Oil and	Gas proc	luction well	s										Prof.	Milan S	tanko (N	TNU)
202	41105							0.		n .(c.	5	14			
202 OU	TLINE						48.500	. F 10-	·	lilm	Stankb	•	10			
-Pro	oductio	n engine	ering o	verview												
-We	ll cons	truction													•	
-Flo	w equi	librium														_
	≡ Pe	troleu	m pr	oducti	on eng	gineer	ing					Żμ	3 lang	juages	~	4
A	ticle Tal	lk									Read Edit	View	history	Tools	~	
- Fr	om Wikip	edia, the free	e encyclop	edia												
					aubaat of	n etreleum					in storage	60	otherm	l.		
P	etroleun	n productio	on engin	ieering is a	a subset of	petroleum	engineerin	ıg.			e tural sas					
P	etroleum	production	n enginee	ers design a	and select	subsurface	equipmen	t to pro	duce oi	and gas	s well fluids.	^{1]} The	often a	are	-	
de	egreed a	s petroleun	n engine	ers, althou	gh they ma	y come fro	m other teo	chnical	disciplir	nes (e.g.	, mechanica	l engin	eering,	chemic	al 🎽	•
e	igineenr	ig, priysicis	t) and su	ibsequently	be trained	i by an oli a	and gas co	mpany.		well	- design (1	-1)	`			
C	vervi										. trauble than	tm	,		N	
						•					· optrniant				- T	•
P	etroleum	production	n enginee	ers' respons	sibilities inc	clude:					ointervetio	h			-	
	1. Ev	aluating infl	low and o	outflow per	formance b	between the	e reservoir	and the	wellbo	re.						·
	2. De	signing con	npletion	systems, in	cluding tub	oing selecti	on, perfora	ting, sa	nd con	trol, mat	rix stimulatio	n, and	hydrau	lic		
	3. Se	lecting artifi	icial lift e	auipment, i	ncludina si	ucker-rod l	ift (typically	beam	niamua	a), das l	ift. electrical	subme	ersible r	umps.		
	sub	osurface hy	draulic p	umps, prog	gressing-ca	avity pumps	s, and plun	ger lift.		3, 3	,					
	4. Se	lecting (no	t design) equipmer	t for surfac	ce facilities	that separ	ate and	measu	re the p	oduced fluid	ls (oil,	natural	gas,		
	wa	ter, and imp	purities),	prepare the	e oil and ga	as for trans	portation to	o marke	et, and I	nandle d	isposal of ar	ny wate	er and ir	npuritie	es.	
N	ote: Surf	ace equipm	nents are	e designed	by Chemic	al enginee	rs and Med	hanical	engine	ers acco	ording to dat	a provi	ded by	the		
рі	oduction	n engineers							I.				1	1	1	
	2 r	on velle	wre re	g1 or (o	vlop nit	lh res e	, ,)									
	• 4	llbre							•							
	. tr	missortat	6	tere (or	, lop wit	th flow	~ assure	ne)			- fartil	ies			•	
			. J.		t	ie				fractss	יייכי				1.6	
	o fro	cesury (c	selop	w.Ch	X-was a	tras	est					1/	Stenok	0 0	רטיניט	λ.
	1.1	she en)	x	N.				\nearrow	\searrow	> 75	s~"/d	P.	- 1.0	01325	bor
	794011	ittes eggi	C	X	=12			-1	ρ			•	T	- 16	• <r td="" •1<=""><td>.</td></r>	.
			Ł	¥	<u>ft</u>				5		9=		ار	ic = 13	5.76 (•
				an ba				Į.	_	- [•				
			ل		2"-	-> 7°					→ 1 <u></u>					
			T		~ prodri	in casia	9 5/			•						
					1		. /a									
		•	·													
					-			•							÷.,	
			~~	 ¹								1	01			
			ļ	1 1 1 2	•	PR.						19-	5	•		
			}	-	F							HΤ	ī ī			
			\sim								4		\square			
				t 1.	to the	and a	-			•		I/				
ił	troup	rt systm	r 13		ge, (00	conpex						∥	+			
			flow	assumce	Prizvols								+ +			_
							K-5.	- 160	h _							
											14					
											$\neg \mathcal{V}$			١		
			_				P					C	-			-

FIGURE 2-2 Final well bore architecture for Macondo well. Source: BP 2010, p. 19. Reprinted with permission; copyright 2010, BP.

