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What are gas hydrates r

v Free water

v Small gas molecules
> C1, C2, C3, I-C4, CO2, H2S, N2

v High pressure
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Gas content In gas hydrates

A lot of gas!

Om T - =
1 m3 0.8 m3 /

Water 150-170 Sm3® <150 bar

gas 20 x 50 liter
gas bottles

hydrate
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Gas hydrates — both a problem & an opportunity

v A major FA challenge/issue for gas/oil industry

High field development and operational costs
v Gas hydrate in nature/sediments

= A new energy resource with huge potential - several field tests

Potential geo-hazard due to thermal instability in hydrate bearing sediments
v As a carrier medium for natural gas transport/storage
v Many new applications of gas hydrates, e.g.:

Flue/exhaust gas separation (CO, capture) and CO, storage

Water purification (desalination of sea water)
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Natural occurring gas hydrates

Hydrate-bearifig e ,
c.ntu.._...k:_ o~ The Gas-hydrate
S Resource Pyramid

JArctic sandstone reservoirs

fMarine sandstone reservoirs

reservoirs with permeability

Non=sandstone marine
I (including fracture filling)

= Vent-site-related
massive hydrate

«— Marine shales
no permeability

Pesmafeont
= Increasing in-place resources S with chilled

Hydrate sea-floor mound - - -
USA = Gulf of Mexico L] Decreasmg reservoir quallty

= Decreasing confidence in resource estimates Hydeates
- Increasing production challenges Layer o o = ; Carbon dioside
= Likely decreasing percent recovery ' '

Source : Johnson 2011, Collett 2009 Target
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Natural occurring gas hydrates

As energy resources -
commercially recoverable?

marine sands
10,000 tcf

deformed muds
77 tef

Hydrate melting gives concerns:

seafloor mounds /&
77 tef f=

* Geo-hazard like land-slide
« Accelerating global warming

undeformed muds
100,000 tef

more difficult to recover
increasing resource volumes
generally decreasing resource concentration

Source : Johnson 2011, Collett 2009




Gas hydrates as a flow assurance challenge
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Hydrate curve and subcooling
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Hydrate avoidance: thermodynamic inhibitors

Customized Plot
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« THI shifts hydrate curve to the left —i.e. lower hydrate equilibrium temperature
« Typical thermodynamic inhibitors: mono-ethylene glycol/MEG, salts, ethanol, methanol
« Typical THI concentrations applied: ~30-60 wt% in water
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Heating based hydrate prevention methods

Direct electrical

heating (DEH) Bundles and Pipe-in-pipe

36-inch carrier
3-inch

O )0

24-inch carrier




Needs for less conservative hydrate control strategy

« Conventional hydrate control strategy is expensive
— Based on: inside hydrate domain = hydrate plugging/problem
— Complete hydrate avoidance

« Constant needs to improve hydrate control strategy:

— Reduce CAPEX of field development (enabler for certain cases)
— Reduce chemical consumption and OPEX

— Simplify procedures

— Accelerate production
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Step change of hydrate control strategy

The old time The new era of hydrate management

Hydrate avoidance Hydrate management
" Hydrate domain

NO ENTRY

Pressure
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Traditional strategy (outside hydrate domain): New strategy (primarily for oil-dominated systems):

* Inhibition by MEG, methanol etc. » Allow operation inside hydrate domain based on
« Super insulation or heated pipes — Hydrate formation kinetics
» Depressurization ( to below hydrate curve) — Hydrate transportability (plugging potential)
» Dead oil circulation, duo pipelines - Hydrodynamics, local water content, etc.

» Risk based & tailor made for each application
=> Safe but very costly « Combining the traditional and new technologies
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Safe operations in hydrate domain — Main methods

» Hydrate kinetics — delayed formation

— Injection of KHI (kinetic hydrate inhibitor) Yy A
— KHI effect of natural surfactants in crude Kinetic inhibition -

o low to medium subc.
— No visible hydrates N

Hydrate slurry transport
- low to high subcool.

