1. Snohvit subsea gas well modeling in Prosper

Fluid information:

Use the black oil model for your PVT behavior.

WGR = 0 Sm^3/Sm3 CGR = 0 Sm^3/Sm^3 Condensate density = 751 Kg/m3 Gas gravity = 0.55 Formation Water salinity = 0 ppm No H2S, CO2, N2.

Well layout:

Deviation survey

MD [m]	TVD [m]
0	0
2100	2100

Geothermal gradient

MD [m]	T [C]
0	4
2100	92

Flow in tubing, tubing diameter 0.15 m

Overall wellbore heat transfer coefficient = 45 W/m² K

Reservoir info:

Producing from a single layer Reservoir pressure = 276 bara Reservoir temperature = 92 C Backpressure coefficient = 1000 Sm^3/d/bara Backpressure exponent = 1

Tasks:

- Set up a prosper model of a subsea oil well.
- Estimate the producing rate using flow equilibrium assuming that the well is producing against a constant wellhead pressure of 100 bara
- Generate and export lift curves to be used in GAP (in the following exercise). p_{wh} range: 30-276 bara
- 1. Creating MBAL file of Snohvit reservoir

Fluid information:

Use the black oil model to represent your PVT behavior. Gas gravity = 0.55 Condensate gravity = 751 Kg/m^3 At initial conditions no water. Formation Water salinity = 0 ppm No H2S, CO2, N2. **Temperature:** 92 C **Initial pressure:** 276 bara **Porosity:** 0.15 **Connate water saturation:** 0.25 **Original oil in place:** 270 000 E6 Sm^3 **Start of production:** 10.02.2020 **Water influx:** No aquifer **Rel Perm:** Corey Functions

Rel Perm. from Cores Hysteresis No	Functi	ons 🔽		Water Swe	eep Eff. 100 percent
		Residual Saturation	End Point	Exponent	
		fraction	fraction		
	Krw	0.25	0.3	2.5	Normalise End Points
	Krg	0.1	0.8	1.5]

2. Modeling of a subsea network with nine gas wells in GAP

The layout of the production network layout is shown below.

All wells are identical Pipeline and flowline heat transfer coefficient: 5 W/m2 K Pipeline ID: 0.680 m, roughness 1.5e-5 m Flowline ID: 0.355 m, roughness 1.5e-5 m

Tasks:

- Build the GAP model of three subsea wells producing to the LNG plan in Melkøya.
- Adding a rate constraint to the separator of 20E06 Sm3/d, and run an "optimization".
- Run in prediction mode to find field rate with time.

Licensing Licensing Setup Wizard MF \times -only 10 licenses are available NTNU -please work in groups (9) IPM programs require a licensing system to run. The licensing system can either be a bitlock that is plugged into your computer that only you can use OR a server on your network that shares licenses with other users on your network. The license setup wizard is used to help you configure your PC to use your chosen licensing system. You will be asked questions about your licensing system and PC. The Wizard will try to configure your PC to use the licensing system. If you wish to stop the Wizard at any time, click Cancel. If you want to re-run the Wizard in the future, select Start-Programs-Petroleum Experts IPM X-Utilities-Setup Licensing Wizard < Back Next > Cancel 4

Licensing Setup Wizard - Hardlock Configuration MF	 -only 10 licenses are availab
Current list of hardlocks you PC is configured to	-please work in groups (9)
Although your PC is configured to use the above hardlocks, you may still wish to use the options below to configure you PC other hardlocks on your network.	
You can click Find hardlocks to search for hardlocks on your network.	
It may take up to 30 seconds for any hardlocks found to appear in the top panel. If no new hardlocks have appeared in the top panel 30 seconds after clicking the ""Find hardlocks" button then the Wizard has been unable to find any hardlocks. Check with your system administrator for the details of the hardlock server and enter the details by clicking on the ""Enter hardlock details"	
Alternatively if you know the host name or IP address of the hardlock you wish to use then click on Enter hardlock details to enter these	
If the hardlock has not appeared in the top panel 30 seconds after entering the hardlock details then the Wizard has been unable to find the hardlock. Check with your system administrator that the hardlock details are correct and that the hardlock is running.	

