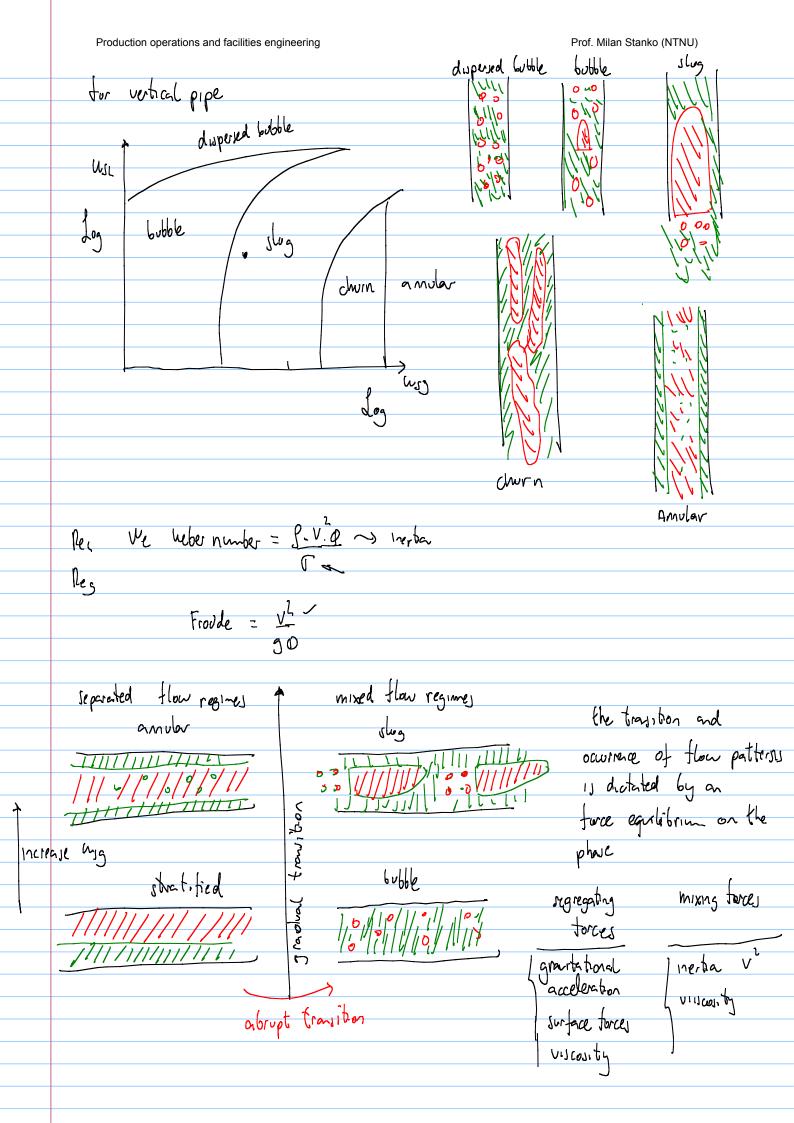
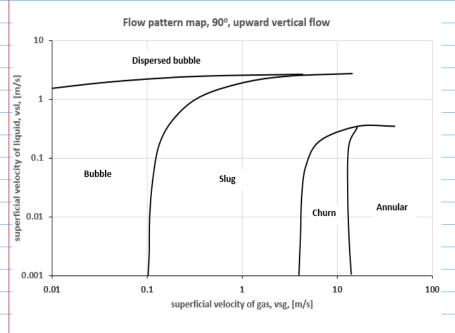
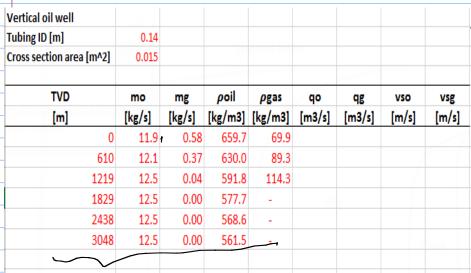
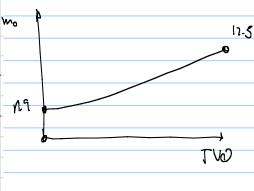

		,
wh= Paha GOR, WC2	Parh = Parhz GOL, WCz	Park = Parks GOR, WC2
9	9= 9= 9w Rud Juh	75 7g 7w Rud Juh
0		0
	- +	
Parh = Parha GOR, WCz	Puh = Puhz GONz WCz	Park = Parks GONz WCz
9- 9- 9w Ruf Juh	90 9g 9w Pw J Juh	9 = 9 = 9 w Ruf Juh
0	0	0
Puh = Puha GONZ WCZ	Parh = Parhz GONz WCz	Park = Parks 603 WCL
7- 9- 7w Ruf Juh	75 7g 7w Ruf Juh	9
0	0	0
		- +





