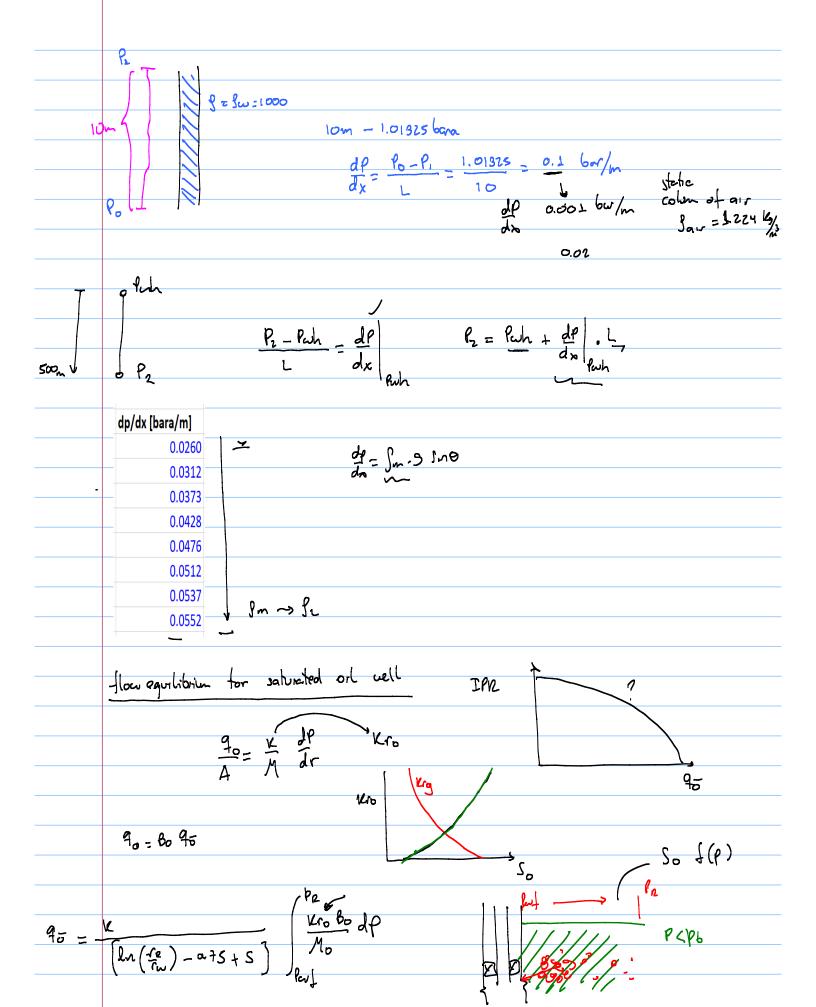
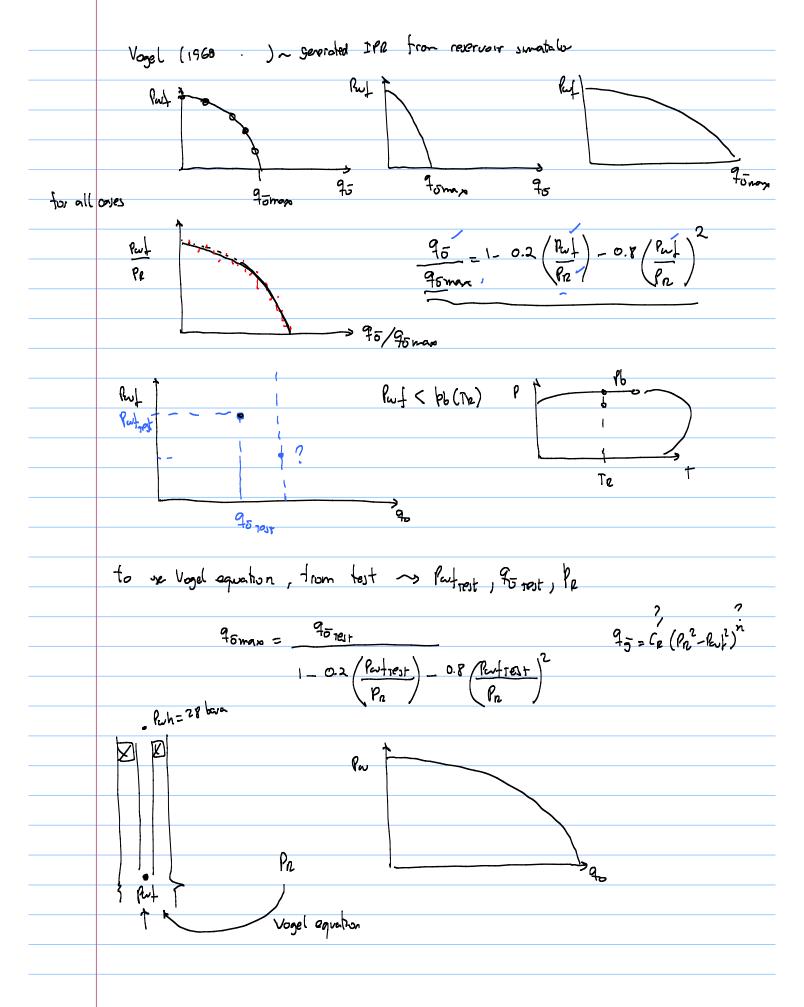