Licensing Setup Wizard - Test hardlock MF	-only 10 licenses are availab
± 48. GAP	-please work in groups (9)
O9-dec-2019 - version 13.0 (10 licenses) <no allowed="" checkout=""> <educational></educational></no>	
Usadec-2019 - version 14.0 [10 licenses] <no allowed="" checkout=""> <educational> ← REVEAL ✓ 09-dec-2019 - version 9.0 [10 licenses] <no allowed="" checkout=""> <educational></educational></no></educational></no>	
E-	
¢	>
To view the licenses on all the hardlocks, click the Test button. Test	
The panel above displays all the licenses available on all the hardlocks that you PC is configured to use.	
In the natious support in the adure panel, then it is possible that the natious that your PC is compared to use, running. Please check with your systems administrator.	are no longer
possible that when you try to run an IPM program, all licenses will be in use by other users.	NE HORMON, OUTLIE
< Back Finish Cancel	

PVT - Auto	omatic Calculation (ulate <u>H</u> elp	11 Jaartana (16	a (a) (a) (a)	- 34 HT			-calcı -inpu	ulate t Tre	PVT s & P	prop res	ertie	5	
Data Points			These	had	ine	a test	54	748	Ser bob	Carlord	ie.7	in insite	halfine	_
Detter On to			ter		84	Pho .	104		M	-	104		HN	
Automatic		Gas Viscosity	2.0	3	9.84	1028	104	146	80	14.20	140	1946	04	130
- aconduc	-		118	100	3.12	1159	100	106	84	144	100	184	2871	100
a	Lee e	tal 🗾	+ 3	11	1.96	3349	LINK	LIN	4.7	1487	141	1311	8229	100
User Select	ed		1.1	182	373	309	1078	188	8.0	1127	182	1491	188.7	139
			11		14	1000	1001	184	53	100	107	129C	202	- 10
			11	2.2	40	king	12412	1216	10	102	181	1000	XHE.	1.0
anger V	al una		1.9	10	340	100	12104	186	104	108	- 182	1491	4452	10
iges Vi	alues		2.147	1	1.0	1.12K	100	140	113	194	228	1001	128	12
			2.64	10	1.00	kant	ister .	108	8.9	194	108	1001	362	- 10
	Temperature	Pressure	3 had	147	100	1018	-	200	8.7	194	104	129-1	154	
	(deg C)	(BARa)	1.140	33	1.8	129	1076	107	84	100	108	100	1000	- 7
	(deg e)	(UAIKU)	1.147	14	1.0	100	186	10	84	194	38	1404	2076	
From	50	30	2.86	34	35	100	102	181	8.0	194	100	1254	2018	-1
			3 MF	. 164	JEN.	103	LHE	188	84	184	38	1201	081	1
То	92	276	3 MF	3	342	100	0004	147	8.8	184	18	101	010	_
	~		2.82	14	14	1234	100	145	80	100	326	5896	303	-
No Of Store	10	10	2 822	140	114	344	108	148	84	100	18	1861	1014	- 17
no.or steps	10	10	3 50		110	1000	1000	140	10	107	10	124	00	- 10
			8.80	84	10	100	LINH .	1000	10	107	10	(34)	2910	1
			2.62		an	34.98	1004	189	8.0	107	- 100	MM	37040	- 3
			8.80	2.2	101	1000	1892	104	85	100	100	104	3845	
			8 8.00	38	216	100	1094	140	8.9	100	108	1040	4622	
			3.0	3	248	11.27	109	186	80	140	102	104	802	-1
			1.	10	1.00	100	100	148	1.4	145	100	1010	200	-
			3.0	14	2.24	No.	1857	100	84	141	108	18M	HIM.	
											1.1			