Pressure

» Hydrate slurry transport
— Injection of AA (anti-agglomerant)
— AA effect of natural surfactants in crude
— Under-inhibition of THI (e.g. MEG, ethanol) °
— Hydrates as fine slurry particles

0 Temperature

« Both green KHI & AA have been developed now! Transportable hydrate slurry
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LDHI - Kinetic hydrate inhibitors (KHI)

« Normally water soluble polymers
* Prevent/delay hydrate nucleation and growth for certain time
— Water residence time important
— Normally for short flowlines and shut-ins (one to several days)
— Best KHIs prevent hydrates at 10-12 °C subcoolings for 1-2 days
— Can prevent hydrate formation for many days at lower subcoolings

— Can be combined with MEG to handle higher subcoolings

Typical dosing range: 0.25 - 5 vol% wrt water

Generally no visible hydrates in the system

Work on gas/water and gas/oil/water systems

No water cut limit




LDHI - Anti-agglomerants (AA)

« Contain head-groups adsorbing on hydrate crystal surfaces
« Contain oil-soluble tails dragging hydrate particles into oil phase
 Form hydrate-in-oil dispersions (transportable slurry particles)

— Best AAs can work at 15-17°C subcoolings

i
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OHI

ACER96S44

— Can be combined with MEG to handle higher subcoolings

— Normally need an oil phase to work properly
— Work normally up to 40% water-cut LL f

 Typical dosing range: 0.3 - 3 vol% wrt water

Armoblen 802

« Performance independent of water residence time

— Can be used for long shut-ins and long flowlines




Plugging vs non-plugging hydrates




Plugging hydrates




Hydrate plug detection & remediation

Important iIssues:

* Reliable plug detection/localization methods

* Plug remediation efficiency

« Safety aspect

Applicability and efficiency of remediation
methods depend on plug location!
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3D y-ray measurements showing even
nydrate depositions at the pipe wall
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Plug melting by depressurization

Pressure

Need to remove hydrostatic
pressure at deep water

»Very low efficiency for insulated
pipes

» Time consuming for gas
(condensate) lines

»Need to maintain low pressure
to assure melting

» Often “only” applicable method

Temperature

Tmelt Tamb.




Plug seen through a thermo-camera
— during depressurization |




Large differential pressure
=> May cause projectiles (loosen plugs)!

High
pressure

Low
pressure
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Plug projectile exp. & modelling
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Hydrate Cannon experiments




Plug melting by heating

Avoid local heating

Avoid too high
heating rate
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Hydrate control in Statoll

« Statoil has over the past two decades had large
efforts within hydrate control. Hydrate control -
Statoil’s distinctive technology portfolio.

» Large research projects and extensive operational
experiences have lifted Statoil to the forefront with
cutting edge hydrate control solutions.

« Statoil is world’s largest subsea operator with over
500 wells and in excess of 100 production and
injection flowlines. This has provided extensive first
hand experiences on hydrate control issues.

« Statoll is a technology driven company with short
ways to implement new hydrate control solutions.

« We continuously improve our operational strategies
based on increased understanding on hydrate issues.




Hydrate control methods

Direct electric Thermal
heating
‘v | ;’\ !/
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Hydraulic
methods

Methanol/
/ ethanol

Salts

Gas

dehydrati )
P enydration IS ' Controlled under-
rocess N inhibition by THI
. Water cut
solutions reduction LDHI — KHI

Safe operation in
hydrate domain

Natural
kinetic
inhibition

Natural
hydrate
transportability







Historical flashback on hydrate control

The old time The new era of hydrate management
Hydrate avoidance . Hydrate management
Hydrate domain Fleld +
. experience
R&D work

Temperature

Temperature

Continuous R&D work to enhance the understanding of hydrates and define improved solutions

BEN 1 0 2000 2002 2004 2006 2008 2014

Hydrodynamics, operation Hydrate management
Large efforts to conditions and fluid concept introduced and Continuous
understand hydrate properties are importantfor  gradually implemented improvements —
properties and behavior p|ugg|ng risk assessment * Formation kinetics pUShing the limits

(induction time)

Hydrate transportability

» Green chemicals

» Plugging risk assessment
Risk based and tailor made




Statoll is a pioneer at
Direct Electrical Heating of Pipelines

» Primarily for hydrate control purposes

* Installed on 7 Statoil operated fields with multiple
pipelines

Enables “single pipeline” tie-back

Operational flexibility — “push the button”
Rapid start-up after shutdowns
No need for depressurization

End zones still need additional hydrate control
measures

Uniform heat input along the line

Plug melting by direct heating:
- Extensive studies have been

— Tyrihans: 4 templates on a 43 km pipeline performed at Statoll

Morvin: 2 templates on a 20 km pipeline — A comprehensive & rigorous
mathematical model developed

— Guidelines and procedures

Fossekall-Dompap: 3 templates on a 26 km pipeline

Developing new wet insulation materials developed
DEH also recently selected by other operators




Natural gas hydrates — a potential new energy resource
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Estimated global resources in natural gas hydrates:

e From at least 100,000 TCF [source: Boswell & Collett, 2011]

 Global energy needs for the next 1,000 years