Production operations and facilities engineering Page 66 Prof. Milan Stanko (NTNU) solve excercise plots 07.11.2018 Note Title evolution: 20% home exercises to be doline not by 18 Nov 2018 manipht ONE email per group Class 9 email subject : "POFE exercise group last name L, lastnome 2, last none 3 " 19-23 Nov 2018 ~ 3 his leavy practice 40% QUIZ Yor exam 26-30 Nou 2018 ~ 3 hrs Way/produce multiphase flow theory Vg the fluid is homogeneous -Ag VL = Ng ~ no-slip condition Az Ag Ag cross-section Area I no tracti hanslip gas volume traction AL= AL $\overline{g}m = I(\lambda_q)$ $\mathcal{V}_m = \mathcal{V}_L = \mathcal{V}_g = \frac{\mathcal{q}_L + \mathcal{q}_g}{\mathcal{A}} = \frac{\mathcal{q}_L}{\mathcal{A}} + \frac{\mathcal{q}_g}{\mathcal{A}}$ $V_{n} = \frac{q_{1}}{A} + \frac{q_{3}}{A} = V_{L} = V_{g}$ Usi + Wsg $A_{L} = V_{L} = (A_{L})^{H}L + \frac{q_{3}}{A}A_{L}$ 9, = n, 9, + n, 9, $q_{L} = \lambda_{L} (q_{L} + q_{S})$ $\frac{q_{L}}{q_{L}+q_{q}} = \lambda_{L} \longrightarrow \int_{m}^{m} = \lambda_{L} \int_{L}^{m} + (1-\lambda_{L}) \int_{Q}^{m}$ ~> = 10% $\lambda_g = \frac{A_g}{A} = \frac{A - A_L}{A} = 1 - \lambda_L$ <u>d</u> <u>b</u> = -f. <u>Sm</u> <u>Vm</u> _ <u>pm</u> <u>Sin</u> <u>O</u> <u>g</u> homogeneous model</u>

