Week 2. Day 6:

Production modes of wells and field

Pace A flow meter

Psep

Puh

Puh

Phu in res (EPN

Pa(t)

Puh

TPR

Puell & (Pr-Pu)

Put

TPR

Puell & (Pr-Pu)

Put

TPR

Constrant production mode

end of plateau

(control value is

tully open

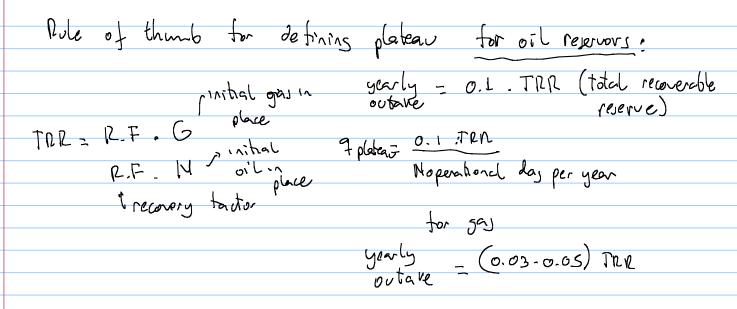
| plateau perrod > the

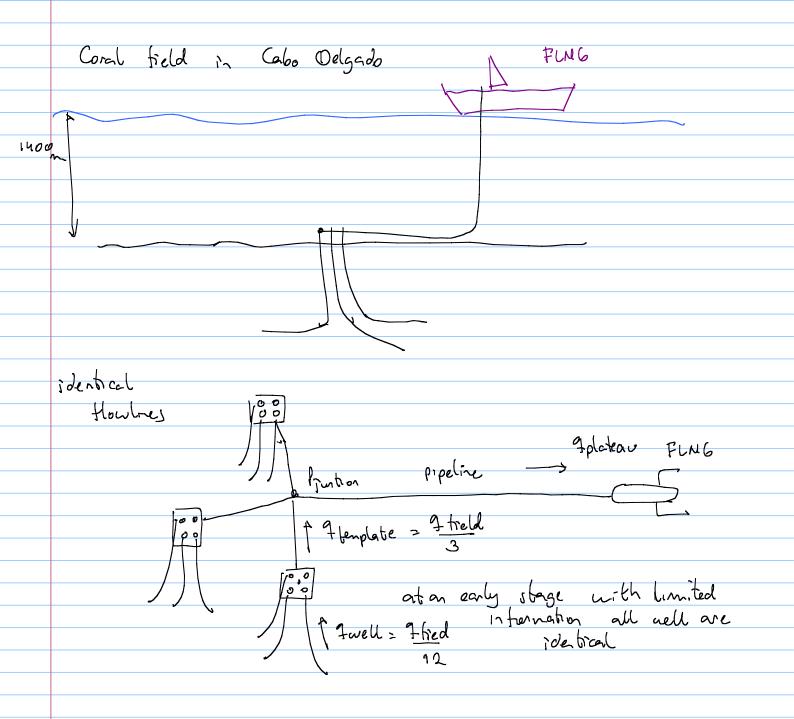
| dedine > 1

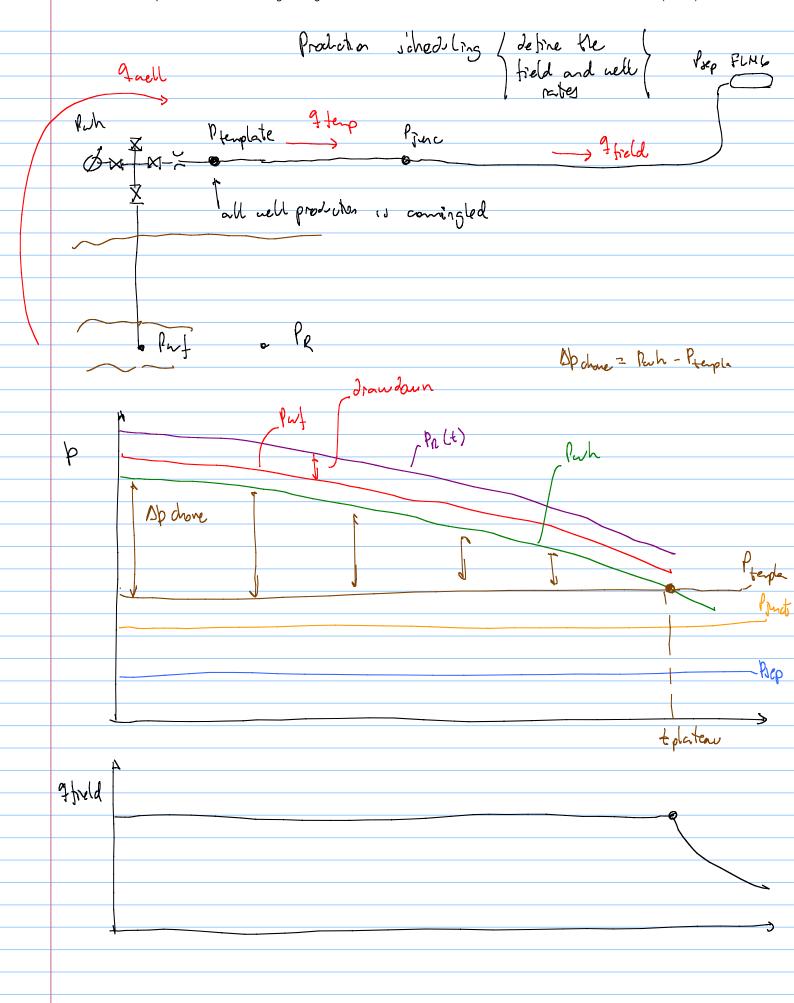
tail production

constant pressure mode

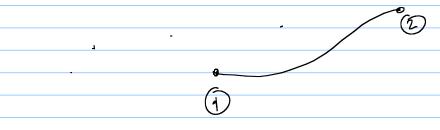
quell sand production sand production