class exercise to define flow pattern along tubing

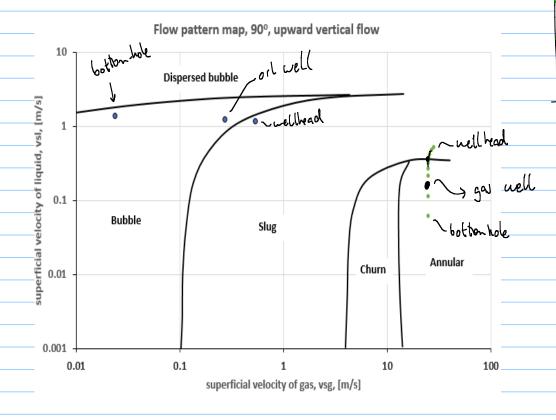



Clisumption: the map abesinit

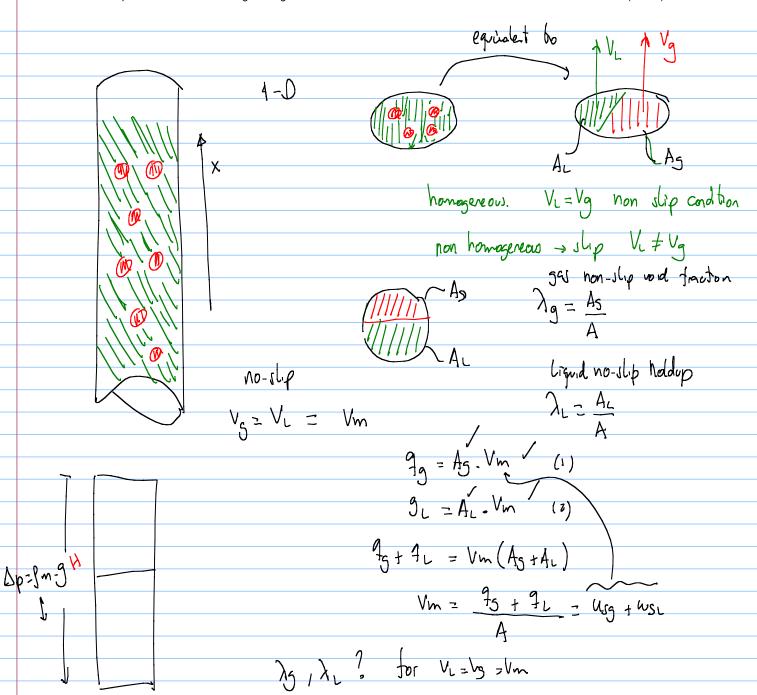
change along the tribing

it is not affected by

changes in fluid properties


oil well

I	Vertical oil well								
ł	Tubing ID [m]	0.14							
	Cross section area [m^2]	0.015							
İ									
ł	TVD	mo	mg	ρ oil	$ ho_{gas}$	qo	qg	VSO	vsg
	[m]	[kg/s]	[kg/s]	[kg/m3]	[kg/m3]	[m3/s]	[m3/s]	[m/s]	[m/s]
Ī	0	11.9	0.58	659.7	69.9	0.018	0.008	1.17	0.54
ł	610	12.1	0.37	630.0	89.3	0.019	0.004	1.25	0.27
	1219	12.5	0.04	591.8	114.3	0.021	0.000	1.37	0.02
	1829	12.5	0.00	577.7	-	0.022	0.000	1.41	0.00
t	2438	12.5	0.00	568.6	-	0.022	0.000	1.43	0.00
ļ	3048	12.5	0.00	561.5	-	0.022	0.000	1.45	0.00


F=0

gas well

Vertical gas well								
Tubing ID [m]	0.157							
Cross section area [m^2]	0.019							
TVD	mw	mg	ρw	ρgas	qw	qg	vsw	vsg
[m]	[kg/s]	[kg/s]	[kg/m3]	[kg/m3]	[m3/s]	[m3/s]	[m/s]	[m/s]
0	10.2	1.20E+01	997.0	22.0	0.010	0.545	0.53	28.17
284	9.2	1.30E+01	997.0	25.3	0.009	0.514	0.48	26.55
567	8.2	1.40E+01	997.0	28.2	0.008	0.496	0.42	25.63
851	7.2	1.50E+01	997.0	30.9	0.007	0.486	0.37	25.11
1135	6.2	1.60E+01	997.0	33.3	0.006	0.480	0.32	24.81
1418	5.2	1.70E+01	997.0	35.6	0.005	0.478	0.27	24.68
1702	4.2	1.80E+01	997.0	37.7	0.004	0.477	0.22	24.65
1986	3.2	1.90E+01	997.0	39.7	0.003	0.478	0.17	24.69
2269	2.2	2.00E+01	997.0	41.7	0.002	0.480	0.11	24.79
2553	1.2	2.10E+01	997.0	43.5	0.001	0.483	0.06	24.94
2837	0.0	2.22E+01	997.0	45.3	0.000	0.490	0.00	25.32
-								