Vg + VL in reality V, _N_5 $q_1 = V_1 A_1 = V_1 A_L$ ٨**۴** q = Vg Ag - Vg Ag Smassi inhomogeneous homogeous (ship) case volume fraction a je qu = constant Hr = Ar A Liquid Holdup 9g= costen • slipisto S= Vg] · replace velocity VR = V3 - Vi the trust step to collabore $\frac{dp}{dx}$ is to adatate $\mathcal{E}(H_L)$ (the bilace) (to rectand to nodel) Comparison of void fraction correlations for different flow patterns in horizontal and upward inclined pipes Melkamu A. Woldesemayat, Afshin J. Ghajar * School of Mechanical and Aerospace Engineering, Oklahoma State University, Stillwater, OK 74078, USA Received 1 June 2006; received in revised form 13 September 2006 T $\varepsilon = \left[1 + 0.28 \left(\frac{1-z}{x}\right)^{0.64} \left(\frac{\rho_G}{\rho_L}\right)^{0.36} \left(\frac{\mu_L}{\mu_G}\right)^{0.07}\right]^{-1}$ Lockhart and Martinelli (1949) $\varepsilon = \left[1 + \left(\frac{1-x}{x}\right)\left(\frac{\rho_0}{\rho_1}\right)^{0.5}\right]$ Fauske (1961) $\varepsilon = \left[1 + \left(\sqrt{(68947.57/P)\varepsilon} + 1\right)\left(\frac{1-\varepsilon}{x}\right)\left(\frac{\rho_0}{\rho_1}\right)\right]^{-1}$ Fujie (1964) $\varepsilon = \left[1 + \left(\frac{1-x}{x}\right)\left(\frac{\rho_G}{\rho_L}\right)^{0.89}\left(\frac{\mu_L}{\mu_G}\right)^{0.18}\right]$ Thom (1964) Zivi (1964) $\varepsilon = \left[1 + \left(\frac{1-x}{x}\right)\left(\frac{\rho_0}{\rho_1}\right)^0\right]$ $\varepsilon = \left[1 + \left(\frac{1-x}{x}\right)^{0.72} \left(\frac{p_0}{p_1}\right)^{0.4} \left(\frac{p_1}{\mu_2}\right)\right]$ Turner and Wallis (1965) Baroczy (1966) $\varepsilon = \left[1 + \left(\frac{1-x}{x}\right)^{0.74} \left(\frac{\rho_G}{\rho_L}\right)^{0.74}\right]$ $\varepsilon = \left[1 + A_{SM}\left(\frac{1-x}{x}\right)\left(\frac{\rho_0}{\rho_1}\right)\right]^{-1}$ Smith (1969) where $A_{SM} = 0.4 + 0.6 \sqrt{\left[\frac{\rho_L}{\rho_Q} + 0.4\left(\frac{1-x}{x}\right)\right] / \left[1 + 0.4\left(\frac{1-x}{x}\right)\right]}$ $\varepsilon = \left[1 + A_{\text{PRM}}\left(\frac{1-x}{x}\right)\left(\frac{\rho_0}{\rho_1}\right)\right]$ Premoli et al. (1970) where $A_{\text{PRM}} = 1 + F_1 \left\{ \frac{y}{1+yF_2} - yF_2 \right\}$, $F_1 = 1.578 Re_L^{-0.19} \left(\frac{\rho_1}{\rho_2} \right)^{0.22}$ $F_2 = 0.0273 \text{We}_{\mathrm{L}} Re_{\mathrm{L}}^{-0.51} \left(\frac{\rho_{\mathrm{L}}}{\rho_{\mathrm{O}}}\right)^{-0.08}, \quad y = \left[\left(\frac{1-x}{x}\right) \left(\frac{\rho_{\mathrm{O}}}{\rho_{\mathrm{O}}}\right)\right]^{-1}, \quad \text{We}_{\mathrm{L}} = \frac{GD}{a\rho_{\mathrm{L}}}, Re_{\mathrm{L}} = \frac{GD}{\rho_{\mathrm{L}}}$ $\varepsilon = \left[1 + \sqrt{1 - x\left(1 - \frac{\rho_{L}}{\rho_{G}}\right)\left(\frac{1-x}{x}\right)\left(\frac{\rho_{G}}{\rho_{L}}\right)}\right]$ Chisholm (1973) $\varepsilon = \left[1 + \left(\frac{1-x}{x}\right)^b \left(\frac{p_G}{p_1}\right)^{-0.5}\right]$ Madsen (1975) where $b = 1 + \log\left(\frac{p_1}{p_2}\right) \left(\log\left(\frac{1-s}{s}\right)\right)^{-1}$