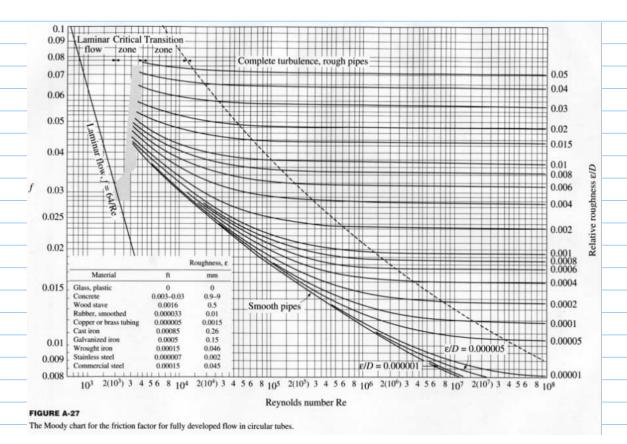

- · Hen development with standalone processing facilities
- Big size


Fred


- predefined delivery contract

 Long term
- as early as possible
 - · Satellite tields (nedom to small nze)


lle produtor is routed to existing processing taulities with spare capacity



$$\frac{2}{3} + \frac{1}{2} + \frac{1}{3} + \frac{1}$$

VB

2/0

Colebrook - White equation

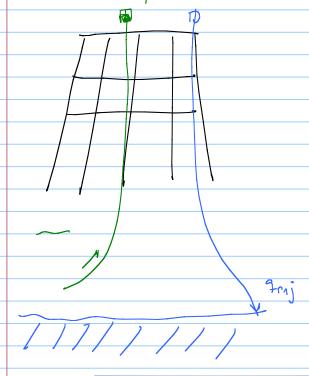
https://en.wikipedia.org/wiki/Darcy friction factor formulae