timate ainst a	the process	roducing ant wellh	rate usin nead pre	ng flo ssure	w equ of 10	ilibriu 0 bar.	m ass	uming	g that t	he we	ll is pr	oduci	ng	-select "syst -input Pwh, -use default -"Rate metl	tem" optio t tubing eq nod"Use	n Juatior r sele
STSTEM	Center	Center Coloria	AV0	Canadian			Front	[Output	Leona	1	Generate	a ¹⁹				
Fore	Parce	cates Clicits	Bes	The second	(a) 3	e anno y Pito	Poport	vegore	Proves	Geb	Autorite	_		117		
	Top Node Pres	aure 100	SARs Section 1	1	Gas Rule	mater Kate	Pressure	Pressure	de Total Ski	Perforation	d ^a Danage	Completion	Skin	Ligad Rate	0 Value	Circ Sideus
-	State of the	Laster D	Section 1	1.000	F10000-14	0 Califord	(married)	manal			0.01	Aut		Solution Node Pressure	259.078	(BARa)
Co.	ine said Case	and the second	auritages	1	Providentie	A Carry (Carl)	(popular)	(States)	(2487)	-2580)		- (sec)		dP friction	135.417	(bar)
SUTTICE EQ	Manalitic Coules	mao-a-		1	2.8174-5		115.382	276	0	0	D	0	a	& Gavity	21.9318	(bar)
Ver	tice unt Carret	eton Petroleun Exp	erts 2	2	2500		129.403	271.437	0	0	0	0	8	dP Total Skin		(ber)
-	Solution	lode botton Node	-	1 2	5000		170.003	266.794	0		0	0	a	dP Perforation		(bar)
	Rate He	Bod User Selected				1			1	-	-		-	d ^p Camage		(trar)
	Rate	Type Gas Rate		4	7500	4	222.49	262.073	d	0	0	9	9	dP Congletion		(bar)
Let	t Hand Interse	cter DeAlou		5	20000		281.251	257.263	0	0	0	0	0	Completion Skin		
	PES Stability	Flag No	_		12500	0	344.451	252.361	0	0	D	0	a	Total Skin		Are by the
Contraction of Contraction				1										Wellward Data Density	727.203	(Kole T
Rate	·	Gas Rate		1										Well-wait up int Visconity	0. 38659	(mgm.))
		(1000943)4		1										Wellhead Gas Vacasty	0.013179	(of a v)
1	Citra		-											Wellward Guerr ficial Liquid Velocity		(m/sec)
1	5000		- 6	10										Well-ead Superficial Cas Velocity	68.1122	(mited)
4	7500													Wellhead 2 Factor	0.9204	
5	10000			11										Wellhead Interfacial Tension	6.97203	(multi)
6	12500			12										Well-ead Pressure	100	(BARa)
7				12										Welfread Temperature	80.078	(deg C)
8														Pirst Node Liquid Density	727.103	(Kaled)
9				24				-						Pirst Node Gas Density	58.9469	(Kg/m3)
30				-15										Pest Node Ligad Viscosity	0.38659	(mPa.s)
11				26										First Node Gas Vocosity	0.015179	(mPa.s)
12				17										First Node Superficial Liquid Velocity	0	(m/sec)
1 13														Provide Street and Street Provide Street	22 1122	dan haard)

					-select ' -change Norweg	'Units" unit system ian S.I.	n to
Init System							
Unit System	1						
Linit Namo		UnitSe	lections		Validation (Input Units]	D 1 1
Onichane	Norwegian S.I.	<u>j sh/Muj</u>	Norwegian S.L	<u>sn/Mu</u>	Minimum	Maximum	Details
Compressibility	1/bar	Sh/Mu	1/bar	Sh/Mu	0	0.014503774	Details
Critical Pressure	BARa	Sh/Mu	BARa	Sh/Mu	0.94430591872	2069.440353489	Details
Critical Temperature	deg C	Sh/Mu	deg C	Sh/Mu	-272.7777505	1648.888724	Details
Critical Volume	m3/kg.mole	Sh/Mu	m3/kg.mole	Sh/Mu	0	624.3	Details
		[enne]				1 1	

MBAL - PVT -select "PVT" \rightarrow fluid properties NTNU -input PVT data -select PVT correlations Gas - Black Oil: Data Input 꽃 Help Katch IIIIIIable 서십 Import 서십 Export IIII Calc III Match Param. 🗸 Done 🗶 Dancel Input Parameters Correlations Gas gravity 0.55 Gas viscosity sp. gravity Lee et al • Separator pressure 30 BARa Condensate to gas ratio 0 Sm3/Sm3 Condensate gravity 751 Kg/m3 Water salinity 0 ppm Mole percent H2S 0 percent <u>U</u>se Tables Mole percent CO2 0 percent Use Matching Mole percent N2 0 percent ___ Model <u>W</u>ater Vapour 28

	MBAL - Input	
NTNU 29	Tank Input Data - Tank Parameters Tank Paraneles Tank Rock Tank Tank Tank Stand of nation Connate Water Saturation Tobal Original Gas In Place Monial Original Gas In Place Msn3 Start of Production 10.02.2020 date d.m.y Validate	-select "Input" → tank data -input tank parameters -be careful with the unit of OOIP

NTNU	System Species System Species	 -open "options" → "method" -system type: production -PVT model: black oil -for the rest, use default setting -change unit system to Norwegian S.I.
34	Associated Injection Models Water Injection Gas Injection Gas Injection	

VLP Detail: VLP Detail: VLP FeNane NUPPIN Val in Occument AL For Exc 000000000 1000 Import Export Import Generate	Turn off # unstable □ Turn off # unstable □ Turn off # unstable	-'input' tab \rightarrow 'VLP' tab \rightarrow
VLP Information Type : Eas Producer Sensitivity Variables : Gas Rate, Manifold Pressue Calculard Variables : FBH Pressue, PWH Temperature, Rate, Correlation : FBH Pressue, PWH Temperature, Surface Correlation : Nydro 2P Vertical Correlation : Petroleum Experts 2	Allow left hand side intersection (potinien) Sale VLP/IPR intersection (much slower!)	-done

