

Production	operations	and	facilities	engineering
ribuucion	operations	anu	Tacintic 3	chymcenny

Prof. Milan Stanko

Snowhite ~ subsea gay field · If slugging cannot be avoided 146 Km from cast Block-2 tanzania . Caral Slug catcher a multipipe long separator 711121111 [from 1111111111 freld 111111111 1 フ pipe cross rection · Coding of Huid Tomb T snd pipe big ripe dang pipe netal insugeton Tamb - Jo. (convection + inner condiction in pipe + conductor in the ingulating layer

Prof. Milan Stanko

the much rethere in a 1 m³ of Hydrite historie definite

$$thas = g \cdot V_{0L} = 900.4 \pm 900.4g$$

$$n = \frac{900.45}{948} = 1.68 \text{ kind. Hydrite}$$

$$V_{0R} = 1.53 \text{ kind.es}$$

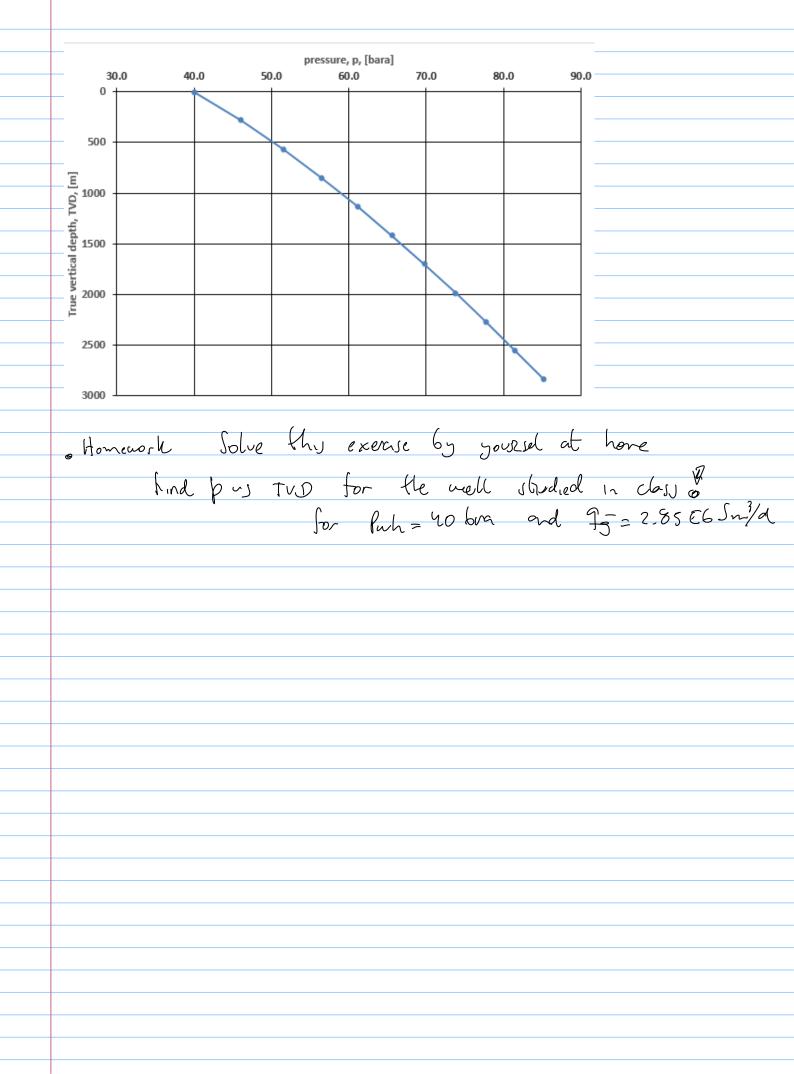
$$V_{10} = 1.96 \text{ Sm}^3 \text{ of CH_4}$$

$$\int P = \frac{3.53 \cdot P}{100} \frac{1}{100} \frac{1}$$

Prof. Milan Stanko

FIJO Subsea gas well underlical 2000-Line Meot i ahibitor Cross section of a unbilical -methanol ଡ Ø "guartic W _ power fiberoplics Ð Ø M thow dragram of a subject well choke and metering modile multiphase meter t PT,TT QQ PT,TT pmv Pwv SO MPM ~/XI· -Mhydraulic Â lre tubrig hager PT, TT Theolt 01V , fluid out 12 S.D. .. Sand detection PWV production using volve PMV -- productor mayler value pressure transducer PТ MEV. Methanol injection value tenperature transdicer Γf

Betler estimation of Ct 0 when using PR as , Pin to estimate Par, 304+40 5 dotain Cr = 42500 Sm3/d/tara S = 0,155 the equilibrium puf is actually 84.328 bana may different then p. = 304 6 Am. Using this Par = 84.3+8+40 E dotain CF= 41900 Sont d/bara Sz 0.151 However the equilibrium point is not affected drama traily example. traverse calabor can help dagnose a well with scaling. Pressure Graverse calalation pressure distribution 01 along Abbing D JVD newred Calabated arith true verbal Lotton 2.85 Eb Sm?/d Puh: 40 born TVD 0 $\int \zeta C_{\Gamma_{i}} S_{i}$ Calculate p distribution along busing Cry Sz ter equilibrium vate (Cr3, S3 MO nearred Jepth two mD


Production operations and figuilities engineering

$$Production operations and figuilities engineering
$$T = \frac{105^{\circ}C - 3q}{100^{\circ} - T} - \frac{105 - T}{100^{\circ} - T \vee 0}$$

$$T = \frac{105^{\circ}C}{105^{\circ}C}$$

$$T = \frac{105^{\circ}C}{105^{\circ}C}$$$$

Tubing MD [m]	2837							
Tubing TVD [m]	2837							
Tubing ID [m]	0.157							
Tubing Cross section A [m^2]	0.019							
Wellhead pressure [bara]	40							
Gas gravity	0.55							
Twf [K]	378	104.85						
Twh [K]	360	86.85						
pR [bara]	304			DP	4.4378			
friction factor [-]	0.012							
qg [Sm^3/d]	2.85E+06							
liquid density [kg/m^3]	8.97E+02							
TVD	T	Tav	passumed	Pav	Zav	S	Ct	р
[m]	[K]	[K]	[bara]	[bara]	[-]	[-]	[Sm^3/bar]	[bara]
0	360.0	360.9	40.0	42.2	0.967	0.015	1.3E+05	40.0
284	361.8	362.7	44.4	46.7	0.964	0.015	1.3E+05	46.0
567	363.6	364.5	48.9	51.1	0.962	0.015	1.3E+05	51.5
851	365.4	366.3	53.3	55.5	0.960	0.015	1.3E+05	56.5
1135	367.2	368.1	57.8	60.0	0.959	0.015	1.3E+05	61.1
1418	369.0	369.9	62.2	64.4	0.957	0.015	1.3E+05	65.6
1702	370.8	371.7	66.6	68.8	0.956	0.015	1.3E+05	69.8
1986	372.6	373.5	71.1	73.3	0.955	0.015	1.3E+05	73.8
2269	374.4	375.3	75.5	77.7	0.954	0.015	1.3E+05	77.7
	376.2	377.1	79.9	82.2	0.954	0.015	1.3E+05	81.4
2553	370.2							