all expressions for friction tactor

Table of Colebrook equation approximations									
Equation	Author	• Year •	Range	Ref					
$f = .0055 \left[1 + \left(2 \times 10^4 \cdot \frac{e}{D} + \frac{10^4}{\text{Re}} \right)^{\frac{1}{8}} \right]$	Moody	1947	$Re = 4000 - 5.10^8$ $\epsilon/D = 0 - 0.01$						
f = .094 $\left(rac{arepsilon}{D} ight)^{0.206}$ + 0.53 $\left(rac{arepsilon}{D} ight)$ + 88 $\left(rac{arepsilon}{D} ight)^{0.44}$ · Re $^{-\Psi}$ where Ψ = 1.62 $\left(rac{arepsilon}{D} ight)^{0.194}$	Wood	1966	$Re = 4000 - 5.10^7$ $\epsilon/D = 0.00001 - 0.04$						
$\frac{1}{\sqrt{f}} = -2\log\left(\frac{e/D}{3.715} + \frac{15}{\mathrm{Re}}\right)$	Eck	1973							
$\frac{1}{\sqrt{f}} = -2\log\left(\frac{e/D}{3.7} + \frac{5.74}{\mathrm{Re}^{0.9}}\right)$	Swamee and Jain	1976	$Re = 5000 - 10^8$ $\epsilon/D = 0.000001 - 0.05$						
$\frac{1}{\sqrt{f}} = -2\log\left(\frac{e/D}{3.71} + \left(\frac{7}{\mathrm{Re}}\right)^{0.9}\right)$	Churchill	1973	Not specified						
$\frac{1}{\sqrt{f}} = -2\log\left(\frac{\varepsilon/D}{3.715} + \left(\frac{6.943}{\text{Re}}\right)^{0.0}\right)$	Jain	1976							
$\begin{split} f &= 8 \left[\left(\frac{8}{\mathrm{Re}} \right)^{13} + \frac{1}{(\Theta_1 + \Theta_2)^{1.6}} \right]^{\frac{1}{12}} \end{split}$ where $\Theta_1 &= \left[-2.457 \ln \left(\left(\frac{7}{\mathrm{Re}} \right)^{0.9} + 0.27 \frac{e}{D} \right) \right]^{16}$ $\Theta_2 &= \left(\frac{37530}{\mathrm{Re}} \right)^{16} \end{split}$	Churchill	1577							
$\frac{1}{\sqrt{f}} = -2\log \left[\frac{e/D}{3.7065} - \frac{5.0452}{\mathrm{Re}}\log \left(\frac{1}{2.8257} \left(\frac{e}{D}\right)^{1.1098} + \frac{5.8506}{\mathrm{Re}^{0.9852}}\right)\right]$	Chen	1979	$Re = 4000 - 4.10^8$						
$\frac{1}{\sqrt{f}} = 1.8 \log \left[\frac{\mathrm{Re}}{0.135 \mathrm{Re}(e/D) + 6.5} \right]$	Round	1980							
$rac{1}{\sqrt{f}} = -2\log\Biggl(rac{e/D}{3.7} + rac{4.518\log\Bigl(rac{Re}{7}\Bigr)}{\mathrm{Re}\left(1 + rac{Re^{32\delta}}{24\delta}(e/D)^{0.7} ight)}\Biggr)$	Barr	1981							
$\begin{split} \frac{1}{\sqrt{f}} &= -2\log\left[\frac{e/D}{3.7} - \frac{5.02}{\text{Re}}\log\left(\frac{e/D}{3.7} - \frac{5.02}{\text{Re}}\log\left(\frac{e/D}{3.7} + \frac{13}{\text{Re}}\right)\right)\right] \\ & \text{or} \\ \frac{1}{\sqrt{f}} &= -2\log\left[\frac{e/D}{3.7} - \frac{5.02}{\text{Re}}\log\left(\frac{e/D}{3.7} + \frac{13}{\text{Re}}\right)\right] \end{split}$	Zigrang and Bylvester	1982							
$\frac{1}{\sqrt{f}} = -1.8 \log \left[\left(\frac{e/D}{8.7} \right)^{1.11} + \frac{6.0}{\mathrm{Re}} \right]$	Haaland ^[2]	1983							
$\begin{split} \frac{1}{\sqrt{f}} &= \Psi_1 - \frac{(\Psi_2 - \Psi_1)^3}{\Psi_2 - 2\Psi_2 + \Psi_1} \\ & \text{or} \\ \frac{1}{\sqrt{f}} &= 4.781 - \frac{(\Psi_1 - 4.781)^2}{\Psi_2 - 2\Psi_1 + 4.781} \end{split}$									
where $\Psi_1 = -2\log\!\left(rac{e/D}{3.7} + rac{12}{ ext{Re}} ight)$	Serghides	1984							