GAP: Well: Input ta	b: IPR Tab
Weil W1'- Input Screen Select Layer [Layer] - Invalid Layer Type (Gas Inflow Performance First Connection (Snowhite IPR Type (C and n C (1000 82033 Sm3/day/bas2 Layer Tere(\$2000003 deg C n1 IPR def shit ("	Checking the IPR quality: - 'input' tab → "IPR" tab -> IPR Mate Match IPR Data Match Layer IPR Data Layer Number 1 Match Gas Rate FEH Press
Gravel pack □ Edit Gravel Pack Sm3/day/ba2 □ FAid Popolitis Cost flow Injectively Index Sm3/day/ba2 □ FAid Popolitis Cost gravby FAid Popolitis □ Cost gravby FAid Popolitis ppm □ Gas gravby FAid Popolitis ppm □ Gas gravby FAid Popolitis ppm □ Gas gravby FAid Popolitis pecent □ Gas gravby FAid Popolitis pecent □ Gas gravby FAid Popolitis pecent □ Use tank inputties Percent	Text Layer Pressure Idda BHPa Text Idda D005mV/d BHPa Text WGR 0 Sm3/Sm3 1 2965 563 274 623 2 1482 6417 273 027 3 2965 563 270 57165 Match Layer IPR Results A. 0.F. 75238 489 10005m3/d 2 2 1422 6417 273 027 A. 0.F. 75238 489 10005m3/d C 10005m3/d C 1 1 n 1 <

Environment Parameters Calculate Heat Transfer Coefficient Time Since Production Started 100 days Surrounding Temperature 4 deg C Overall Heat Transfer Coefficient 5 W/m2/K Dil Heat Capacity 2219004 KJ/Kg/K Gas Heat Capacity 2135268 KJ/Kg/K Water Heat Capacity 41868 KJ/Kg/K	-open 'input' tab → open 'environtment' sub-tab -input ambient temperature (= 4 deg0 -input U (= 5 W/m2/K)
Use Pipeline Burial Enter Burial Data	

GAP: Pipeline: Input tab NTNU -open 'input' tab \rightarrow open Inlet TVD outlet 'description' sub-tab -input pipeline properties: length: TVD ss K.Vake Fitting Type 5000 m for flowline 1.524e 158600 m for pipeline ID: 0.355 for flowline 0.68 m for pipeline , roughness (=0.015 mm) -done -repeat for the other pipelines npy Paste All Invest Cut Inset Delete Flow Type Tubing Flow * ions as Node TVD: ٠ Enter el ent Pipe Step 30.48 Calculate Heat Transfer Coefficient inlet Rate Multiplier ٠ ngth Step 3048 52

GAP: Solve Network NTNU Model Validation Solve Network Transient -open 'solve network' to solve the production network at t = 0 E 🙏 🦯 🛝 🖴 🥊 🧕 🔛 🗠 🗠 8 -run network solver -input separator pressure 🔣 Separator / Injection Manifold pressures - Production System Melkoya 30 Pressure 1 Pressure 2 Pressure 3 Pressure 4 Pressure 5 Pressure 6 Pressure 7 Pressure 8 Pressure 9 Pressure 10 56

