«Static» production optimization

Prof. Milan Stanko (NTNU)

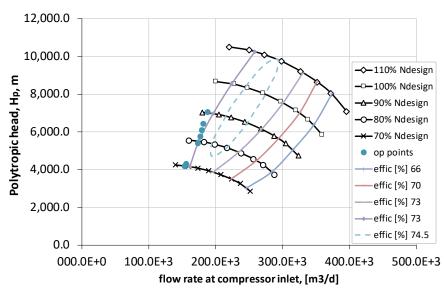
Course material:

-http://www.ipt.ntnu.no/~stanko/files/Courses/PetCyb/2024/

Agenda

- Introduction to production optimization
 - Practical meaning
 - Time scales
 - Model-based optimization
 - Types
- Example: two gas-lifted wells
- Exercise: two gas-lifted wells
- Discrete variables
 - Exercise: routing 5 wells to 2 separators
- How do solvers work?
- Multi-objective optimization
 - Constraint method
 - Linear scalarization
- Effect of uncertainties
- Proxy modeling using tables
 - Example: Gas-lifted well
- Proxy modeling using NN
 - Exercise in python
- Limitations and pitfalls of production optimization

Examples of «production optimization»



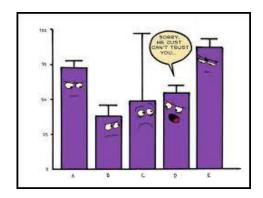
 Detect locations in the system with abnormally high-pressure loss and flow restrictions

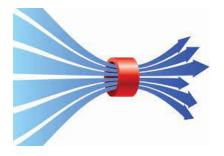
Examples of «production optimization»

Verification of equipment design conditions vs actual operating conditions

Examples of «production optimization»

- Identification and addressing fluid sources that have "disadvantageous" characteristics (e.g. high water cut, high H₂S content)
- Identify and correct system malfunctions and unintended behavior
- Analyze and improve the logistics and planning of maintenance, replacement and installation of equipment or in the execution of field activities.




- Review the occurrence of failures and recognize patterns (data analytics)
- Calibration of instrumentation
- Identification of operational constraints (e.g. water handling capacity, power capacity)

- Identify bottlenecks
- Identifying and monitoring Key
 Performance Indicators (KPIs)

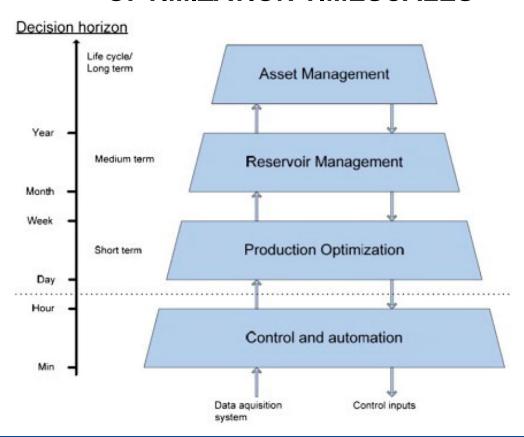
- Find:
 - Control settings of equipment
 - System characteristics (design)

- Find:
 - Control settings of equipment
 - System characteristics (design)
- That:
 - Give a production/profit higher than current
 - Give maximum production/profit possible
 - Improve a KPI
 - Maximize a KPI

- Find:
 - Control settings of equipment
 - System characteristics (design)
- That:
 - Give a production/profit higher than current
 - Give maximum production/profit possible
 - Improve a KPI
 - Maximize a KPI
- Using:
 - Model
 - Real system

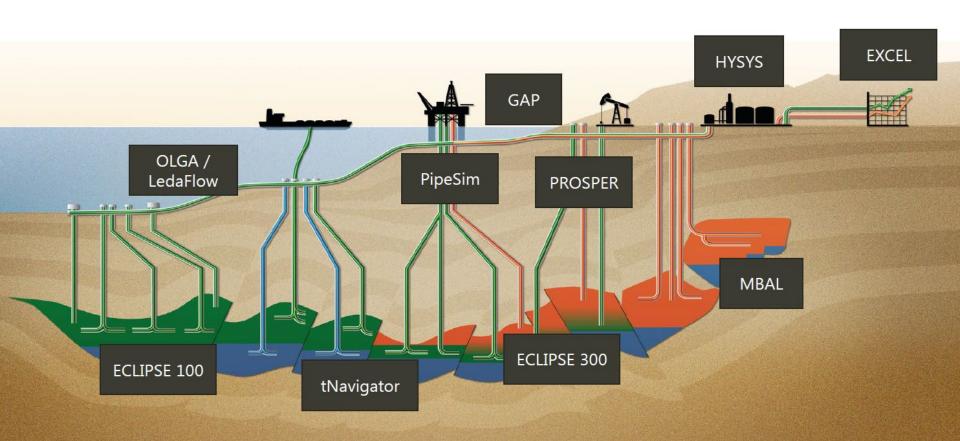
- Find:
 - Control settings of equipment
 - System characteristics (design)
- That:
 - Give a production/profit higher than current
 - Give maximum production/profit possible
 - Improve a KPI
 - Maximize a KPI
- Using:
 - Model
 - Real system

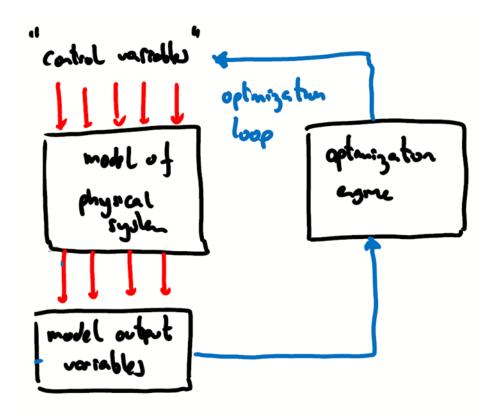
- Find:
 - Control settings of equipment
 - System characteristics (design)
- That:
 - Give a production/profit higher than current
 - Give maximum production/profit possible
 - Improve a KPI
 - Maximize a KPI
- Using:
 - Model
 - Real system



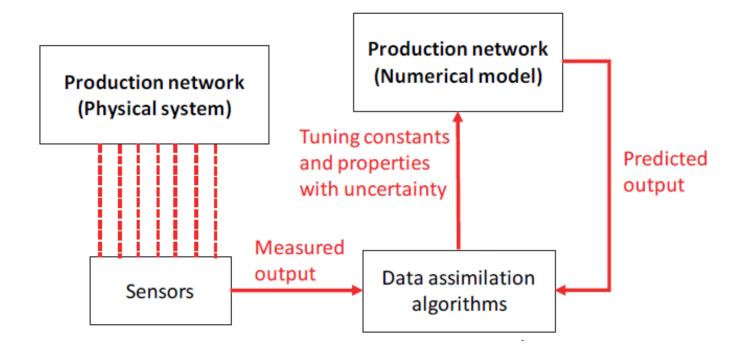
Time scales of production optimization

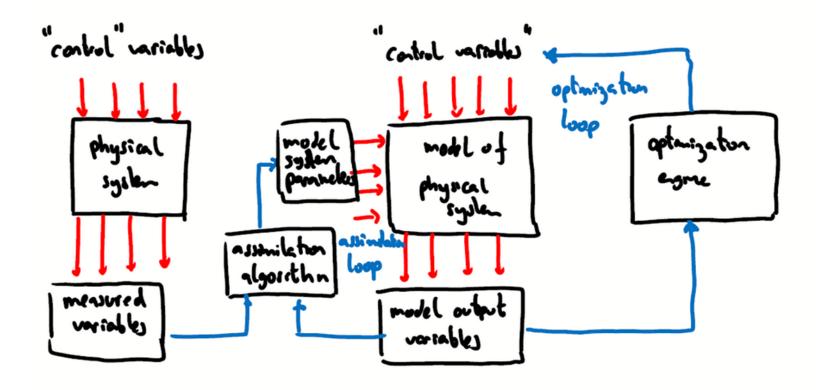
Long term	Short term	Shorter term
Years, months	Daily, weekly	 Seconds, minutes, hours


OPTIMIZATION TIMESCALES


Time scales of production optimization and models

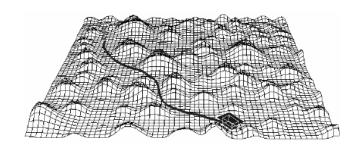
Long term	Short term	Shorter term
Years, months	Daily, weekly	Seconds, minutes, hours
-Models are highly uncertain (limited data) -Models are typically transient (reservoir model) + steady-state models	-There is data to tune models -Models are typically steady state (network, well, processing plant)	-Transient/steady state -Model/real system