	$\Psi_2 = -2 \log \left(\frac{e/D}{3.7} + \frac{2.61 \Psi_2}{2.6} \right)$ $\Psi_2 = -2 \log \left(\frac{e/D}{7} + \frac{2.61 \Psi_2}{2.6} \right)$				_
	$A = 0.11 \left(\frac{68}{Rc} + e\right)^{0.38}$ if $A \ge 0.018$ man $f = 0.0028 + 0.85A$	Tsol	1989		_
	$\frac{1}{\sqrt{f}} = -2\log\left(\frac{e/D}{9.7} + \frac{96}{\mathrm{Rg}^{2.983}} - \frac{96.82}{\mathrm{Re}}\right)$	Manadilli	1997	$Re = 4000 - 10^8$ $\epsilon/D = 0 - 0.05$	_
	$\frac{1}{\sqrt{f}} = -2\log\left\{\frac{e/D}{3.7065} - \frac{5.0272}{\mathrm{Re}}\log\left[\frac{e/D}{3.827} - \frac{4.657}{\mathrm{Re}}\log\left(\left(\frac{e/D}{7.7918}\right)^{0.9954} + \left(\frac{5.3326}{208.815 + \mathrm{Re}}\right)^{0.8944}\right)\right]\right\}$	Monzon, Romeo, Royo	2002		_
-	$\frac{1}{\sqrt{f}} = 0.8886 \ln \left[\frac{0.4887 \text{Re}}{(S = 0.31)^{\frac{1}{(S + 1)}}} \right]$	Gouder, Sonned	2006		-
	$S=0.124 \mathrm{Re}rac{e}{D}+\ln(0.4587 \mathrm{Re})$				_
_	$\frac{1}{\sqrt{f}} = 0.8880 \ln \left[\frac{0.4887 \mathrm{Re}}{(S - 0.31)^{\frac{1}{(S - 1.000)}}} \right]$ where: $S = 0.124 \mathrm{Re} \frac{e}{D} + \ln(0.4887 \mathrm{Re})$	Vatankhah, Kouchakzadeh	2008		_
	$\begin{split} &\frac{1}{\sqrt{f}} = \alpha - \frac{\alpha + 2\log\left(\frac{3}{3\alpha}\right)}{1 + \frac{3}{3\alpha}} \\ &\text{where} \\ &\alpha = \frac{0.744 \ln(\text{Re}) - 1.41}{1 + 1.82 \sqrt{e/D}} \\ &\text{B} = \frac{3/D}{3/7} \text{Re} + 2.51\alpha \end{split}$	Buzzell	2008		-
	$f = \frac{6.4}{(\ln(\text{Re}) - \ln(1 + .01\text{Re}\frac{e}{D}(1 + 10\sqrt{\frac{e}{D}})))^{3.4}}$	Avcl, Kargoz	2009		_
	$f = \frac{0.2479 - 0.000047(7 - \log Re)^4}{(\log(\frac{a/D}{2} + \frac{7.398}{2a^{d+31}}))^3}$	Evangelides, Papaevangelou, Tzimopoulos	2010		_
	$f = 1.613 \left[\ln \left(0.234 e^{1.1007} - \frac{60.525}{Re^{1.0108}} + \frac{56.291}{Re^{1.0713}} \right) \right]^{-2}$	Fang	2011		
	$f = \left[-2\log\left(\frac{2.18\beta}{Re} + \frac{e}{3.71}\right)\right]^{-3} \ , \\ \beta = \ln\frac{Re}{1.816\ln\left(\frac{1.1Re}{\ln(1+1.1Re)}\right)}$	Bride	2011		
	$f = 1.325474505 \log_e \left(A - 0.8886068432B \log_e \left(A - 0.8784893582B \log_e \left(A + \left(1.665368035B\right)^{0.8838492157}\right)\right)\right)^{-2}$				-
_	where $A=\frac{e/D}{3.7085}$ $B=\frac{2.5226}{Re}$	Alashkar	2012		-
	, +				