Network Solver			-	
			-S	ince we have a constraint to be
Variable Well W2-3 rate reduction Variable Well W1-1' rate reduction	value 0.217707 value 0.217744		sa	tisfy, choose 'optimise with all
Variable Well W2-1' rate reduction	value 0.217707			nstraints' modo
Variable Well W1-2 rate reduction	value 0.217719			
Variable Well W3-2 rate reduction Variable Well W2-2 rate reduction	value 0.217708 value 0.217708		-C	alculate
Variable Well W1-3 rate reduction	value 0.217718 value 0.217707			
Variable Well W2-3' rate reduction Variable Well W1-1' rate reduction	value 0.217707 value 0.217744			
Variable Well W2-1' rate reduction Variable Well W3-1' rate reduction	value 0.217707 value 0.217707			
Variable Well W1-2' rate reduction Variable Well W3-2' rate reduction	value 0.217719 value 0.217708			
Variable Well W2-2 rate reduction				
Variable Well W3-3 rate reduction	value 0.217708 value 0.217718			
Variable Well W3-3 rate reduction Variable Well W1-3 rate reduction Variable Well W2-3 rate reduction	value 0.217708 value 0.217718 value 0.217707 value 0.217707			
Variable Well W3-3 rate reduction Variable Well W1-3 rate reduction Variable Well W2-3 rate reduction Solver solution reached in 1 iteratio Optimiser finished Code 0	value 0.217708 value 0.217718 value 0.217707 value 0.217707 ns			
Variable Well W-3-3 rate reduction Variable Well W-1-3' rate reduction Variable Well W-2-3' rate reduction Solver solution reached in 1 iteratic Optimiser finished Code 0 Max. Pressure Drop Difference 0.0 Max. Mass Balance Difference 0.0	value 0.217708 value 0.217718 value 0.217707 value 0.217707 ns 10498455 bar 198126 tonne/day			
Vanable Well W-3's rate reduction Vanable Well W-3's rate reduction Solver solution reached in 1 keratic Optimiser finished Code 0 Max. Pressue Drop Difference 0.0 Max. Mass Balance Difference 0.0 Time taken: 0.956 secs CPU time: 0.996 secs	value 0.217708 value 0.217707 value 0.217707 ns 00498455 bar 98126 tonne/day			
Vanable Well W-3' rate reduction Vanable Well W-3' rate reduction Vanable Well W-2' rate reduction Solver solution reached in 1 Reatil Optimiser finished Code 0 Max. Pressure Drop Difference 0.0 Max. Mass: Balance Difference 0.0 Time taken: 0.365 secs CPU lime: 0.305 secs Start of Calculation: 00:4413: 061 End of Calculation: 00:4413: 061	value 0.217708 value 0.217707 value 0.217707 ns 10499455 bar 198126 forme/day February 2020 ebruary 2020			
Vaidab well W-3 rate reduction Variable Well W-3 rate reduction Solver toldkinn sochets in 1 hereic Max. Pessure Drop Difference 0.0 Max. Mass Balance Difference 0.0 Time taken: 0.959 secs CPU line: 0.959 secs Stat of Calculation: 0.04.412: (6) End of Calculation: 0.04.413: (6)	value 02,17708 value 02,17707 value 02,17707 ns 10439455 bar 199125 tonne/day February 2020 teruary 2020	x Messages		
Vaside Weil W-3 rate reduction Vaside Weil W-3 rate reduction Vaside Weil W-3 rate reduction Solver tolkion reached in These Optimizer finance (Code) Optimizer finance (Code) Max, Mass Balance Difference 00 Time taken: 0.959 sect CPU time : 0.959 sect Stat of Calculation: 00.4412: 06 End of Calculation: 00.4413: 06 End of Calculation: 00.4413: 06 Constraint Solver	value 0.217708 value 0.217707 value 0.217707 value 0.217707 value 0.217707 value 0.217707 value 0.21707 value 0.21707 value 0.21707 value 0.21708 value 0.21707 value 0.2170 value 0.2170 valu	K Messager	Optimiser progress	
Vaside Weil W-3 rate reduction Vaside Weil W-3 rate reduction Vaside Weil W-3 rate reduction Solver tolkion reached in Theretic Optimizer Invited Code 0 Max, Netra B-Doop Difference 0.0 Time taken: 0.959 sect CPU time 1.959 sect Stat of Calculation: 00.4413: 06 End of Calculation: 00.4413: 06 End of Calculation: 00.4413: 06 End of Calculation: 00.4413: 06 End of Calculation: 00.4413: 06 Loss Constain Solver Last Enor 6.201642e-6	value 0.217708 value 0.217707 value 0.217707 value 0.217707 mi 199126 tonne/day February 2020 ebruary 2020 	x Messages	Optimiser progress	
Vaside Weil W-3 side reduction Vaside Weil W-3 side reduction Vaside Weil W-3 side reduction Solver solution reached in 1 Newle Optimizer Inside Code 0 Max, Mais Balance Difference 00 Time taken: 0.959 secs CPU time 0.959 secs	value 0.217708 value 0.217707 value 0.217707 value 0.217707 refuse 0.21707 refuse 0.21707 refuse 0.2200 z <u>Contention</u> Scrip <u>Optimiser</u> Last Guess <u>0</u> Iteration III <u>5 - 1</u>	x Messages	Optimiser progress Optimiser finisher:	
Vaside Weil W-3 side reduction Vaside WH 3 side reduction Solver rolution reached in 1 letted Optimiser finished Code 0 Max. Piessuse Drop Difference 0.0 Time taken: 0.959 secs CPU line: 0.959 secs	value 0.217708 value 0.217707 value 0.217707 nt 0.0894955.bar 199126 tonne/day February 2020 at Laif Great Scrip Optimizer Laif Great 0 Heration = 5 - 1	Messages	Optimiser progress Optimiser finisher	

