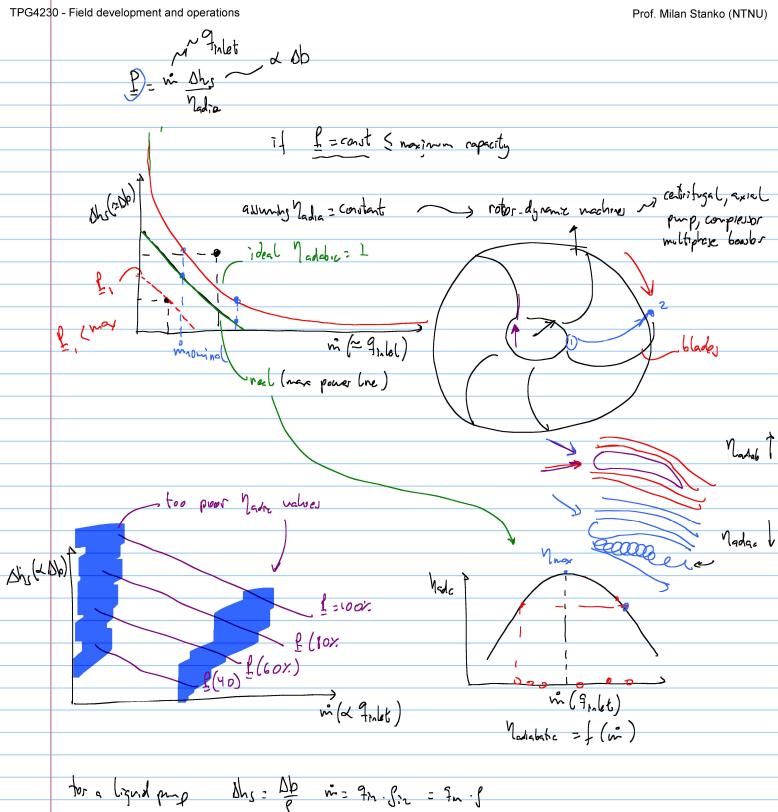
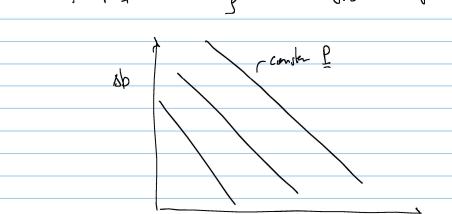
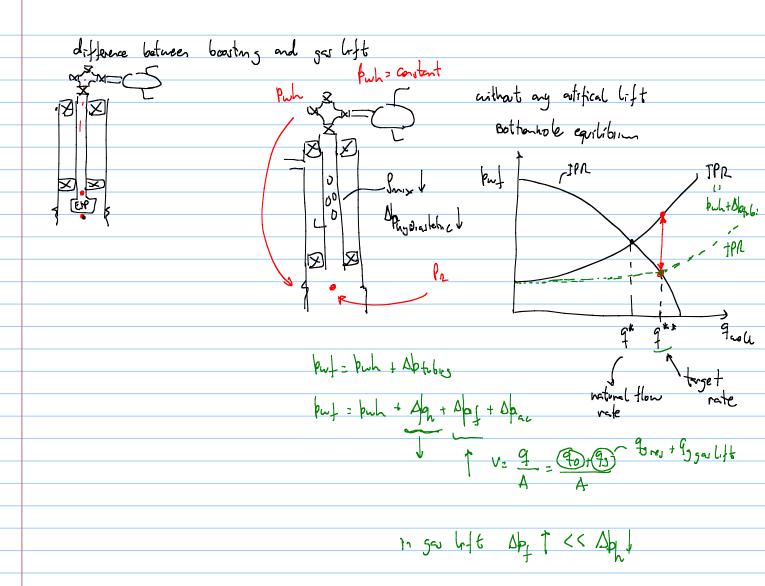

			, read from	- det		. ,	
		1	, 	, calulate of	van Shi (hy/lo√	
η_{adiab}	0.6	0.6 [-]		y read from the		- chart	
			\checkmark		> carlo	ulate hout	-hintsh
Power	T _{out,s}	Δh_s^{ν}	Δh	h _{in}	h_{out}	T _{out}	
[kW]	[C]	[kJ/kg]	[kJ/kg]	[kJ/kg]	[kJ/kg]	[C]	
77	51	6.4	11	-2087.9	-2077.2	51	read
168	57	14.0	23	-2372.7	-2349.4	60	Post=
372	70	31.0	52	-2831.8	-2780.1	78	
948	93	79.0	132	-3853.7	-3722.0	, 110	
1404	105	117.0	195	-4661.4	-4466.4	135	
	[kW] 77 168 372 948	Power T _{out,s} [kW] [C] 77 51 168 57 372 70 948 93	Power T _{out,s} Δh _s [kW] [C] [kJ/kg] 77 51 6.4 168 57 14.0 372 70 31.0 948 93 79.0	Power T _{out,s} Δh _s Δh [kW] [C] [kJ/kg] [kJ/kg] 77 51 6.4 11 168 57 14.0 23 372 70 31.0 52 948 93 79.0 132	Power T _{out,s} Δh _s Δh h _{in} [kW] [C] [kJ/kg] [kJ/kg] [kJ/kg] 77 51 6.4 11 -2087.9 168 57 14.0 23 -2372.7 372 70 31.0 52 -2831.8 948 93 79.0 132 -3853.7	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Power T _{out,s} Δh _s Δh h _{in} h _{out} T _{out} [kW] [C] [kJ/kg] [kJ/kg] [kJ/kg] [kJ/kg] [C] 77 51 6.4 11 -2087.9 -2077.2 51 168 57 14.0 23 -2372.7 -2349.4 60 372 70 31.0 52 -2831.8 -2780.1 78 948 93 79.0 132 -3853.7 -3722.0 110

road from chart with Port = 100 boxa, hoot

Compression at lower intet temperatures require a smaller Ahs


Therefore, to avoid high outlet temperatures and reduce compression power, coolers are sometimes installed upstream and downstream the compressor (Example Aasgard




Performance map of boosters / 9, Ab should fell issue the performance map of the booster)

92, Ab

93, Ab