Class exercse IPR-TPR equilibrium for indeschrated oil well (peregrino hield, offshore Brazil).

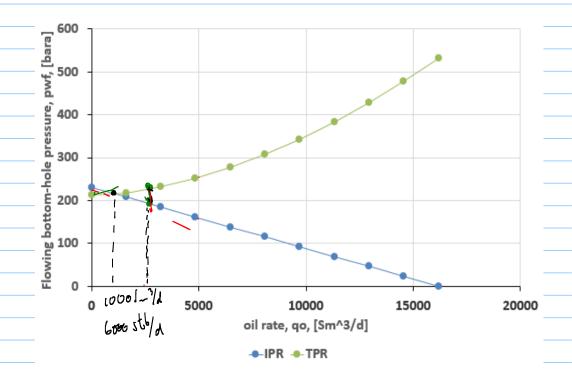

PR	bara	231				
J, for oil flow	Sm^3/d/bar	70				
L, tubing length	m	2340	II	IPR		PR
d, tubing diameter	m	0.14	pwf	qo	pwf _	
e, tubing roughness	m	0.00010	[bara]	[Sm^3/d]	[bara]	
teta, tubing angle	[deg]	90	231	4		
muo, oil viscosity	[Pa s]	0.1	208			
rhoo, oil density	[kg/m^3]	897	185			
pwh, wellhead pressure	[bara]	7	162			
		+	139			
		- 1	116			
			92			
			69			
			46			
			23			
			l o			

90 = J (P2-Put)

pressure required at well bottom to flow against the borne

of Pwh= + bara

tubing P. ?. tubing P. ?.



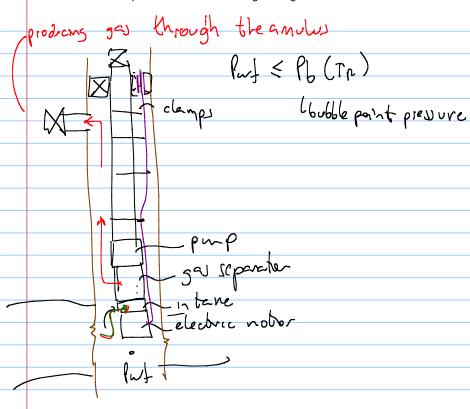
- · Drilling module
- · Movable drill rig
- · Electrical plant
- Wellheads
- Booster pumps
- · Water Injection
- Uptime 99% bracket