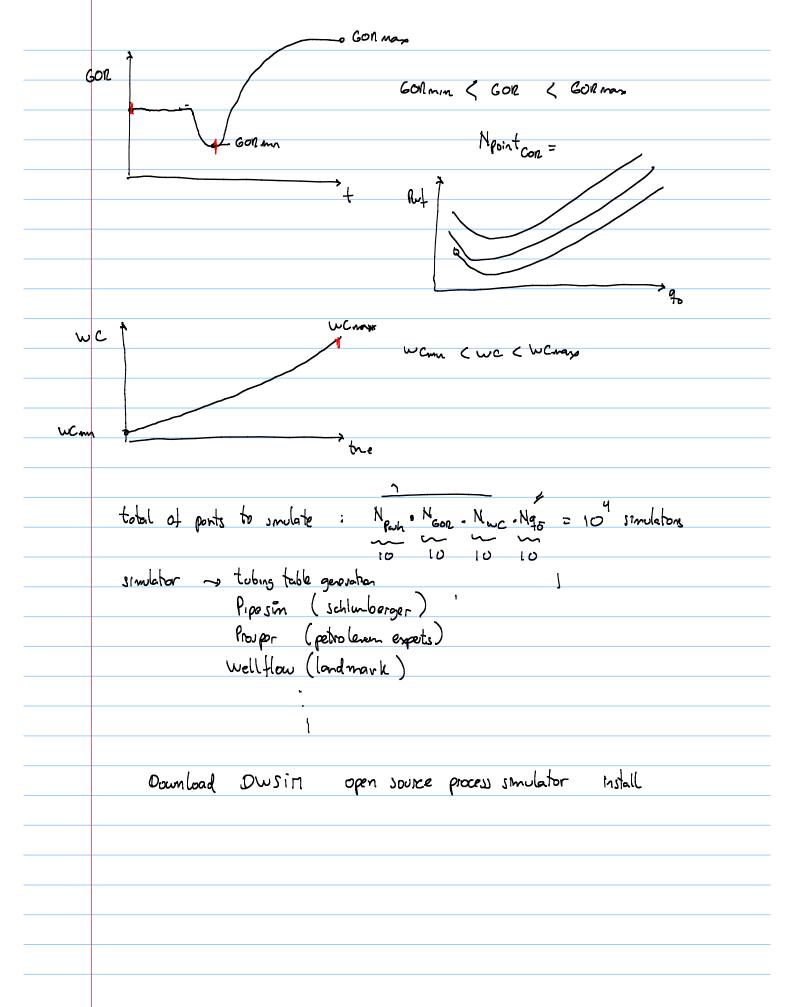
 $\varepsilon = \left[1 + 2.22 \left(\frac{1-x}{x}\right)^{0.65} \left(\frac{\rho_0}{\rho_0}\right)^{0.65}\right]$

Spedding and Chen (1984)




@P,T $F_{g}(p,t)$ P $P_{p}(p,t)^{7}$ Vg V_o ∨ງົo P VGD V/// Mo - 19.53 V= - GON . V-, fo= Vo SG0. 1000 GOR Vo + SGg. 1.224 SG3. 1-274 608 + SG0-1000 folp, t $\begin{array}{c|c} Y_{B_3} & r_{3}/B_3 \\ \hline Y_{B_3} & r_{3}/B_3 \\ \hline P_{3}/B_{0} & r_{3}/B_{0} \end{array} \end{array} \begin{array}{c} J_{\overline{5}} \\ J_{\overline{5}} \\ \hline J_{\overline{5}} \\ J_{\overline{5}} \\ \hline J_{\overline{5}} \\ J_{\overline{5}} \\$ (t,t) P+ calculations of pressure drop in conducts (tubing) empirical ~ test data (field / (ab) ~ correlation, admensional numbers two approaches mechanistic. ~ toxe balance (momentum equation) moss balance (mass consurvation scarrelation because regrations < numericums > dosure model

	Mechanistic (Phenomenological)
	Empirical Category C Slip Flow Regime Beggs & Brill Duns & Ros Orkiszewski Mukherjee & Brill SLB Drift-Flux SLB Drift-Flux
	Y Flow Regime SLB Drift-Flux
	Empirical Category A Slip Slip Flow Regime Lockhart & A Martinelli
	Single-Phase Homogeneous (Mixture Reynolds No.) Darcy-Weisbach-Moody
	1800 1950 1960 1970 1980 1990 2000 2010 Flow Equation Formulation Empirical Period Awakening Years Modeling Period
	Engineering Application Graphical Steady-State Transient Coupled
d p dx	multiphose flow is also studied in other applications liquid • flow assurance (P, T, He along the he), accumulation for stoody state multiphe flow
	• study trasiat phenomena (severe slugug)
	22 me
	2 to then OLGA 2 to loda
	• Driff flux model
	smiler honogreous nodel single momentum equation
	dP = - frp frp Vtp - frp g SmO dx - zp
	is calculated with right Horoup (considering slip)
	$f_{moody} = F(Re, roughveis) \qquad f_{tp} = E f_{g} + (1 - E) f_{L}$
	$f = F(Re, roughveis)$ while honogeneous $fm = \lambda g fg + (1 - \lambda g) f_L$


1

Page 72

pR [bara]	TION	_		fuh=28 bara			
		00					
qmax [Sm^3/c		41 -					
-	IPR	TPR*		+			
pwf	qo	qo					
[bara]		d] [Sm^3/d]					
20		0.0 ~~					
19		8.8 -					
15							
12	20 3223 90 4069						
	50 4003 50 4722			1			
	30 5179	7.5.5	0		1.		
	0 544:		Kuf=	478 Jm	/d		
*calculate in m	nultiphase t	ubing exercise					
IPR INFORMATIO			300.0		<u> </u>		
pR [bara]	200						
qmax [Sm^3/d]	5441						
			250.0 -			-	/ -
	IPR	TPR*	Mf, [
pwf	qo	qo	liowing bottom-hole pressure, pwf, [bara]				
[bara]	[Sm^3/d]	[Sm^3/d]	uns				
200	0.0		ores				
190	478.8	179.7	<u>a</u> 150.0				_
150	2176.4	182.2) '				
120	3221.1	199.8	5 100.0 -				
90	4069.9	217.4	pot				
60	4722.8	231.8					
30	5179.8	242.4	50.0 -				
0	5441.0	248.7	T				-
*calculate in mul	tiphase tubi	ng exercise	0.0				
					oil rate, qo, [Sm^3	/d]	
					,,,,,		
tubing to			timese anes				× (
tubing to in tu	bing ta		ompite tor m		Purf Ru		a a a a a a a a a a a a a a a a a a a
tubras te in tu	bing ta	by i preco	onpute tor m u.c., Pat	.2, GOVL, W	Purf Ru		0 (0 0 0 0 0
tubras te in tu	Purhis,	by i preco	onpute tor m u.c., Pat	.2, GOVL, W	Purf Ru		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
tubing to in tu	Purhis,	by i preco	$\begin{array}{ccc} \text{snpite} & \text{for m} \\ \text{ic,} & \text{fat} \\ & \left(\begin{array}{c} q_{5} \\ \hline q_{5} \\ \end{array}\right) \end{array}$	iz, GOK, W	Purf Ru		a a a a a a a a a a a a a a a a a a a
tubing te in tu 9 0 9 0 9 0	ling tal linhit, Cauf .0 .2 .2 .2 .2 .2 .2 .2	by i preco	supple for m C_1 Pat $\begin{pmatrix} q_{\overline{0}} \\ \overline{q_{\overline{0}}} \\ \overline{q_{\overline{0}}} \\ q_{\overline{0}} \\ q_{\overline{0}} \\ \hline{q_{\overline{0}}} \\ q_{\overline{0}} \\ z_{\overline{0}} \end{pmatrix}$	Ruf	Pw.} Rv C,		a of
tubing te in tu 9 0 9 0 9 0 9 0 2	Purhis,	by i preco	$\begin{array}{ccc} \text{snpite} & \text{for m} \\ \text{ic,} & \text{fat} \\ & \left(\begin{array}{c} q_{5} \\ \hline q_{5} \\ \end{array}\right) \end{array}$	R_{u}	Purf Ru		a of