		29.30
calculate total weight of 9		32.30
5/8" production casing, of		36.00
length 2500 m		3/8.00
		40.00
		u √ , 43.50
	9 5/8	244.48 ¹ 47.00
21-0 42 1/ 1/t 0.45 Kg 173 t		53.50
		58.40
'tt 0.3048 m 1 Lb		

Running casing (when at the bottom, keep it hanged rig (tension)

Cementing (either all way to surface or with significant overlap with previous casing)

Install casing hanger:

shoulder elastomer, to expand laterally when pressed and create seal (high pressure above, low pressure below) No-go shoulder, to transfer load to casing bowl

slips to create attachment

wedge: to press the elastomer against no-go

between casing and hanger

Slip similar to drilling

slips<u>*</u>

Drilling hole

Casing hanger 3D

view

Slip marks on casing *

source

Intermediate casings and production casing (95/8"):

Repeat process shown above for intermediate casing!

Pressure rating of inner casing higher than outer casing (here production casing 10 000 psi, intermediate casing 5000 psia, surface casing 3000 psia)

The only annulus that might be connected to facilities (for production of injection) is the production casing annulus (A). However, valves and pressure transducers are installed in the others (B,C) to monitor if there are pressure increases (indicates leakages e.g. due to casing hangers seals or cement fails)

Lower completion and tubing:

BOP connection (flanged)

Drilling hole

some options (single zone), (multi-zone)

Lower completion. Equipment/materials usually needed: packers (seals), hangers (fix tubulars to casing), drilling (drilling laterals), liners (tubulars that don't go to surface), perforating gun (establish connection between reservoir and well), cement (isolate reservoir from well).

thanks to spring)

annulus master valve

source

PLATFORM WELL DRILLING

x-mas tree deck wellhead deck. conductor mudline

similar to onshore drilling, but the conductor is extended above the mudline and into the platform.

Differences from onshore: xmas tree is a solid steel block, more robust

Differences from onshore: less flanges, fast clamp connectors instead (less screws)

clamp

gasket

	IPR (available)	TPR (rea)							 	
nwf - avail		nwf-reg								
	40	pwi-ieq								
[bara]	[Sm3/d]	[bara]							 	
450	0	238								
400	500	240								
350	1000	243							 	
300	1500	248							 	
250	2000	255							 	
200	2500	263							 	
150	3000	273								
100	3500	285								
50	4000	298								
0	4500	312								
			diff [bar]							
254.3	1957.49	254	0							

Excel shortcuts:

To access the VBA module

-Alt+F11 (first alt and immediately after F11)

-Activate teh developer tab (File->Options-->Customize Ribbon-->mark Developer). Click on the "visual basic" button on the developer tab

Freeze cells (ensure they do not shift when we apply the function to other cells): F4 \$C\$11

Call function

start typing function and select from the list

fx ~

Goal seek, to drive a cell to a given value by changing another cell, under DATA tab

$$\frac{?}{95} = J (Pe - Pwif) + \frac{1}{95}$$

$$\frac{?}{1} + \frac{1}{95}$$

system of two equations and two unknowns, flow equilibrium solves them graphically

Oil and G	as produc	ction w	/ells

202411	12
OUTLIN	IΕ

-Guidelines for problem 2 in exercise set 1 (CO2 injector well)

-More details about IPR (derivation of IPR, undersaturated oil, CO2 injector, water injector, effect of wellbore dp, dry gas, saturated oil, composite IPR, horizontal and vertical)

some comments about assignment 1, problem 2 (CO2 injection well):

A= + Papeline (60 bara)

 $\frac{2}{2} + \frac{1}{2} + \frac{1}{12} +$

pertorm flow equilibre in this well, at bottom-lote

L t/d

() available prossure cure is calculated from Ppipelne (upstream the chare) and includes

3 v~ (u1

967

Kow in chose, flow in tubing.