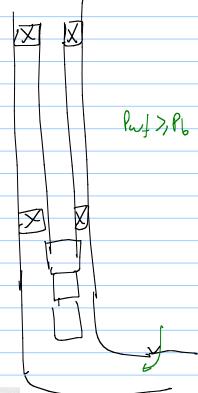
	PR	bara	231				
	J, for oil flow	Sm^3/d/bar	70				
1	L, tubing length	m	2340	IP	R	TPR	
_	_d, tubing diameter	m	0.14	pwf	qo	pwf	
	e, tubing roughness	m	0.00010	[bara]	[Sm^3/d]	[bara]	
1	teta, tubing angle	[deg]	90	231	0	213	
_	muo, oil viscosity	[Pa s]	0.1	208	1618	218	
	rhoo, oil density	[kg/m^3]	897	185	3236	233	ŀ
	pwh, wellhead pressure	[bara]	7	162	4853	252	
				139	6471	277	
				116	8089	307	
	_			92	9707	343	
				69	11325	383	
				46	12942	428	
	_			23	14560	477	
	_			0	16178	531	

3236 Pm/d Spr = 233-185

Electric Jubreisible pump (EJP) so dose as possible to tomation

Vistalled as vertical as possible

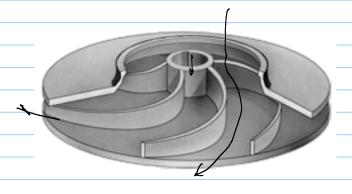