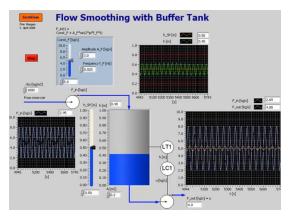

Integrated asset modeling


Model-based production optimization

Ensuring fidelity in model-based production optimization

Model-based production optimization workflow




Time scales of production optimization and examples

Long term	Short term	Shorter term
-Find:	-Find: Choke opening,	-Find:
-well placement, well	gas lift rate, pump	-Control choke
rates, field development	frequency	opening, gas lift rate,
strategy	-That:	control valve position
-That:	-Maximize oil	-That:
-maximize recovery	production, condensate	-Maximize
factor, NPV, reduce	production, gas	production, revenue,
water cut and GOR	production, revenue	reduce and mitigate
		fluctuations

Optimization types

- Parametric (static) using a model
- Dynamic (control) using a model, physical system, or a combination of both

Optimization types

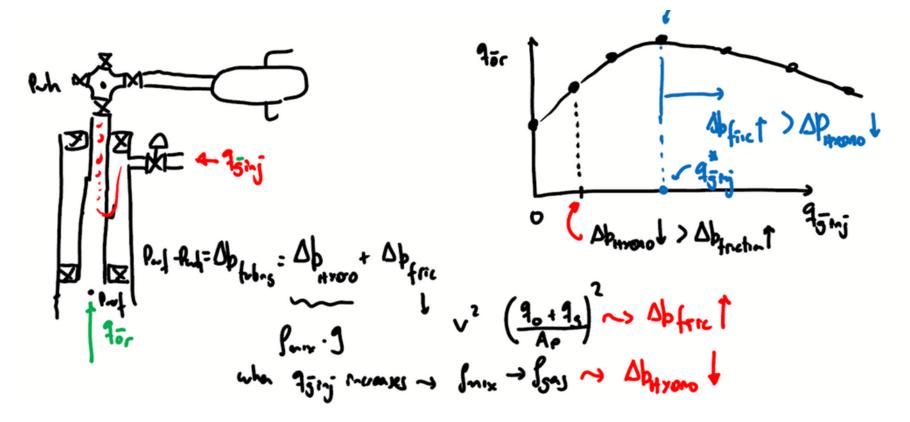
• Parametric (static) – using a model

Milan

 Dynamic (control) – using a model, physical system, or a combination of both

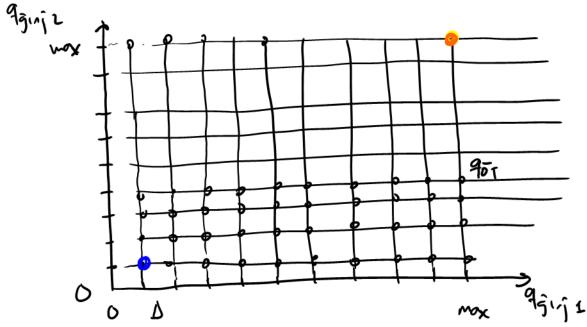
Optimization types

- Parametric (static) using a model
- Dynamic (control) using a model, physical system, or a combination of both



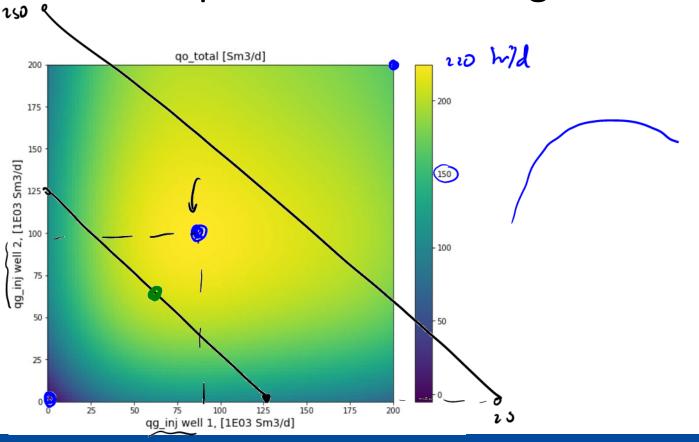
Alexey

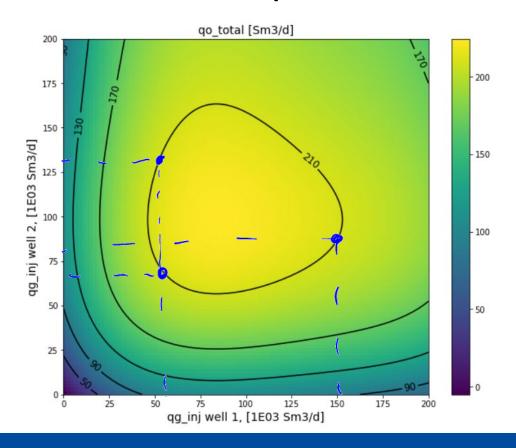
Example: two gas-lifted wells


System description

System sketch (2 wells to one separator)

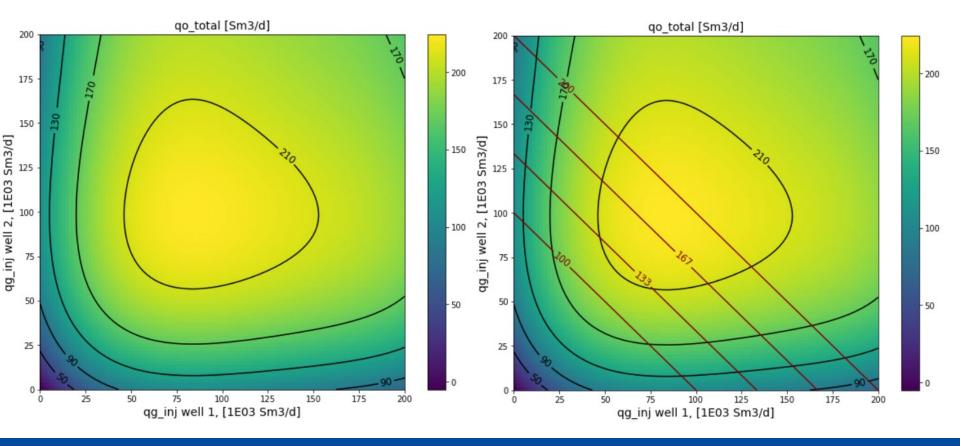
Puh,
$$\approx$$
 Puh, \approx Pu


Brute force solution


90 combratus of 95,000, and 95,000 to lest

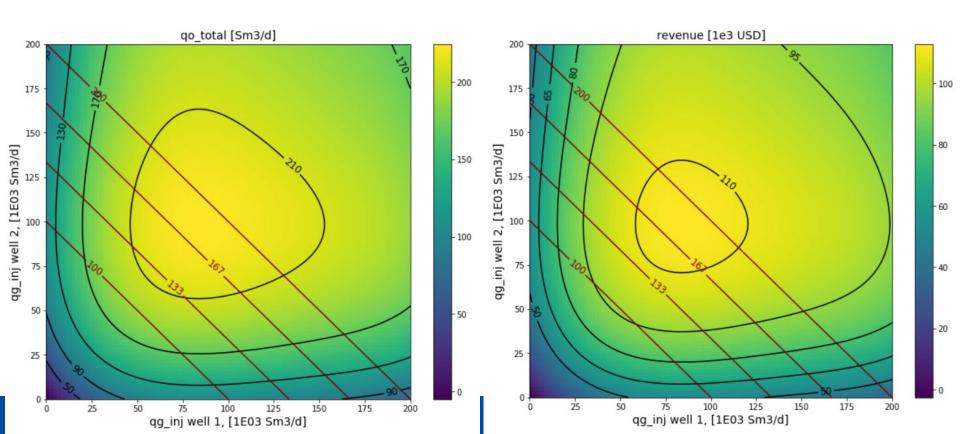
Color map of total oil production versus gas lift

rates

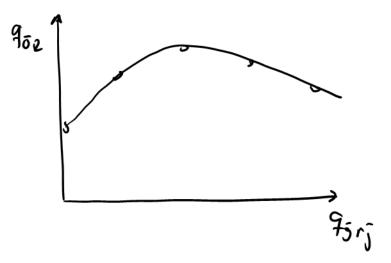

Contour lines of total oil production

Constraints in available gas

Effect of constraints

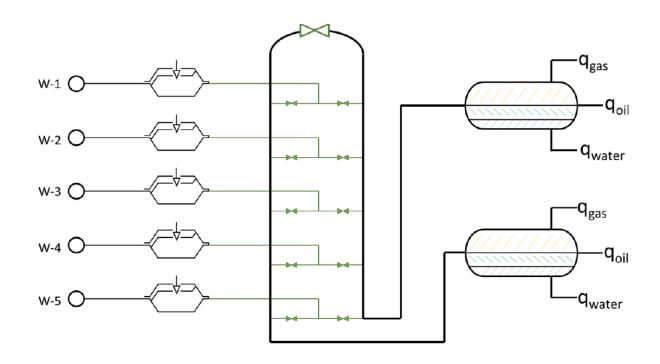


Maximizing profit instead of total oil production



Maximizing profit instead of total oil production

Exercise: optimization of two gaslifted wells

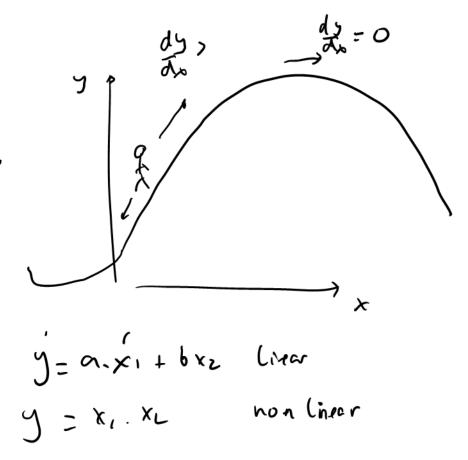

Equation for gas lift performance curve

Discrete variables in production optimization Exercise: well routing to separators

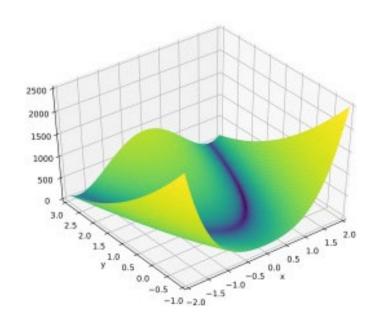
System sketch

Estimating number of combinations

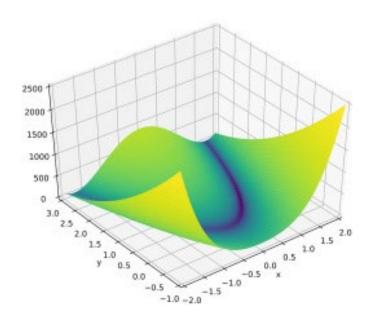
chove nodel 2 / j open chove opening Separaby assignent 95 mell, sep A = 95 mell, (X). O is assigned to sep B (2) 1 is essisted to up A(1) 90 mel, 1883 = 95 mell, (1-x)


											Calcula
	Sepa	rator Cor	nstraints t	able			qomin	[Sm3/d]	50		Optimiz
,	Separator '	1	Separator 2						5		
qo	qg	qw	qo	qg	qw						
Sm3/D	Sm3/D	Sm3/D	Sm3/D	Sm3/D	Sm3/D						
	250.0E+3	400		200.0E+3	380						
							Nama ana 4 an 4		0		
						Separator 1			Separator 2		
Well	q _{maxo}	f _w	GOR	Sep	qo	qo	qg	qw	qo	qg	qw
	Sm3/D	fraction	Sm3/m3	assign	Sm3/D	Sm3/D	Sm3/D	Sm3/D	Sm3/D	Sm3/D	Sm3/D
1	636	0.20	142								
2	795	0.43	214								
3	477	0.31	267								
4	636	0.47	356								
5	318	0.10	249								
				SUM=							

How do solvers work?


Optimization methods

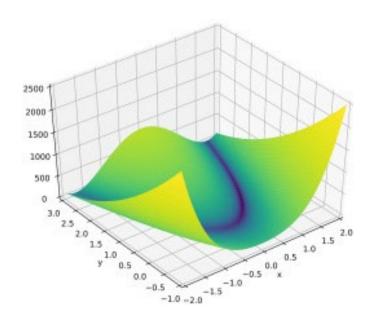
- Simplex (linear problems)
- Derivative-based (gradients, hessians)
- Line search/ Trust region
- Heuristic



$x_k + \Delta x$ is a local extremum if:

$$\nabla f(x_k + \Delta x) = 0$$

https://jamesmccaffrey.wordpress.com/page/2/


https://jamesmccaffrey.wordpress.com/page/2/

 $x_k + \Delta x$ is a local extremum if:

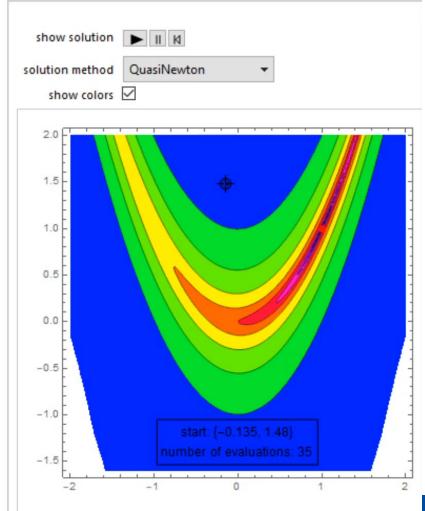
$$\nabla f(x_k + \Delta x) = 0$$

$$abla f(\chi_k) + H$$
 . $\Delta \chi = 0$ (Taylor expansion)

$$H(f) = egin{bmatrix} rac{\partial^2 f}{\partial x_1^2} & rac{\partial^2 f}{\partial x_1 \partial x_2} & \cdots & rac{\partial^2 f}{\partial x_1 \partial x_n} \ rac{\partial^2 f}{\partial x_2 \partial x_1} & rac{\partial^2 f}{\partial x_2^2} & \cdots & rac{\partial^2 f}{\partial x_2 \partial x_n} \ dots & dots & \ddots & dots \ rac{\partial^2 f}{\partial x_2 \partial x_n} & rac{\partial^2 f}{\partial x_2 \partial x_n} & \cdots & rac{\partial^2 f}{\partial x_2 \partial x_n} \ \end{pmatrix}$$

https://jamesmccaffrey.wordpress.com/page/2/

 $x_k + \Delta x$ is a local extremum if:

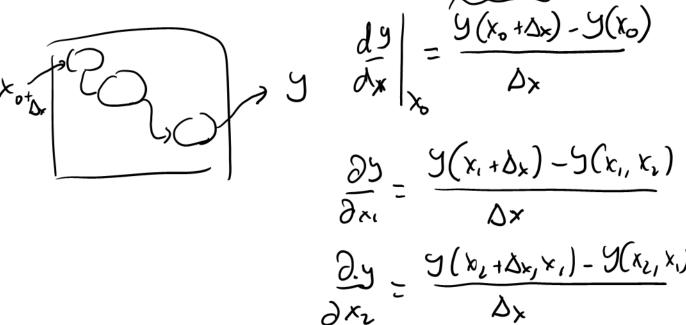

$$\nabla f(x_k + \Delta x) = 0$$

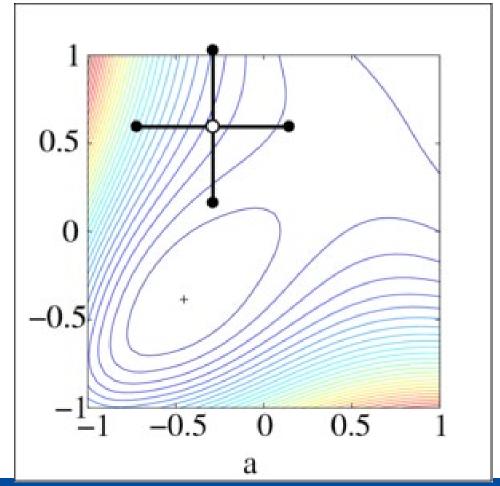
$$abla f(\chi_k) + H$$
 . $\Delta \chi = 0$ (Taylor expansion)

$$H(f) = egin{bmatrix} rac{\partial^2 f}{\partial x_1^2} & rac{\partial^2 f}{\partial x_1 \partial x_2} & \cdots & rac{\partial^2 f}{\partial x_1 \partial x_n} \ rac{\partial^2 f}{\partial x_2 \partial x_1} & rac{\partial^2 f}{\partial x_2^2} & \cdots & rac{\partial^2 f}{\partial x_2 \partial x_n} \ dots & dots & dots & dots \ rac{\partial^2 f}{\partial x_2 \partial x_n} & rac{\partial^2 f}{\partial x_2 \partial x_n} \ rac{\partial^2 f}{\partial x_n \partial x_1} & rac{\partial^2 f}{\partial x_n \partial x_2} & \cdots & rac{\partial^2 f}{\partial x_n^2} \ \end{bmatrix}$$

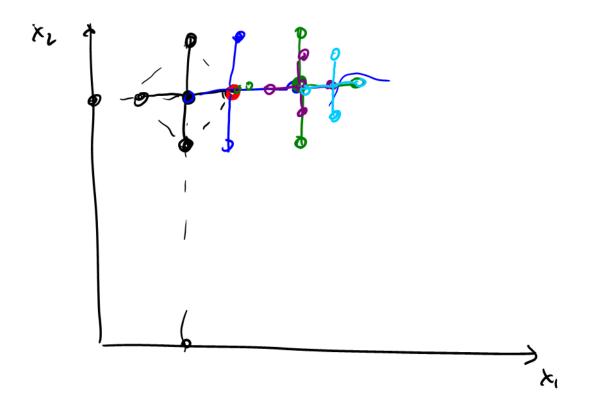
$$\Delta x = -H^{-1} \cdot \nabla f(x_k)$$

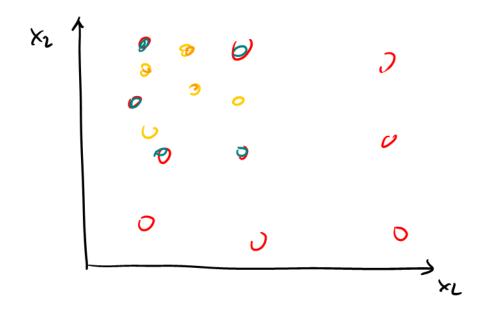
$$x_{k+1} = x_k + \Delta x$$




Estimation of gradient – analytical estimation

$$\frac{dy}{dx} = \frac{2.x}{2.x}$$


Estimation of gradient – perturbation method


Pattern search

Evolutionary algorithms (e.g. GA)

Multi-objective production optimization

DEFINITION

- More than one optimization objective (KPI), e.g.
 - Oil, condensate or gas production
 - NPV
 - Equipment efficiency
 - Energy consumption
 - Downtime
 - Maintenance cost
 - OPEX
 - CAPEX
 - CO₂ emissions

COMPLEXITIES

- Techniques are usually developed for optimizing one objective
 - When an objective is optimal usually all rest are not
 - → How to combine all objectives into one?

COMPLEXITIES

- Techniques are usually developed for optimizing one objective
 - When an objective is optimal usually all rest are not
 - → How to combine all objectives into one?
- Conflicting (non-trivial) objectives
 - High revenue → more energy usage
 - High rates → more equipment failure
 - High production → more CO₂ emissions

APPROACHES – CONSTRAINT METHOD

- Set most important KPI as objective
- Set the rest as constraints.
- Define an acceptable level for the constraints
- Run the optimization and evaluate results, adjust levels as necessary

$$egin{aligned} \min & f_j(x) \ & ext{s.t.} & x \in X \ & f_i(x) \leq \epsilon_i ext{ for } i \in \{1,\dots,k\} \setminus \{j\}, \end{aligned}$$

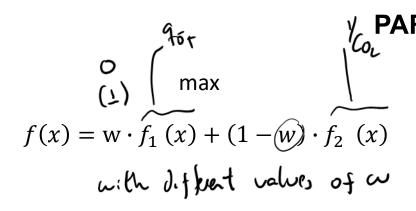
APPROACHES – LINEAR SCALARIZATION

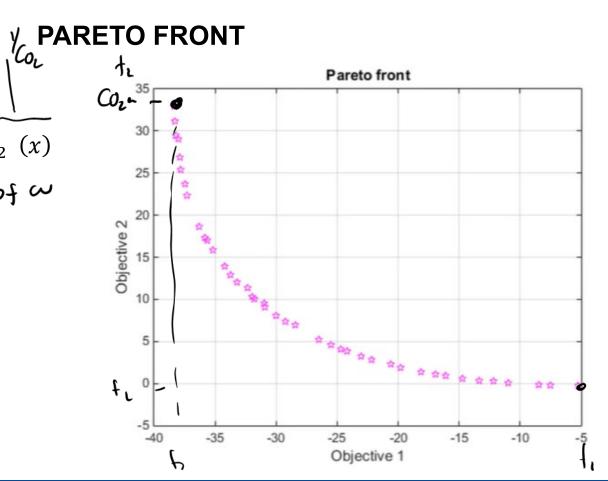
- Normalize the KPIs with reference values
- Create an objective function that is the weighted sum of all KPIs

$$\min_{x \in X} \sum_{i=1}^k w_i f_i(x)$$

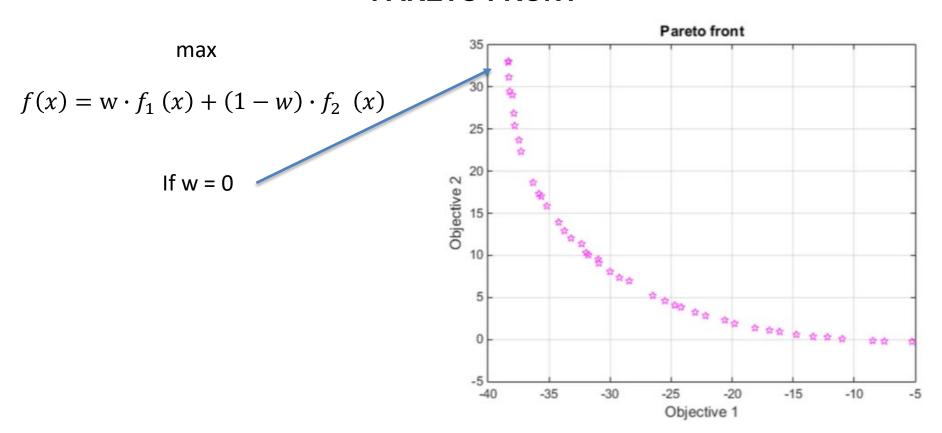
 Run the optimization and evaluate results, adjust weights as necessary

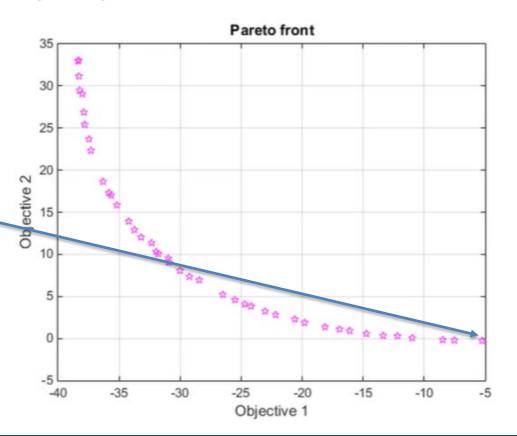
APPROACHES – LINEAR SCALARIZATION


- Normalize the KPIs with reference values
- Create an objective function that is the weighted sum of all KPIs

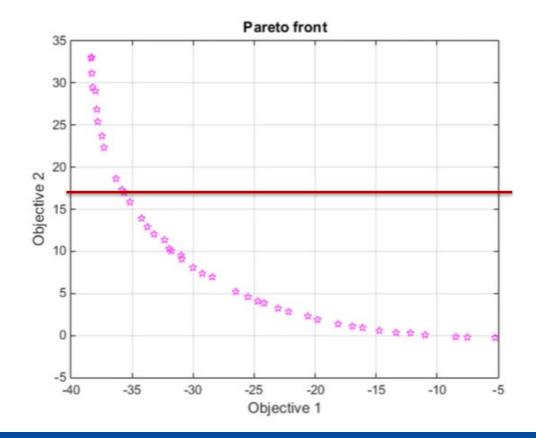

$$\min_{x \in X} \sum_{i=1}^k \widetilde{w_i} f_i(x)$$

Be careful with the signs!, squaring might be needed, changing the sign or inversion

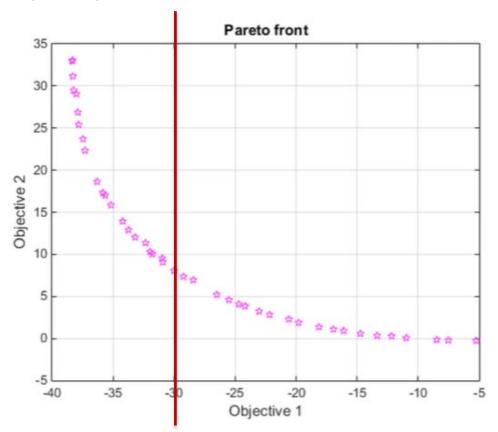

• Run the optimization and evaluate results, adjust weights as necessary of a for the production optimizer



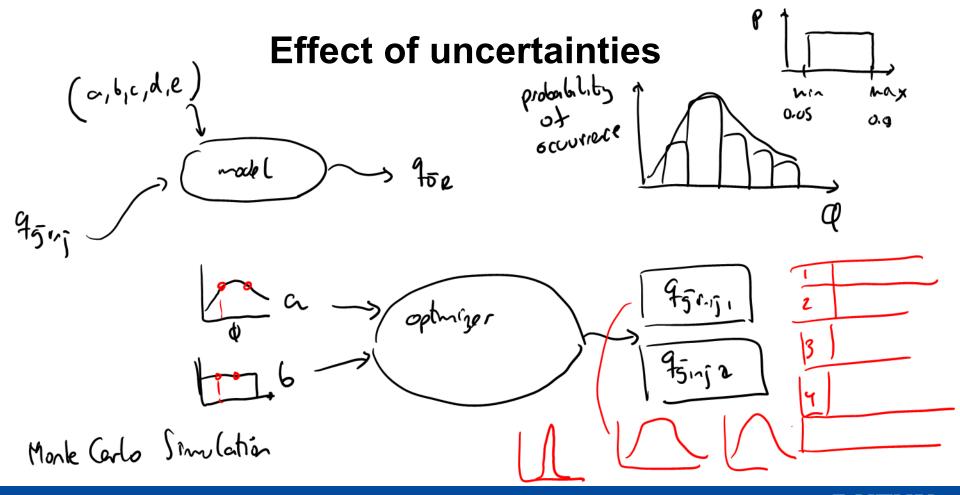
max


$$f(x) = w \cdot f_1(x) + (1 - w) \cdot f_2(x)$$

If
$$w = 1$$

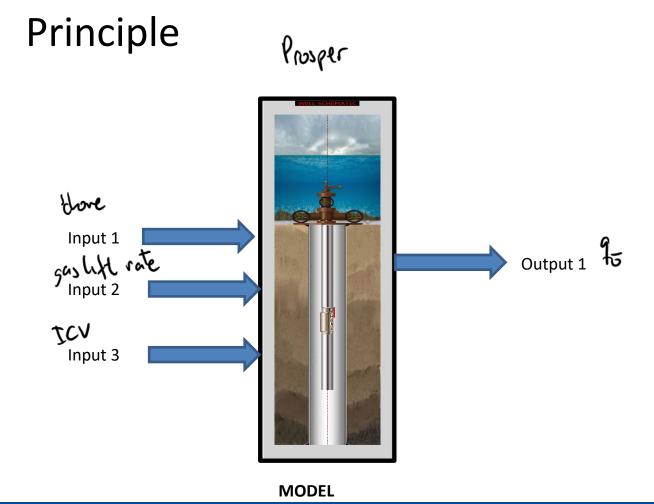

max

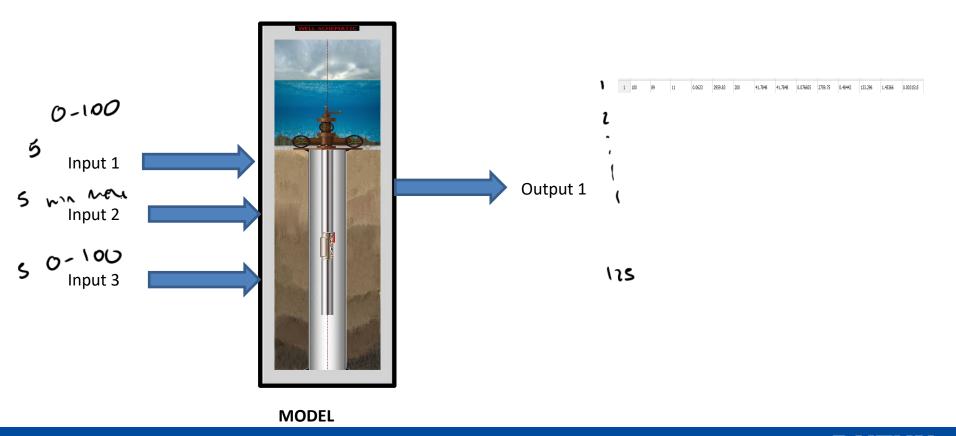
$$f(x) = w \cdot f_1(x) + (1 - w) \cdot f_2(x)$$



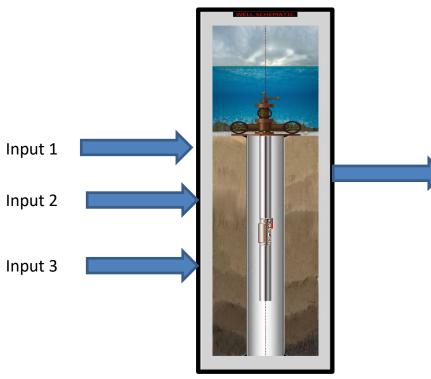
max

$$f(x) = w \cdot f_1(x) + (1 - w) \cdot f_2(x)$$



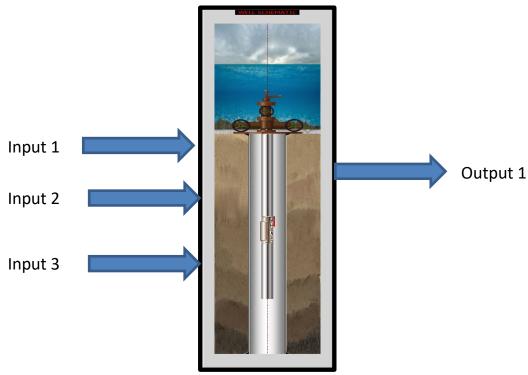

Proxy modeling

Proxy models Interpolation on tables



Principle

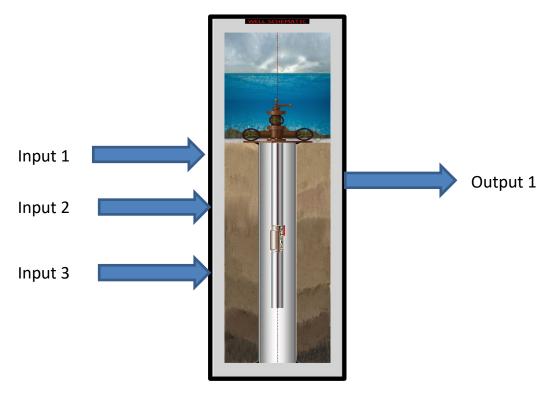
Principle



Output 1

MODEL

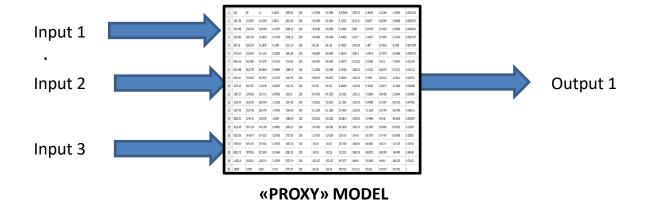
Principle

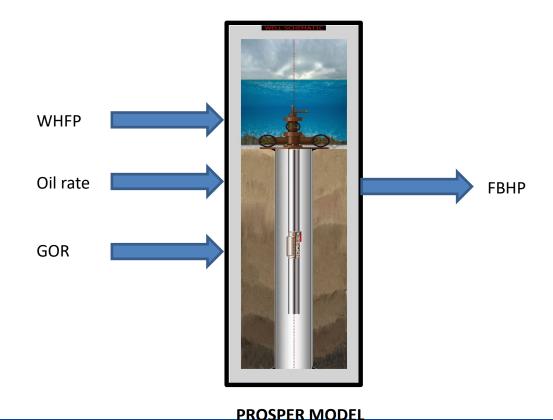


1	100	89	11	0.0623	2959.83	200	41.7848	41.7848	0.076605	2759.75	0.48442	133.296	1.45366	0.0031515
2	130.176	115.857	14.3194	0.0811	2813.43	200	42.3244	42.3244	0.12223	2613.31	0.6657	136.956	1.94428	0.0037617
2	160 459	150 818	18 6404	0.10557	2508 22	200	43.0346	43 0346	0.21892	2308	0.87470	137 603	2 54205	0.0046161

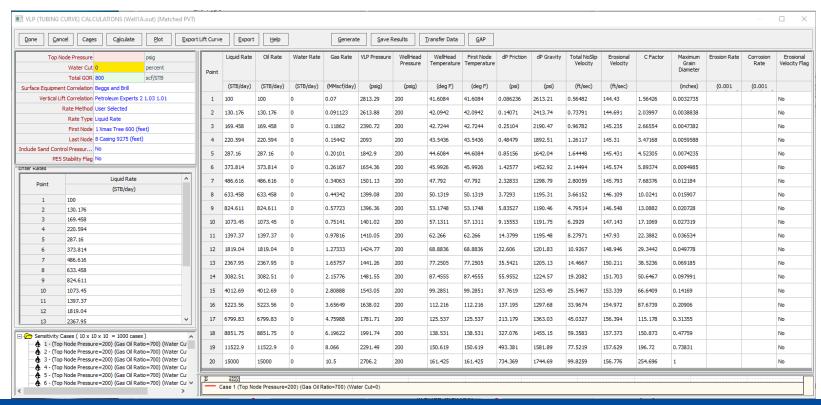
MODEL

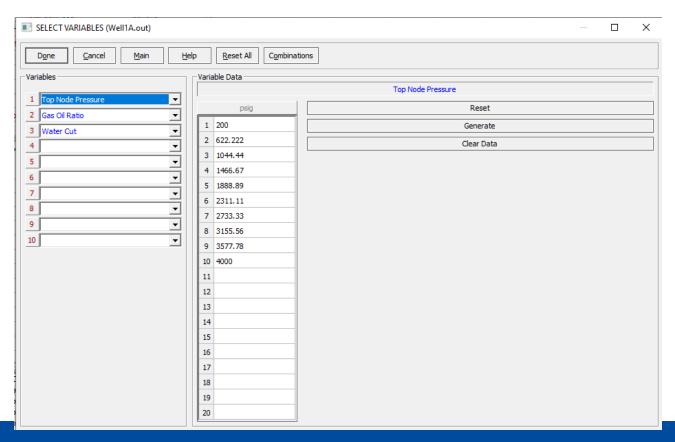
Principle

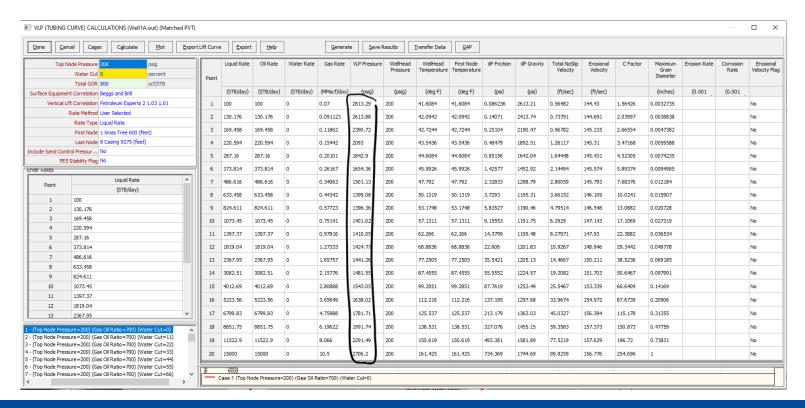


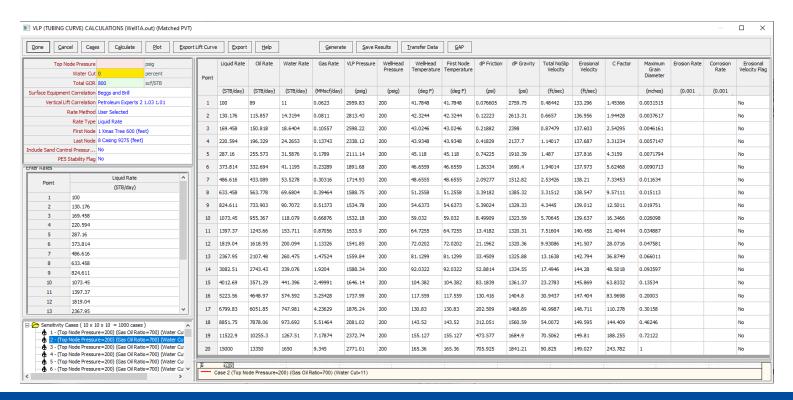


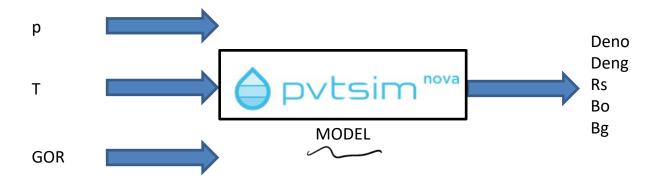
1	100	89	11	0.0623	2959.83	200	41.7848	41.7848	0.076605	2759.75	0.48442	133,296	1.45366	0.0031515
2	130.176	115.857	14.3194	0.0811	2813.43	200	42.3244	42.3244	0.12223	2613.31	0.6657	136.956	1.94428	0.0037617
3	169.458	150.818	18.6404	0.10557	2598.22	200	43.0246	43.0246	0.21882	2398	0.87479	137.603	2.54295	0.004616
4	220.594	196.329	24.2653	0.13743	2338.12	200	43.9348	43.9348	0.41829	2137.7	1.14017	137.687	3.31234	0.0057147
5	287.16	255.573	31.5876	0.1789	2111.14	200	45.118	45.118	0.74225	1910.39	1.487	137.816	4.3159	0.0071794
6	373.814	332.694	41.1195	0.23289	1891.68	200	46.6559	46.6559	1.26334	1690.4	1.94014	137.973	5.62468	0.009071
7	486.616	433.089	53.5278	0.30316	1714.93	200	48.6555	48.6555	2.09277	1512.82	2.53426	138.21	7.33453	0.011634
8	633.458	563.778	69.6804	0.39464	1588.75	200	51.2558	51.2558	3.39182	1385.32	3.31512	138.547	9.57111	0.015113
9	824.611	733.903	90.7072	0.51373	1534.78	200	54.6373	54.6373	5.39024	1329.33	4.3445	139.012	12,5011	0.019751
10	1073.45	955.367	118.079	0.66876	1532.18	200	59.032	59.032	8.49909	1323.59	5.70645	139.637	16.3466	0.026098
11	1397.37	1243.66	153.711	0.87056	1533.9	200	64.7255	64.7255	13.4182	1320.31	7.51604	140.458	21.4044	0.034887
12	1819.04	1618.95	200.094	1.13326	1541.85	200	72.0202	72.0202	21.1962	1320.36	9.93086	141.507	28.0716	0.047581
13	2367.95	2107.48	260.475	1.47524	1559.84	200	81.1299	81.1299	33.4509	1325.88	13.1638	142.794	36.8749	0.066011
14	3082.51	2743.43	339.076	1.9204	1588.34	200	92.0322	92.0322	52.8814	1334.55	17.4946	144.28	48.5018	0.093597
15	4012.69	3571.29	441.396	2.49991	1646.14	200	104.382	104.382	83.1839	1361.37	23.2783	145.869	63.8332	0.13534
16	5223.56	4648.97	574.592	3.25428	1737.99	200	117.559	117.559	130.416	1404.8	30.9437	147.404	83.9698	0.20003
17	6799.83	6051.85	747.981	4.23629	1876.24	200	130.83	130.83	202,509	1468.89	40.9987	148.711	110.278	0.30158
18	8851.75	7878.06	973.692	5.51464	2081.02	200	143.52	143.52	312.051	1560.59	54.0072	149.595	144.409	0.46246
19	11522.9	10255.3	1267.51	7.17874	2372.74	200	155.127	155.127	473.577	1684.9	70.5062	149.81	188.255	0.72122
20	15000	13350	1650	9.345	2771.01	200	165.36	165.36	705.925	1841.21	90.825	149.027	243.782	1

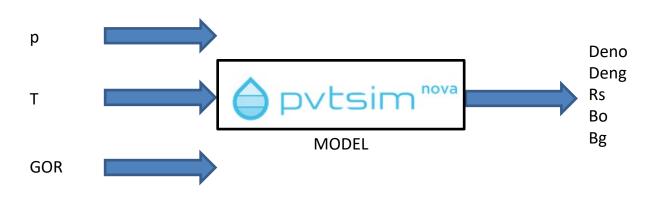

MODEL


Principle

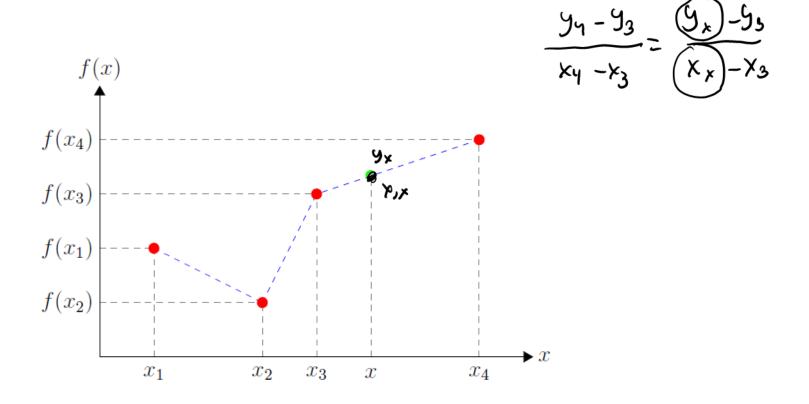




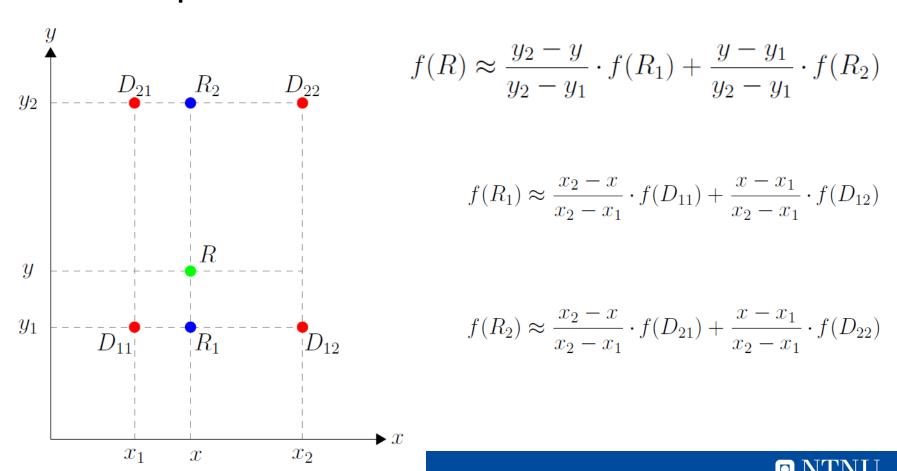




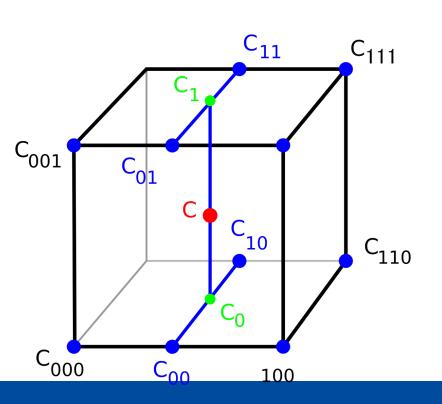
Example: PVT tables from PVTsim


Example: PVT tables from PVTsim

'WAT		ROPY 'GAS-WELL U	S GAS WITH H2O	DRY US GAS - W	
		01355E-01			
	.209093E+06	.226757E+01			
	.965263E+05	177778E+02			
	.100000E+10	.100000E+10	.100000E+10	.100000E+10	.100000E+10
	.100000E+10	.100000E+10	.100000E+10	.100000E+10	.100000E+10
	.100000E+10	.100000E+10	.100000E+10	.100000E+10	.100000E+10
	.100000E+10	.100000E+10	.100000E+10	.100000E+10	.100000E+10
	.100000E+10	.100000E+10	.100000E+10	.100000E+10	.100000E+10
	.100000E+10	.100000E+10	.100000E+10	.100000E+10	.100000E+10
	.100000E+10	.100000E+10	.100000E+10	.100000E+10	.100000E+10
	.100000E+10	.100000E+10	.100000E+10	.100000E+10	.100000E+10
	.1000000E+10	.100000E+10	.100000E+10	.100000E+10	.100000E+10
	.000000E+00	.000000E+00	.000000E+00	.000000E+00	.000000E+00
	.0000000E+00	.000000E+00	.000000E+00	.000000E+00	.000000E+00
	.0000000E+00	.000000E+00	.000000E+00	.000000E+00	.000000E+00
	.0000000E+00	.000000E+00	.000000E+00	.000000E+00	.000000E+00
	.0000000E+00	.000000E+00	.000000E+00	.000000E+00	.0000000E+00
	.0000000E+00	.000000E+00	.000000E+00	.000000E+00	.000000E+00
	.0000000E+00	.000000E+00	.000000E+00	.000000E+00	.000000E+00
	.0000000E+00	.000000E+00	.000000E+00	.000000E+00	.000000E+00
	.0000000E+00	.000000E+00	.000000E+00	.000000E+00	.0000000E+00
Che	DENSITY (KG/I		.0000000	.0000002+00	.0000002+00
GAU	.802592E+00	.795453E+00	.788442E+00	.781555E+00	.774790E+00
	.768144E+00	.761613E+00	.755196E+00	.748889E+00	.742689E+00
	.736596E+00	.730605E+00	.724716E+00	.718923E+00	.713197E+00
	.707562E+00	.702016E+00	.696556E+00	.691182E+00	.685890E+00
	.680679E+00	.675547E+00	.670493E+00	.665514E+00	.660609E+00
	.655776E+00	.651014E+00	.646321E+00	.641695E+00	.637136E+00
	.632641E+00	.628209E+00	.623840E+00	.619531E+00	.615281E+00
	.611090E+00	.606956E+00	.602877E+00	.598854E+00	.594884E+00
	.590966E+00	.587100E+00	.583284E+00	.579518E+00	.575801E+00
	.572131E+00	.568507E+00	.564930E+00	.561397E+00	.557909E+00
	.256073E+01	.253737E+01	.251446E+01	.249196E+01	.246988E+01
	.244820E+01	.242690E+01	.240599E+01	.238544E+01	.236525E+01
	.234542E+01	.232592E+01	.230676E+01	.228792E+01	.226940E+01
	.225120E+01	.223329E+01	.221568E+01	.219836E+01	.218133E+01
	.216458E+01	.214804E+01	.213172E+01	.211565E+01	.209982E+01
	.208423E+01	.206888E+01	.205375E+01	.203885E+01	.202417E+01
	.200969E+01	.199543E+01	.198138E+01	.196752E+01	.195386E+01
	.194039E+01	.192710E+01	.191400E+01	.190108E+01	.188834E+01
	.187577E+01	.186337E+01	.185113E+01	.183905E+01	.182713E+01
	.181537E+01	.180376E+01	.179230E+01	.178099E+01	.176982E+01
	.434634E+01	.430571E+01	.426587E+01	.422679E+01	.418846E+01
	.415084E+01	.411393E+01	.407770E+01	.404213E+01	.400721E+01
	.397291E+01	.393922E+01	.390612E+01	.387360E+01	.384165E+01
	.381024E+01	.377937E+01	.374903E+01	.371919E+01	.368985E+01
	.366100E+01	.363263E+01	.360472E+01	.357727E+01	.355027E+01
	.352357E+01	.349724E+01	.347131E+01	.344577E+01	.342062E+01
	.339584E+01	.337143E+01	.334738E+01	.332367E+01	.330031E+01
	.327729E+01	.325459E+01	.323221E+01	.321014E+01	.318838E+01
	.316693E+01	.314576E+01	.312488E+01	.310429E+01	.308397E+01
	.306392E+01	.304413E+01	.302461E+01	.300534E+01	.298632E+01
	.616023E+01	.610119E+01	.604334E+01	.598665E+01	.593108E+01
	.587660E+01	.582317E+01	.577076E+01	.571935E+01	.566890E+01
	.561938E+01	.557078E+01	.552305E+01	.547619E+01	.543017E+01
	.538496E+01	.534054E+01	.529690E+01	.525401E+01	.521185E+01
	.517041E+01	.512967E+01	.508961E+01	.505022E+01	.501149E+01
	.497339E+01	.493592E+01	.489903E+01	.486249E+01	.482652E+01
	.479109E+01	.475620E+01	.472184E+01	.468799E+01	.465463E+01



Linear interpolation – 1D



Linear interpolation – 2D

Linear interpolation – 3D

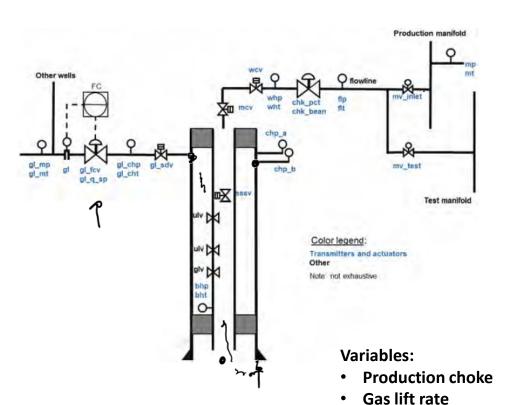
$$egin{aligned} x_{
m d} &= rac{x-x_0}{x_1-x_0} & c_{00} &= c_{000}(1-x_{
m d}) + c_{100}x_{
m d} \ c_{10} &= c_{001}(1-x_{
m d}) + c_{101}x_{
m d} \ c_{10} &= c_{010}(1-x_{
m d}) + c_{101}x_{
m d} \ c_{10} &= c_{010}(1-x_{
m d}) + c_{110}x_{
m d} \ c_{11} &= c_{011}(1-x_{
m d}) + c_{111}x_{
m d} \end{aligned}$$

$$egin{aligned} c_0 &= c_{00} (1 - y_{
m d}) + c_{10} y_{
m d} \ c_1 &= c_{01} (1 - y_{
m d}) + c_{11} y_{
m d} \end{aligned}$$

$$c = c_0(1 - z_d) + c_1 z_d$$

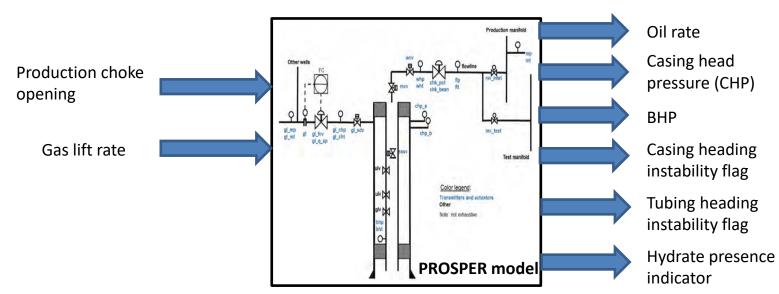
Advantages of using tables

- Faster than running the model
- Introduces no approximation errors (except interpolation)
- The O&G industry has extensive experience
- Easy to set up
- Can optimize software and license usage



Example: Gas-lifted well including several constraints and using a table

SPE-202840 (ADNOC, UAE)

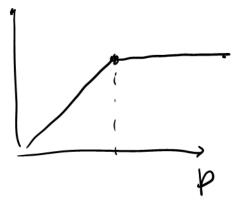


Constraints:

- Dead (no flow)
- 2. Unstable flow (tubing heading)
- 3. Casing heading instability
- 4. Max CHP (1800 psig) -
- 5. Min BHP (2750 psig)
- 6. Max oil (2080 bopd)
- 7. Hydrate formation in gas lift valve

Combinations (558 runs):

Production choke opening: 5, 10,, 100%

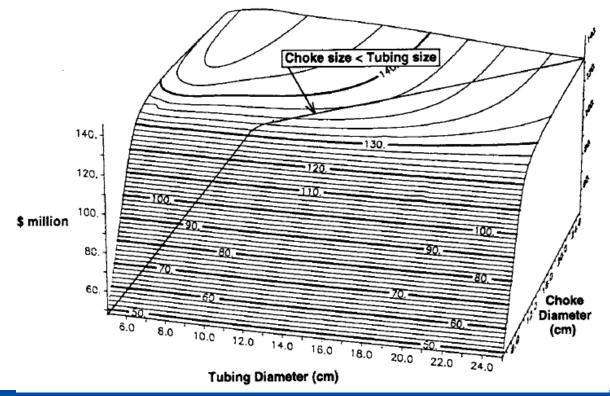

Gas lift rate: 0, 0.1,..., 3 MMscfd

Excel file

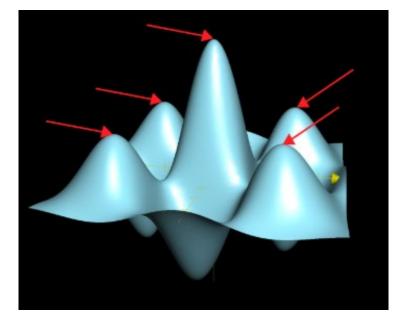
Issues with interpolation

- If system changes points usually must be generated again
- (Usually) requires regular grid
- Can be expensive to create the table
- Complexity grows with number of variables
- Logic (IF) and looping (FOR) is required to find the bounding values in the interpolation
- Handling discontinuities
- Be careful with the limits
- Number of points required
- Point spacing

Production optimization: Limitations and pitfalls



- Model fidelity
- Is it actually possible to change the decision settings?:
 - Is the equipment/actuator functional and available?
 - Am I allowed to operate the control element?
 - Actuator response time



• Flat peak of optimum- more efforts

give less results

- Local optima
- Starting point
- Running time
- Short term versus long term optimization

(Khan academy)

Short term versus long term optimization

Maximize NPV By changing $q_o(t)$

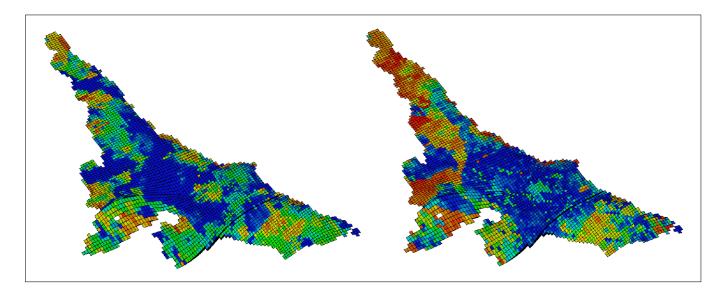


Figure 3: Permeability (left) and porosity (right) distributions of the south wing.

Short term versus long term optimization

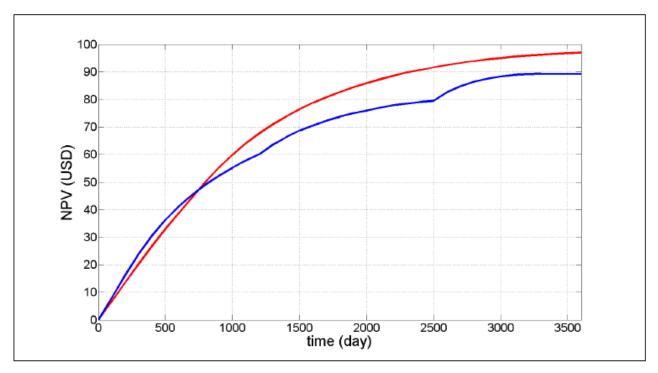


Figure 4: Normalized NPV of the long-term optimization (red) using adjoint-based optimization and short-term optimization (blue) using reactive control.

Short term versus long term optimization

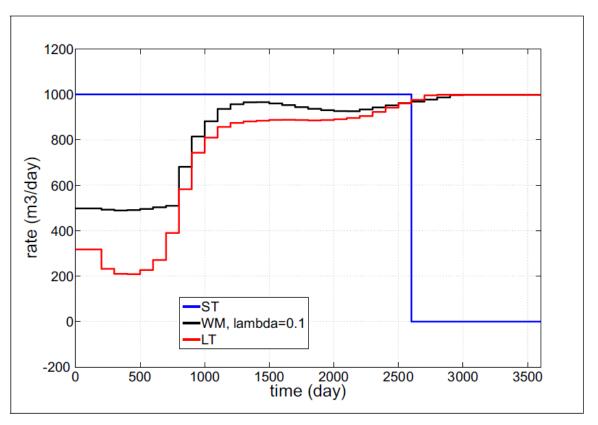


Figure 9: Oil rate from production well PROD3 using different strategies; reactive control (blue), adjoint-based optimization (red), and the weighted-sum method (black).

Take-aways when implementing prod optimization

- Look at the rest of the list first!
- Do we REALLY need to do optimization?
- Think carefully what is the main, most important, first order of magnitude problem

- · Detect locations in the system with abnormally high-pressure loss and flow restrictions
- Verification of equipment design conditions vs actual operating conditions
- Identification and addressing fluid sources that have disadvantageous characteristics (e.g. high water cut, high H₂S content)
- · Identify and correct system malfunctions and non-intended behavior
- Analyze and improve the logistics and planning of maintenance, replacement and installation of equipment or in the execution of field activities.
- Review the occurrence of failures and recognize patterns
- Calibration of instrumentation
- Identification of operational constraints (e.g., water handling capacity, power capacity)
- Observe and analyze the response of the system when changes are introduced
- Find control settings of equipment that give a production higher than current (or, preferably, that give maximum production possible)
- Identify Bottlenecks
- Identifying and monitoring Key Performance Indicators (KPIs)

Take-aways when implementing prod optimization

- Define objective, constraints and variables
- Determine relevance of constraints
- Is it realistic to modify optimization variables?
- Formulate your optimization in a smart way (choose the right variable)
- Study how your input affects your results

THE END THANK YOU