

$$\left(\begin{array}{c} d_{13} = 2 \dots \cdot P_{1} \cdot P_{1} \\ (d_{13} = 2 \dots \cdot P_{1} \cdot P_{1} \\ (d_{13} = 2 \dots \cdot P_{1} \cdot P_{1} \\ (d_{13} = 2 \dots \cdot P_{1} \cdot P_{1} \\ (d_{13} = 2 \dots \cdot P_{1} + P_{1} + P_{1} + P_{2} + P_{2}$$

Usually compressor performance curves are measured for a specifiset of intet conditions P., T. ~ use a particular fluid Mg, K 1 15.6°C only 101325 banc for the exercise. P. P_{1}^{*} , Γ_{1} , Γ_{2} , K_{1}^{*} for P,, t, ng, , K, 7 Hp A Hρ -operational poinn ta thermodynamic calculations transtermations que - to avoid generating - CONNECTION OF THOW RATE : pertormance map tor $\phi = \frac{\dot{m}}{\rho_0 q_0 D^2} \rightarrow \phi_T = \rho_a \rightarrow \frac{\dot{m}_T}{\rho_1 q_0 D^2} = \frac{\dot{m}_a}{\rho_1 q_0 T} + \frac{\dot{m}_a}{\rho_1 q_0 q_0} + \frac{\dot{m}_1 q_0}{\rho_1 q_0} + \frac{\dot{m$ every year. = $\frac{q_{T}}{r} = \frac{q_{a}}{r} = \frac{q_{a}}{r} = \frac{q_{a}}{r} = \frac{q_{TEIT}}{\sqrt{k_{TEIT}}} = \frac{k_{a}}{\sqrt{k_{TEIT}}}$ - CONNECTION OF PAESSURG RATIO: THE POLYTHOPIE HEAD REMAINS THE SAME ._ HP = HPA $\begin{array}{c|c} RT_{j}Z_{n} & \left[r_{p}^{n-1} - 1 \right] = RT_{j}Z_{n} & \left[r_{p}^{n-1} - 1 \right] \\ n-1 & n-1 \end{array}$ THEN ... $\Gamma_{p} = \begin{bmatrix} M_{a} & T_{t} & Z_{a} & n_{T-1} \\ M_{T} & T_{a} & Z_{T} & n_{a} \end{bmatrix} \begin{bmatrix} \Gamma_{p_{T}} & n_{T-1} \\ \Gamma_{p_{T}} & T_{T-1} \end{bmatrix} + 1 \begin{bmatrix} n_{a-1} \\ n_{a-1} \end{bmatrix}$

as a side note: other option for boosting Ab = 40 bara WGC wet gas compressor assumptions / requirements for the exercises • $l_p = const = 0.7$ f seals integrity aperational avoid vorporization of inhibitor ● Tdijcharge < 150°C constrainty to avoid structural problems in discharge propeline general compressor constraints Tinlet = 67°C compressor station Q later ST max = 27°C Speafic o Cooler is operating with Tank= 6°C compressor am braints o Power of each compressor unit; 11 mw. Max total = 22 mw. with the pertormance arne. · Pluc 2, 20 bara $\frac{1}{r_2} = \frac{1}{r_1 r_p}$ $r_p \overline{n_2} + r_2$ at in absolute onits $B_{S}(P,T) = \frac{9_{S}\log 1}{9_{\overline{S}}}$ 95 local = 95 . Bg (P, J) t=¥ for this dass $z_{av} \approx z_{1}$ Jsc - Jsc Sh= ıd w? d La La (2nh