I takes liquid ONLY

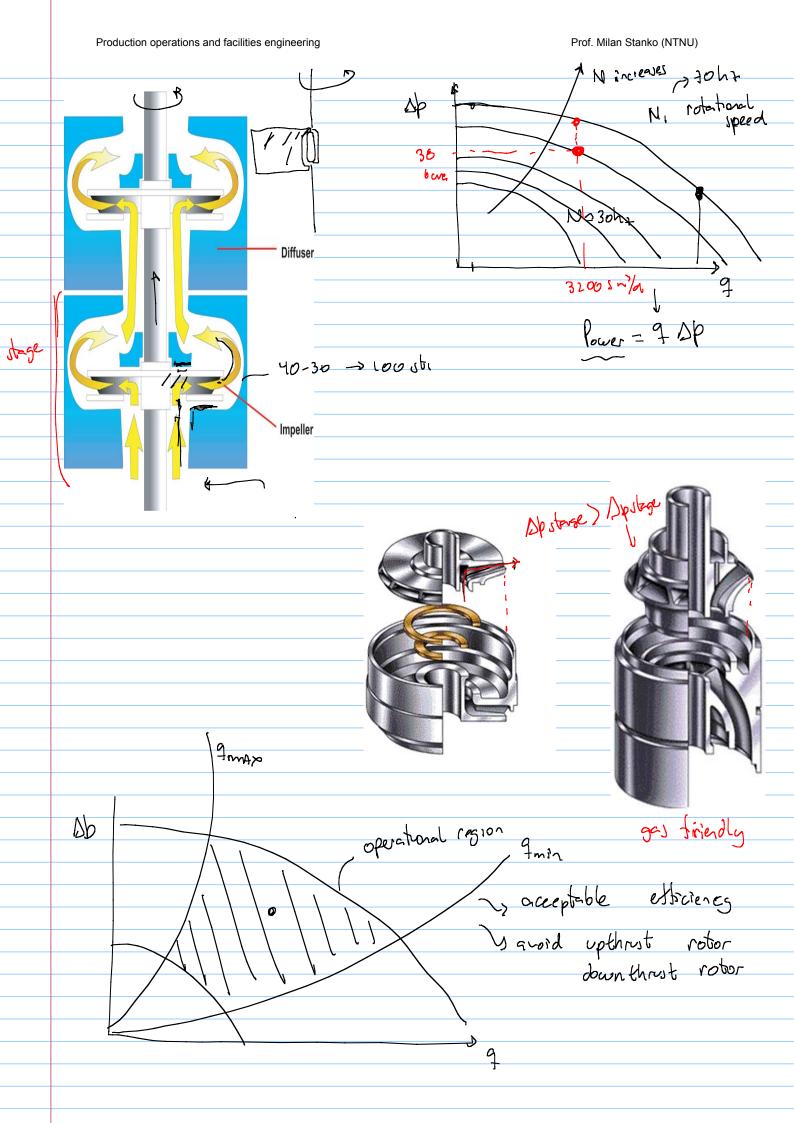

Juyrical Creetine 10% GVF high tolera

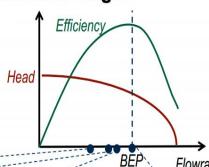
2 years

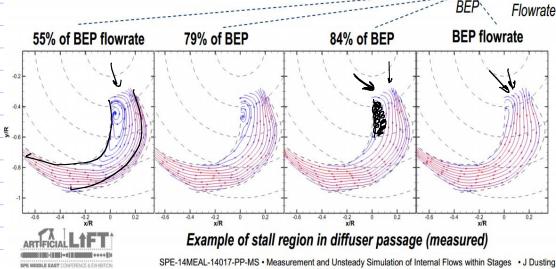
So dose as possible to tomation

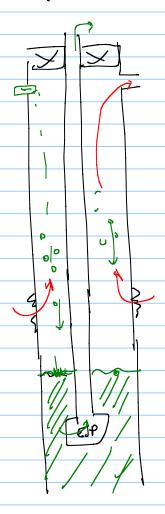
Vistalled as vertical as possible



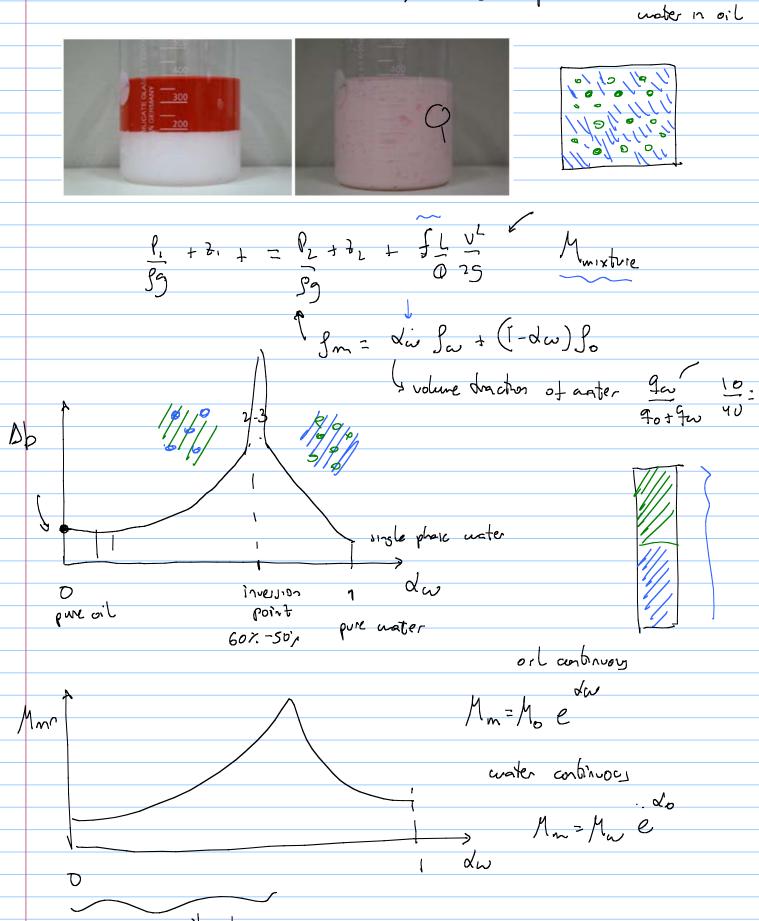


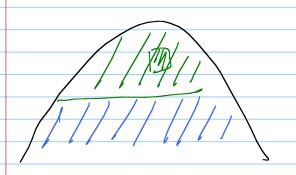

Armais
Arunutroff 21930
Ohlahoma
Reda pump
Schlinberger



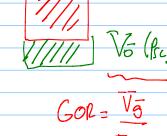

PIV measurement in a radial flow stage

- Flow features in diffuser and impeller may be identified from measurements
- Flow misalignment and recirculations reduce efficiency




ESP are also used to drain liquid accumulated in gay wellbares

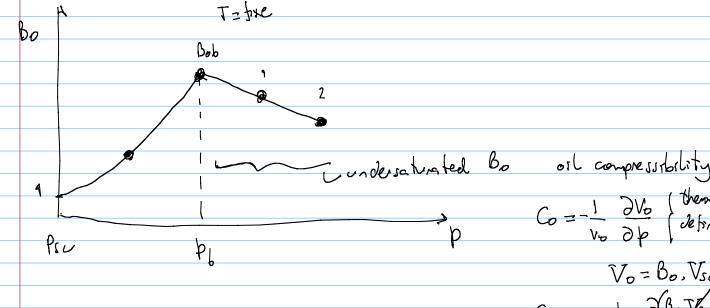
Pressure drap expressions for liquid are also useful to deal with oil + water emulsions, stable dispersion moil in water in oil



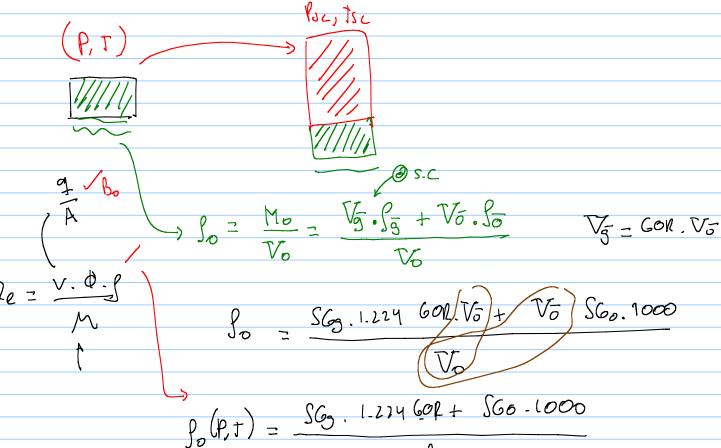
uflind =
$$\frac{9}{\sqrt{1000}} \text{m}^3/d$$

$$V_{o}(P,T)$$

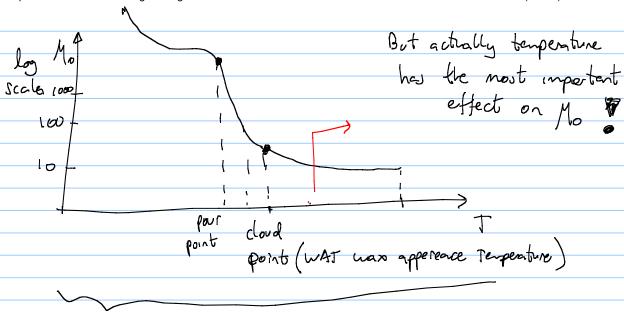
«1

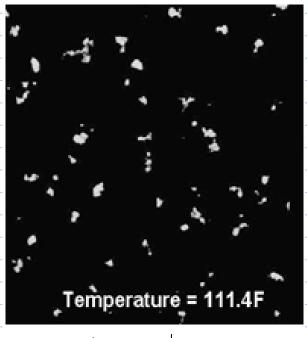


$$30 = \frac{40 (P, t)}{40 (P, t)}$$


Bo =
$$\frac{4}{6}$$
 (P.t) oil colone factor
 $\frac{1}{6}$ (Psc, tsc) torhation volume factor

1.3-1-5 Normal -> 600-200 sud/


1. → 1.05 low ~, 5 - 150 sd/sth


Vo=Bo. Vsc Co = - 1 (Bo Vsc)

Saturated b

under saturated

clad point

pour point (no flow)