Put

calculated with Bernoulli eq, because the CO2 has a high density and can be considered incompressible

OBS & be careful the VOA function to calculate Pin Port UPS an angle,

tor produlin 0=90

to mechon O= -90

10

To calculate pavail at bottom-hole, I should use pout VBA function.

the required put is estimated from vircon= J (Put - Pa) Purt = Pa + more J

In boundary dominated flow, and in the steady state (pe = constant) or pseudo-steady-state (no flow at re), the time dissapears from the equations, and I can derive IPR using steady-state approximation

$\frac{Darcy's \ law}{\frac{V - k}{n} \ dr}$	(∕v ⋧	- <u>k</u> n	dP Jr		00 P9	e De			
$\int dr = \begin{pmatrix} \mu & \mu \\ \mu & \nu \end{pmatrix}$	9	² p r ²	+ <u> </u> (2p dr	- d	<u>əp</u> ət				
IPR equations are: 1)derived from Darcy's law, by applying specific boundary conditions and fluid properties 2) from field tests	ſ	->	allows param Since predic	acu to s neters it is t tive	ee w s, vei base	hat are ry impoi d on ph	the mo tant fo ysics if	ist imp r desi is usi	oortani gn ually n	t nore

dry gas well, vertical radial geometry, no flow boundary

$$95 = \frac{k \cdot h}{[\ln\left(\frac{r_{e}}{r_{w}}\right) - 0.75 + s] \cdot 18.68} \cdot \int_{r_{w}}^{P_{B}} \frac{1}{r_{b} \cdot B_{b}} dp}$$

$$95 \quad yos \quad volume \quad factor = \frac{9}{43}$$

$$95 \quad yos \quad volume \quad factor = \frac{9}{43}$$

$$95 \quad yos \quad volume \quad factor = \frac{9}{43}$$

$$95 \quad yos \quad back \quad pressore \quad equation \\
95 \quad yos \quad back \quad pressore \quad equation \\
95 \quad yos \quad back \quad pressore \quad equation \\
95 \quad yos \quad back \quad pressore \quad equation \\
95 \quad yos \quad back \quad pressore \quad equation \\
95 \quad yos \quad back \quad pressore \quad equation \\
95 \quad yos \quad back \quad pressore \quad equation \\
95 \quad yos \quad back \quad pressore \quad equation \\
95 \quad yos \quad back \quad pressore \quad equation \\
95 \quad yos \quad back \quad pressore \quad equation \\
95 \quad yos \quad back \quad pressore \quad equation \\
95 \quad yos \quad back \quad pressore \quad equation \\
95 \quad yos \quad yos$$

Oil and Gas production wells

Prof. Milan Stanko (NTNU)

TPR, 4,

۶q.