Short comment on liqued Gooding afternative explanation wall slippinge transition from annular flow to slug flow

substite vm=uss+wsi in (1)

$$f_{5} = A_{5} \left(\frac{f_{g} + f_{L}}{A}\right) = \lambda_{g} = \frac{f_{5}}{f_{5} + f_{L}}$$

$$f_{m} = \lambda_{5} f_{5} + f_{L} \lambda_{L}$$

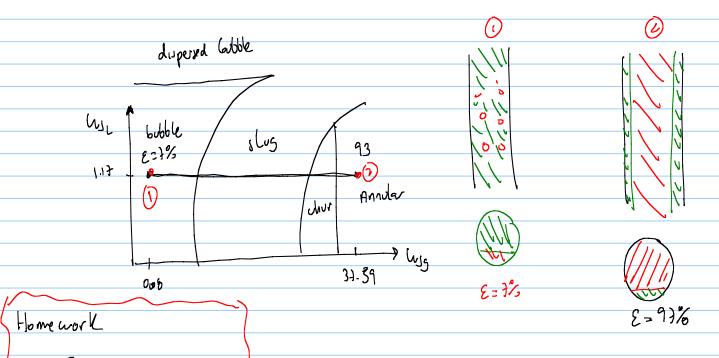
But often VL + Vg

vord fraction $\mathcal{E} = \frac{As}{A}$ hand holdup $H_{L} = \frac{AL}{A}$

V₂ V_m 3₁ E < λg T₁ = λg. A. V_m = A. E. V_g

Yg
$$V_{2}$$
 real ggv and $hgud$ $vdoc'ties$
 $S = Slip ratio$ V_{2}
 $U_{1} = V_{2} - V_{1}$
 $E = A_{3}$
 $A_{1} = A_{1}$
 $E + H_{1} = A_{2} + A_{2} = A_{3} + A_{2} = A_{4}$
 $E + H_{1} = A_{2} + A_{2} = A_{4}$
 $E + H_{2} = A_{3} + A_{2} = A_{4}$
 $E + H_{3} = A_{4} = A_{5} + A_{5} = A_{5} + A_$

Comparison of void fraction correlations for different flow patterns in horizontal and upward inclined pipes


Melkamu A. Woldesemayat, Afshin J. Ghajar *

School of Mechanical and Aerospace Engineering, Oklahoma State University, Stillwater, OK 74078, USA

Received 1 June 2006; received in revised form 13 September 2006

$$\varepsilon = \frac{U_{\text{SG}}}{U_{\text{SG}} \left(1 + \left(\frac{U_{\text{SL}}}{U_{\text{SG}}}\right)^{\frac{\rho_{\text{G}}}{\rho_{\text{L}}}}\right)^{0.1}} + 2.9 \left[\frac{gD\sigma(1 + \cos\theta)(\rho_{\text{L}} - \rho_{\text{G}})}{\rho_{\text{L}}^2}\right]^{0.25} (1.22 + 1.22\sin\theta)^{\frac{\rho_{\text{atm}}}{\rho_{\text{system}}}}$$

р	[bara]	120											
denl	[kg/m^3]	659.7											
deng	[kg/m^3]	69.9											
D	[m]	0.14											
Α	[m^2]	0.015											
teta	[deg]	90											
_sigma_lg	[N/m]	0.07											
ql	qg	usl	usg	um	lambdag	Hg	Al	Ag	ul	ug	ur	S	ug-um
[m^3/d]	[m^3/d]	[m/s]	[m/s]	[m/s]	[-]	[-]	[m^2]	[m^2]	[m/s]	[m/s]	[m/s]	[-]	[m/s]
1561.5	100	1.17	0.08	1.25	0.06	0.07	0.014	0.001	1.26	1.06	-0.20	0.84	-0.19
1561.5	712.325	1.17	0.54	1.71	0.31	0.29	0.011	0.004	1.65	1.85	0.20	1.12	0.14
1561.5	1000	1.17	0.75	1.93	0.39	0.35	0.010	0.005	1.81	2.14	0.33	1.18	0.21
1561.5	2500	1.17	1.88	3.05	0.62	0.54	0.007	0.008	2.55	3.48	0.93	1.37	0.43
1561.5	5000	1.17	3.76	4.93	0.76	0.68	0.005	0.010	3.63	5.56	1.92	1.53	0.62
1561.5	10000	1.17	7.52	8.69	0.86	0.79	0.003	0.012	5.55	9.54	3.99	1.72	0.84
1561.5	25000	1.17	18.80	19.97	0.94	0.89	0.002	0.014	10.51	21.16	10.64	2.01	1.19
1561.5	50000	1.17	37.59	38.77	0.97	0.93	0.001	0.014	17.71	40.26	22.55	2.27	1.50

