


You can install Jupyter notebook from their website (https://jupyter.org/), it is included on the Anaconda package. There are also some websites that allow you to run Jupyter notebooks in their servers. An example is google collaboratory (https://colab.research.google.com)

```
#importing needed libraries
     import numpy as np #for math operations
     import matplotlib.pyplot as plt #library for plotting
     import pandas as pd #for creating and displaying a table
[3] #declaring necessary functions
     def Npu(por,RV,NTG,So,Bo,Fr):
       #returns ultimate cumulative oil production in [stb, Sm3]
       #input:
       #por, porosity in [-]
       #RV, rock volume, in [bbl, m3]
       #NTG, net to gross ratio, [-]
       #So, oil saturation, [-]
       #Bo, oil formation volume factor [bbl/stb, m3/Sm3]
       #Fr, ultimate recovery factor in [-]
       TRR=por*RV*NTG*So*Fr/Bo
       return TRR
[6] #defining input
     #porosity
                                                                                                   Net to Gros Oil Saturation
N/G So=(1-Sw)
                                                                                                                                   Formation Volume Ultimate Recovery Factor
Bo Fr
     por_min=0.18
                                                                       Rock volume Porosity
                                                                                                     fraction
                                                                                                                                         Res bbl/STB
     por_max=0.3
                                                                            bbl
                                                                                        fraction
                                                                                                                      fraction
                                                                                                                                                                 fraction
                                                                       2000000000
2500000000
     #rock volume [1E06 bbl]
                                                                                                                                                                         0.65
                                                          Max
                                                                                              0.3
                                                                                                             0.5
                                                                                                                                                       1.6
     RV min=5000
     RV_max=6250
     #Net to gross [-]
     NTG_min=0.3
     NTG_max=0.5
     #oil saturation [-]
     So_min=0.8
     So max=0.9
     #Oil formation volume factor [bbl/stb]
     Bo_min=1.35
     Bo max=1.6
     #recovery factor, Fr, [-]
     Fr min=0.18
                                                                                   Function x_uniform(a, b)

'value of the variable x for a uniform distribution
'a is the minimum value of x
'b is the maximum value of x
     Fr_max=0.35
     Fr_mode=0.25
                                                                                         'U is the the random number
                                                                                        Application.Volatile (True)
U = Rnd()
x_uniform = a + (b - a) * U
[9] #creating random samples
                                                                                    End Function
     n=1000 #number of samples
    por=np.random.uniform(por_min,por_max,n)
                                                        equivalent to
     RV=np.random.uniform(RV_min,RV_max,n)
                                                                                                    Function x_Triangular(a, b, c)
                                                                                                        'value of the variable x for a Triangular distribution
     NTG=np.random.uniform(NTG_min,NTG_max,n)
                                                                                                        'a is the minimum value of \boldsymbol{x}
     So np.random.uniform So min, So max, n)
                                                                                                        ^{\prime}b is the maximum value of x
     Bo=np.random.uniform(Bo_min,Bo_max,n)
                                                                                                        'c is the mode value of x
                                                                                                        'U is the the random number
     Fr=np.random.triangular Fr min, Fr mode, Fr max, n)
                                                                                                        Application.Volatile (True)
                                                                                                        U = Rnd()
[13] #MC simulation
                                                                                                          If F c > U Then
                                                            equivalent to
                                                                                                            x_{Triangular} = a + Sqr((b - a) * (c - a) * U)
     TRR-Npu (por, RV, NTG, So, Bo, Fr)
                                                                                                          x_TTriangular = b - Sqr((b - a) * (b - c) * (1 - U))
End \overline{I}f
                                                                                                    End Function
```

			Net to Gros	Oil Saturation	Formation Volume	Ultimate Recov	ery Factor	
	Rock volume	Porosity	N/G	So=(1-Sw)	Во	Fr		
	bbl	fraction	fraction	fraction	Res bbl/STB	fraction		
Min	2000000000	0.18	0.3	0.8	1.35	0.42		
Max	2500000000	0.3	0.5	0.9	1.6	0.65		
\								
MC it /	Rock volume	Porosity	N/G	So=(1-Sw)	Во	Fr	Npu	
[-]	bbl	fraction	fraction	fraction	Res bbl/STB	fraction	[stb]	
1	2012066161	0.18926	0.4099759	0.88329645	1.42513865	0.425175962	4.11E+0	7
2	2102438113	0.26087	0.4857407	0.807186328	1.354060909	0.611151706	9.71E+0	7
3	2227585607	0.23525	0.4005316	0.850604772	1.580405627	0.527296311	5.96E+0	7
4	2141227076	0.28532	0.3038112	0.877732837	1.477701936	0.514140587	5.67E+0	7
5	2200610567	0.29046	0.3220469	0.829377484	1.365998187	0.584485561	7.31E+0	7
1			1	1			1	
							X	