P = Shp. m Kr KW 100 KT. 45/5 = [mw n-1 rp _ L Debugsing ; $bh_p = t_1 z_{av} R \underline{h}_1$ $\sim n - i$ $7 - i z_{av} R \underline{h}_1$ [K] 7 V KJ KgN KJ Kg 2 R = 8314 J Krolk 8-314 KJ Kgwolk mx = 22 pw This E 150°C P),20 bar Porc year Pplem req Tsuc rp deltap np n Tdis zsuc zdisc Bg @suc qg_local ∆hp m Power Hp test (bara) [bara] [C] [m^3/Sm^1[m^3/d] [J/kg] [MW] [m] [-] [bar] [-] [-] [C] [kg/s] [m 21 76.6 1.49 69.81 0.93 14.5E-3 289.3E+3 4126.15 156.0 643.6E-3 219.4E+0 78.6 67 1.03 1.94 0.70 0.93 22 23 24 25 4.2E+0 67.1 78.6 67 1.17 1.49 85.05 0.94 0.94 16.7E-3 332.7E+3 26754.95 156.0 49.2E+0 11.43 0.70 57.1 1.49 156.0 8.8E+0 562.3E+0 78.6 67 1.38 21.45 0.70 104.60 0.94 0.95 19.8E-3 394.5E+3 56384.84 45.8 1.49 133.02 156.0 15.6E+0 78.6 67 1.71 32.75 0.95 0.97 24.9E-3 497.1E+3 100283.54 3.0E+3 0.70 31.9 78.6 67 2.46 46.68 0.70 1.49 184.44 0.97 0.99 36.3E-3 724.1E+3 181242.31 156.0 28.3E+0 12.0E+3 267 1.02 304.1E-3 6.1E+6 908936.00 3.9 67 20.06 74.65 0.70 1.49 638.81 1.00 156.0 141.8E+0 60.3E+9 78.6 #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! 67 1.49 #VALUE! #VALUE! #VALUE! 156.0 #VALUE! 78.6 #VALUE! 0.70 #VALUE! #VALUE! #VALUE! #VALUE! **#VALUE!** 67 #VALUE! #VALUE! 0.70 1.49 #VALUE! #VALUE! 156.0 #VALUE! #VALUE! 78.6 mr shp year 25 Shp. n shp Pin, Tin (-Port Tork mr. Shp + mr Shp

Modification of the excel sheet:

(Pplem req	deltap comp choke	psuc	Tsuc	rp	deltap	np	n	Tdis	zsuc	zdisc	Bg @suc	qg_local	∆hp	m	Power	Hp test	qact test	qact test single comp
([bara]	[bar]	[bara]	[C]	[-]	[bar]	[-]	[-]	[C]			[m^3/Sm^3]	[m^3/d]	[J/kg]	[kg/s]	[MW]	[m]	[m^3/d]	[m^3/d]
	78.6	25.5	51.1	. 67	1.54	27.44	0.70	1.49	118.63	0.95	0.96	22.2E-3	443.2E+3	77954.84	156.0	12.2E+0	4.1E+3	320147.2	160073.6
	78.6	16	51.1	. 67	1.54	27.43	0.70	1.49	118.59	0.95	0.96	22.2E-3	443.1E+3	77893.47	156.0	12.1E+0	4.1E+3	320043.8	160021.9
	78.6	6.3	50.8	67	1.55	27.75	0.70	1.49	119.40	0.95	0.96	22.3E-3	446.0E+3	79145.59	156.0	12.3E+0	4.2E+3	322156.9	161078.4
	78.6	C	45.8	67	1.71	32.75	0.70	1.49	133.02	0.95	0.97	24.9E-3	497.1E+3	100283.54	156.0	15.6E+0	5.3E+3	359050.0	179525.0
	77.2	C	34.6	40	2.24	42.69	0.70	1.49	134.84	0.95	0.97	30.3E-3	592.6E+3	143884.32	152.9	22.0E+0	8.3E+3	446143.4	223071.7
	71.8	C	30.3	40	2.37	41.55	0.70	1.49	142.88	0.96	0.98	34.8E-3	624.0E+3	156933.95	140.2	22.0E+0	9.1E+3	469712.2	234856.1
	66.7	C	26.7	40	2.50	40.02	0.70	1.49	150.00	0.96	0.98	39.6E-3	649.3E+3	168531.01	128.1	21.6E+0	9.7E+3	488769.3	244384.6
	61.6	C	24.7	40	2.50	36.96	0.70	1.49	150.00	0.96	0.98	43.0E-3	636.9E+3	168880.65	115.7	19.5E+0	9.8E+3	479422.0	239711.0

The deltap of the inlet choke is changed manually for the first three years until all three points are inside the operational compressor map:

