Day 9:

- · methods to compute multiphase flow is off
- · the drift flux model ~
- · Conversion from local to standard conditions ving BO properties
- · Exercise
- · Pressure integration in multiphase flow
- · Exercic
- · final comments end

two approaches to study multiphase flow

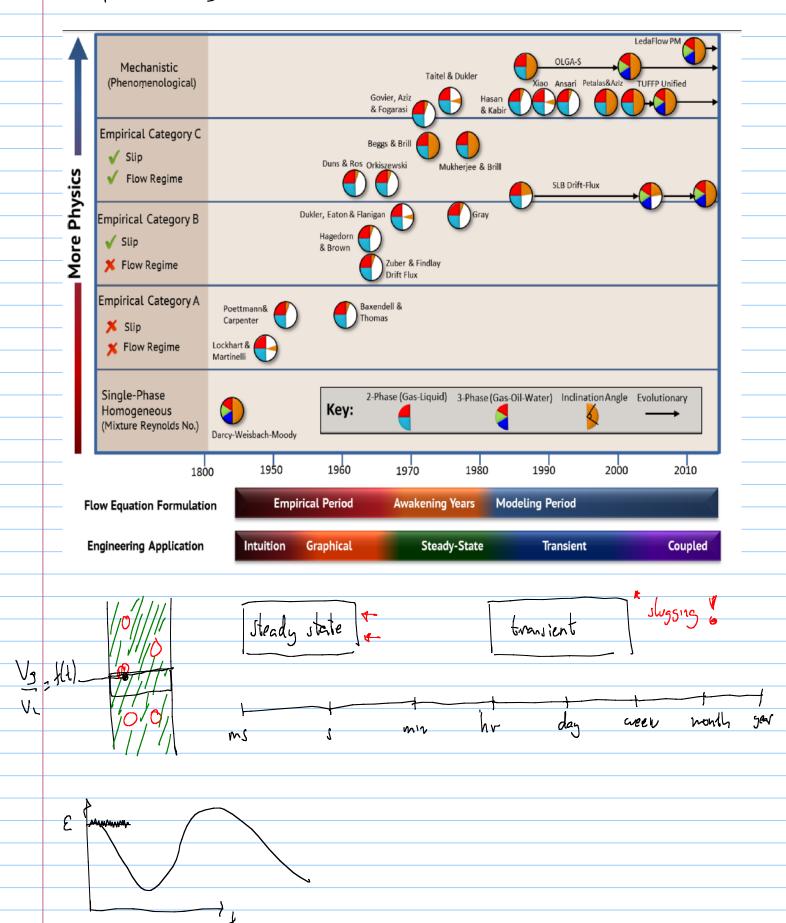
empirical based on admessional numbers · e yperiments

e majo balance · momentum balance · energy balance

-> correlation exp.

· Covider the flow pattern (distribution of phases)

in this course we are interested mainly in however, there are also some other problems;


Top of line correction

· Oth emulsion

- · Irguid accumulation and slugging
- o land crosson
- a hydrate and was --

o etc

Shipper and Bailey (2012)

1 momentus equation for mixture wing Drift two model average properties

dp = frp. frp. Vtp - frp. Sno.g - frp. dVFP

dl

rp. dVFP ulip if I g is used then homogeneous model

Stp = E Sq + (1-E) SL.

Vip= Um= Usi + usq

dVm ~ 0 ~ reglecting fluid expanse in segment and no change in crow fection area.

dp = -fip-fip Vrp - fip Ino.9

Pressure integration procedure for iteady state multiphase flow in wellbores (Tis siven)

O advicetize the tubing in segments

Do start for point with pressure known (Pash)

Se with p, I compute local rate of oil, gas 70, 95

and compute all properties [So, Is, Mo, Mg

compute superficial velocities on that point uso= 10 lusg = 9

a compute pressure gradient at that point

b multiphase export.

o integrate runerially the differential equation $dp = C P(\tau \omega = 0)$ Guraun.

· use explicit integration method/eurer

o use an implicit integration nothed.

worning of whe culon by = Puh - dp. Al

Euler registes explicit.

Two=0

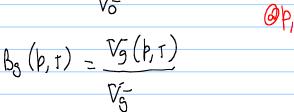
Therals

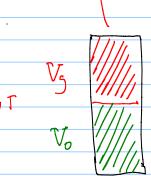
· py. repeat from point 2

he need to compute to to from to to

Insle phase gas 95 = 35.95

Vo


 $\begin{bmatrix} q_{g} \\ q_{o} \\ q_{w} \end{bmatrix} = \begin{bmatrix} \frac{B_{g}}{1 - R_{s} \cdot r_{s}} & \frac{-B_{g} \cdot R_{s}}{1 - R_{s} \cdot r_{s}} & 0 \\ \frac{-B_{o} \cdot r_{s}}{1 - R_{s} \cdot r_{s}} & \frac{B_{o}}{1 - R_{s} \cdot r_{s}} & 0 \\ 0 & 0 & B_{w} \end{bmatrix}_{(p,T)} \cdot \begin{bmatrix} q_{\bar{g}} \\ q_{\bar{o}} \\ q_{\bar{w}} \end{bmatrix}$

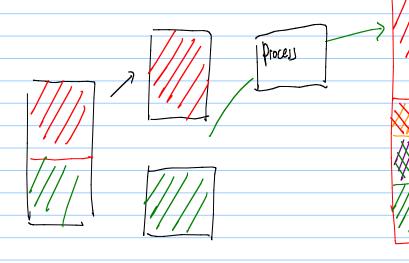

undersaturated orlander vs = 0 90. 90

Local conditions calculated from standard

conditions traditional BO-approach

definition $B_{D}(P,T) = \frac{V_{O}(P,T)}{V_{O}}$

Proced


$$\Omega_{s}(p,T) = \frac{\nabla_{b}^{-}}{\nabla_{b}}$$

if rs is important keep track of where surface orland surface gas is

so contained to coming from

uet gas

volatile oil

/ /		(3 = √0 B
	$\sqrt{5}$ o	N55
X	Vō.g	Vs = Vs o
<u></u>	Voo	10(
	,	

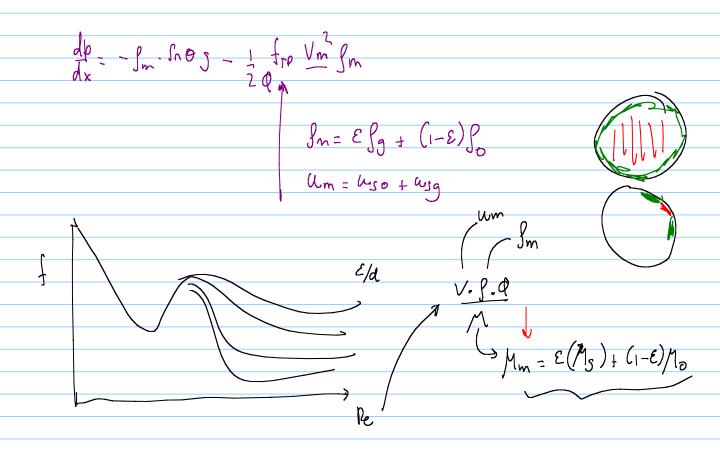
_	BO Variable	Definition
	Oil Volume Factor	$B_o(p,T) = \frac{V_o(p,T)}{V_{\bar{o}o}}$
	Gas Volume Factor	$B_{g}(p,T) = \frac{V_{g}(p,T)}{V_{\bar{g}g}}$
	Solution Gas Oil Ratio	$R_{s}(p,T) = \frac{V_{\bar{g}o}}{V_{\bar{o}o}}$
	Solution Oil Gas ratio	$r_{s}(p,T) = \frac{V_{\overline{o}g}}{V_{\overline{g}g}}$

$\begin{bmatrix} q_{\rm g} \\ q_{\rm o} \\ q_{\rm w} \end{bmatrix} =$	$\begin{bmatrix} B_g \\ 1 - R_s \cdot r_s \\ -B_o \cdot r_s \\ 1 - R_s \cdot r_s \\ 0 \end{bmatrix}$	$\frac{-B_g \cdot R_s}{1 - R_s \cdot r_s}$ $\frac{B_o}{1 - R_s \cdot r_s}$ 0	0 0 B _w	$\begin{bmatrix} q_{ar{ar{g}}} \ q_{ar{o}} \ q_{ar{w}} \end{bmatrix}$
	L		$\rfloor_{(p,T)}$	

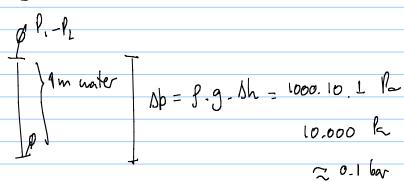

Local conditions calculated from standard conditions

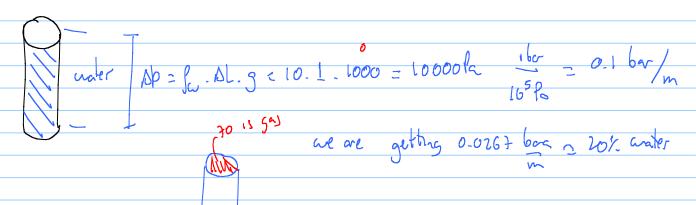
qg [Sm^3/d]	60000		qg [m^3/d]	6.29E+02	
qo [Sm^3/d]	500		qo [m^3/d]	620.4	
					Conversion matrix for
p	Во	Bg	Rs	rs	
[bara]	[m^3/Sm^3]	[m^3/Sm^3]	[Sm^3/Sm^3]	[Sm^3/Sm^3]	1.65E-02 -7.22E-01
160	1.44	8.17E-03	105.22	3.92E-05	-2.10E-05 1.24E+00
120	1.33	1.09E-02	72.47	2.40E-05	j .
80	1.24	1.65E-02	43.74	1.69E-05	5

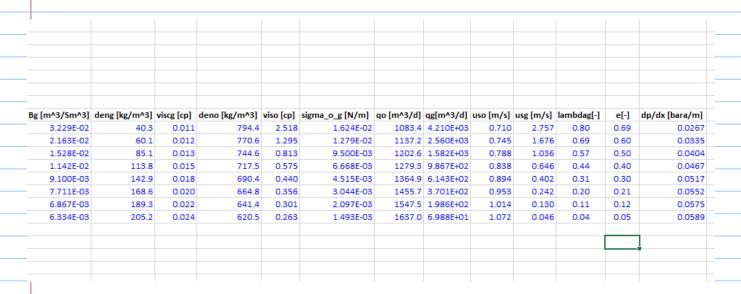
	qg [Sm^3/d]			qg [m^3/d]	6.29E+02		
	qo [Sm^3/d]	500		qo [m^3/d]	621.2		
						Conversio	n matrix f
T = 120 C							
	р	Во	Bg	Rs	rs		
	[bara]	[m^3/Sm^3]	[m^3/Sm^3]	[Sm^3/Sm^3	[Sm^3/Sm^3]	1.65E-02	-7.21E-01
	160	1.44	8.17E-03	105.22	3.92E-05	0.00E+00	1.24E+00
	120	1.33	1.09E-02	72.47	2.40E-05		
	80	1.24	1.65E-02	43.74	1.69E-05		

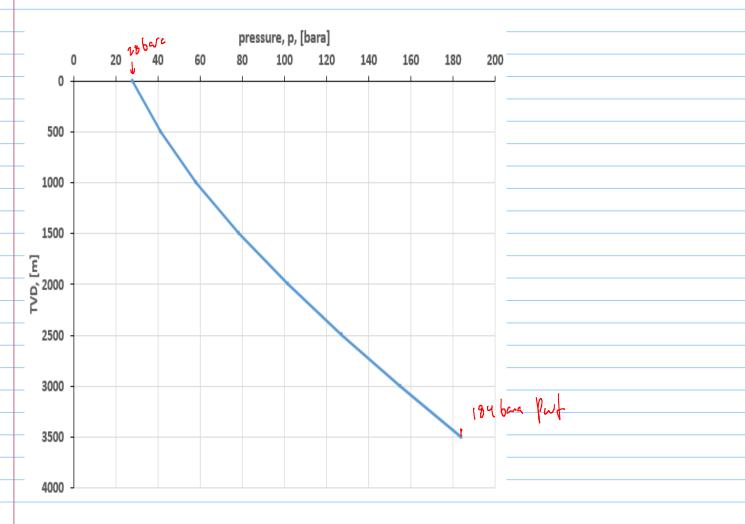

Class exercise: de calulations in tubins

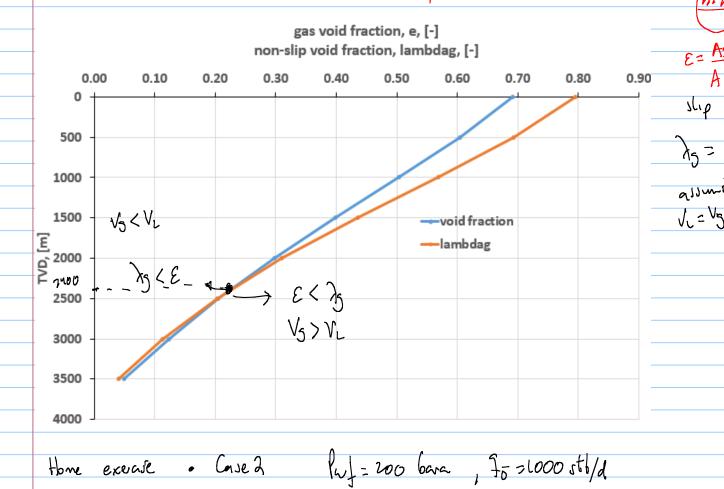
correlations




bring / FOI, FOZ, FO3, PO4, FO3
BO correlator FO6


Puh known ad alwate Put for 3= 1000 its/d




QC Carality ambrol

P. <

100 + dp. Dx < 0

THANK YOU FOR YOUR ACTIVE PARTICIPATION!

--THE END--