Q37Q17

Ø,

		-														
Nominal Weight		Nominal Weight					Threaded	Coupling				Joint Yield		Capacity		
Tubin	g Size	T&C			Wall		1000	Coup	ing Outsid	le Dia.	Col-	Internal	Stre	ngth	Та	ble
	1997	Non-	T&C	10.00	Thick-	Inside	Drift	Non-	Upset	Upset	lapse	Yield	T&C		Barrels	Linear
Nom.	OD	Upset	Upset		ness	Dia.	Dia.	Upset	Reg.	Spec.	Resis-	Pres-	Non-	T&C	per	ft
in.	in.	lb/ft	Ib/ft	Grade	in.	in.	in.	in.	in.	in.	tance	sure	Upset	Upset	Linear	per
							-				psi	psi	lb	lb	ft	Barrel
				H-40							7,200	7,530	6,360	13,300		
2/4	1.05		1.00	J-55	0.440	0.004	0.700	4.040	1 000		9,370	10,360	8,740	18,290	0.0007	1510.10
3/4	1.05	1.14	1.20	C-75	0.113	0.824	0.730	1.313	1.660		12,250	14,120	11,920	24,940	0.0007	1516.13
				N-80 •							12,710	15,070	12,710	26,610		
				H-40							6,820	7,080	10,960	19,760		
	1 2 1 5	1 700	1.000	J-55	0.112	1 0 10	0.055	1 6 60	1 000		8,860	9,730	15,060	27,160	0.0011	025 40
	1.515	1.700	1.800	C-75	0.113	1.049	0.955	1.000	1.900		11,590	13,270	20,540	37,040	0.0011	935.49
				N-80							12,270	14,160	21,910	39,510		
		20.00		H-40	0.125	1.410	1000				5,220	5,270			0.0019	517.79
	100	10.000		H-40	0.140	1.380	10 mm	100 C - 100			5,790	5,900	15,530	26,740	0.0018	540.55
1 1/4	1 660	2 200	2.400	J-55	0.125	1.410	1 296	2.054	2 200		6,790	7,250	100 100		0.0019	517.79
1 1/4	1.000	2.300	2.400	J-55	0.140	1.380	1.200	2.034	2.200		7,530	8,120	21,360	36,770	0.0018	540.55
				C-75	0.140	1.380	-	-			9,840	11,070	29,120	50,140	0.0018	540.55
				N-80	0.140	1.380					10,420	11,810	31,060	53,480	0.0018	540.55
				H-40	0.125	1.650					4,450				0.0026	378.11
				H-40	0.145	1.610					5,290		19,090	31,980	0.0025	397.14
1.10	1 000	0.750	2.000	J-55	0.125	1.650	1 5 10	2.200	2.500		5,790				0.0026	378.11
1 1/2	1.900	2.750	2.900	J-55	0.145	1.610	1.516	2.200	2.300		6,870		26,250	43,970	0.0025	397.14
				C-75	0.145	1.610					8,990	10,020	35,800	59,960	0.0025	397.14
				N-80	0.145	1.610					9,520	10,680	38,180	63,960	0.0025	397.14
					-				1							

hil

.In

how to choose tubing size:

-Gives most flow (more rate and more USD) -BUT, cost of the tubing should be taken into account.

-Running tolerances (should enter into casing strings).

++ Avoid erosion, avoid slugging/liquid loading (very slow liquid velocity), tubing hanger size/load limitations, etc.

> Non Upset (NUE)

coupling machine: https://www.youtub

https://www.youtube.com/watch?v=PWt9k7mYBol

running tubing in well kvitebjørn <u>https://www.youtube.com/watch?v=_vq4hnXQKGw</u>

External Upset

(EUE)

Revenue
$$9_{5}$$
. Po + 9_{5} . Po
(15000. 3+7 + 2.25E6. 1)

$$(5655000 \pm 225000)$$
 USD/d

$$q_{II} = 7.265 EOG = 75(1+130)$$

Pevenue :

Exam information (only the production part):

-1 Problem (15 POINTS). Calculation problem with 3 tasks (each 5 POINTS) - Need a calculator. Flow equilibrium+ Dry gas equations. To study consider downhole and wellhead equilibrium!!! Equations will be given in the exam -Milan corrects considering procedure+results.

-1 question (5 POINTS): Theory+Sketching question

DNTNU | Norwegian University of Science and Technology

Introduction to oilfield processing

Assoc. Prof. Milan Stanko

Horizontal separator

TYPICAL MIST EXTRACTOR

Wire Mesh Pads

Arch Plates

Vanes

Horizontal separator

Vertical separator

Vertical Separator

TEG dehydration

Youtube links for TEG dehydration

- Inside a gas dehydration tower: <u>https://www.youtube.com/watch?v=_f7q8gWf8fg</u>
- Gas dehydration unit: <u>https://www.youtube.com/watch?v=kTtiqTeTZ0I</u>

Dehydration units vary in size depending on **gas flow**.

In a unit this size, flow rates can be **a few million cubic feet** per day (MMCFD).

Skim tank + flotation unit

Hydrocyclone

Other links

Water knockout : <u>https://www.youtube.com/watch?v=wQ1A8w9Ouy4</u>

Walkthrough an oil and gas platform in the UK . <u>https://www.youtube.com/watch?v=UrWTMCgHr6s</u>