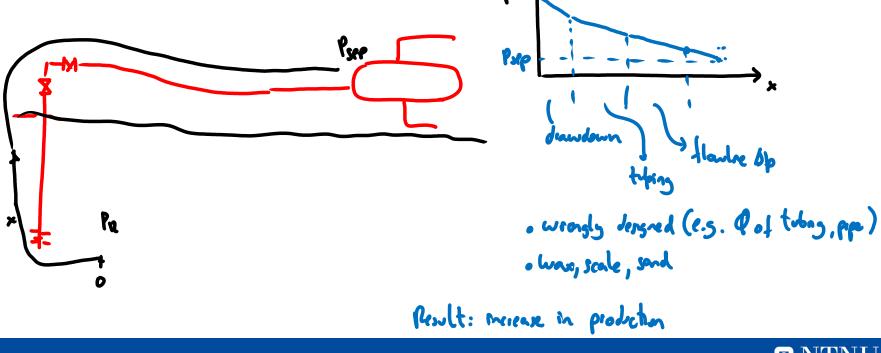
«Static» production optimization

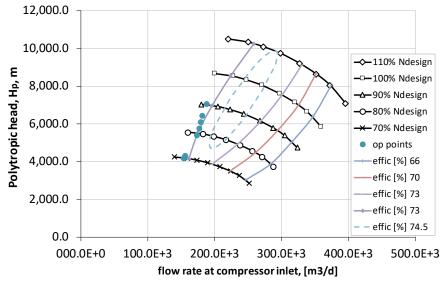
Prof. Milan Stanko (NTNU)

Agenda

- Introduction to production optimization
 - Practical meaning
 - Time scales
 - Model-based optimization
 - Types
- Example: two gas-lifted wells
- Exercise: two gas-lifted wells
- Discrete variables
 - Exercise: routing 5 wells to 2 separators
- Example: The Rubiales field project
- Proxy modeling using tables
 - Example: Gas-lifted well
- How do solvers work?
- Multi-objective optimization
 - Constraint method
 - Example
 - Linear scalarization
 - Example
- Effect of uncertainties
- Limitations and pitfalls



Examples of «production optimization»

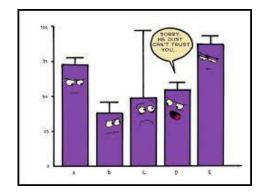

 Detect locations in the system with abnormally high-pressure loss and flow restrictions

Examples of «production optimization»

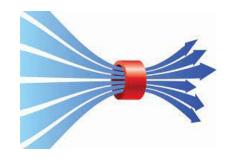
Verification of equipment design conditions vs actual operating conditions

Examples of «production optimization»

- Identification and addressing fluid sources that have "disadvantageous" characteristics (e.g. high water cut, high H₂S content)
- Identify and correct system malfunctions and unintended behavior
- Analyze and improve the logistics and planning of maintenance, replacement and installation of equipment or in the execution of field activities.



- Review the occurrence of failures and recognize patterns (data analytics)
- Calibration of instrumentation
- Identification of operational constraints (e.g. water handling capacity, power capacity)



- Identify bottlenecks
- Identifying and monitoring Key Performance Indicators (KPIs)

- Find:
 - Control settings of equipment
 - System characteristics (design)

- Find:
 - Control settings of equipment
 - System characteristics (design)
- That:
 - Give a production/profit higher than current
 - Give maximum production/profit possible
 - Improve a KPI
 - Maximize a KPI

- Find:
 - Control settings of equipment
 - System characteristics (design)
- That:
 - Give a production/profit higher than current
 - Give maximum production/profit possible
 - Improve a KPI
 - Maximize a KPI
- Using:
 - Model
 - Real system

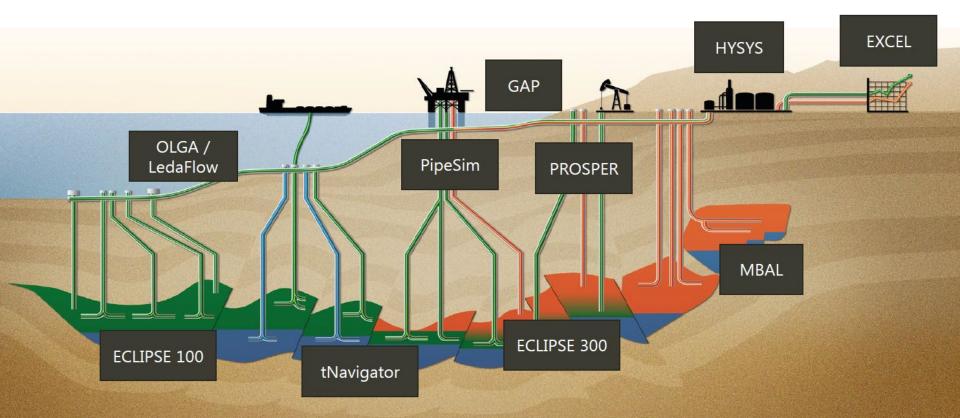
- Find:
 - Control settings of equipment
 - System characteristics (design)
- That:
 - Give a production/profit higher than current
 - Give maximum production/profit possible
 - Improve a KPI
 - Maximize a KPI
- Using:
 - Model
 - Real system

- Find:
 - Control settings of equipment
 - System characteristics (design)
- That:
 - Give a production/profit higher than current
 - Give maximum production/profit possible
 - Improve a KPI
 - Maximize a KPI
- Using:
 - Model
 - Real system

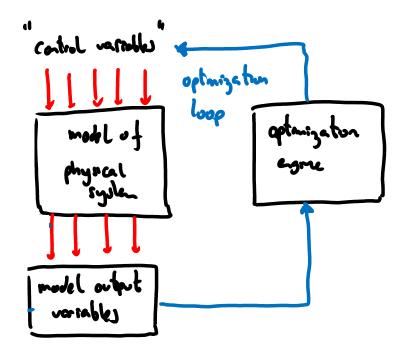
Time scales of production optimization

Long term	Short term	Shorter term
• Years, months	Daily, weekly	 Seconds, minutes, hours

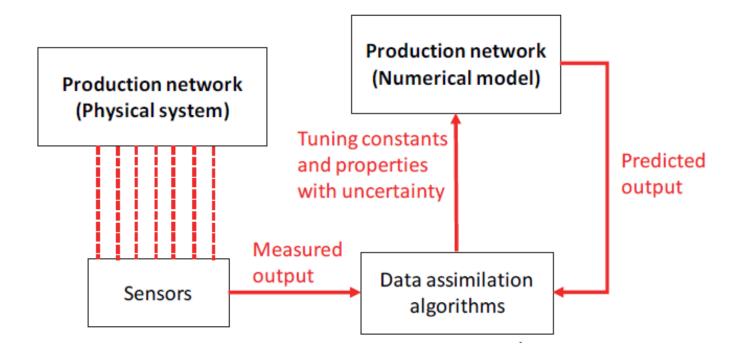
OPTIMIZATION TIMESCALES



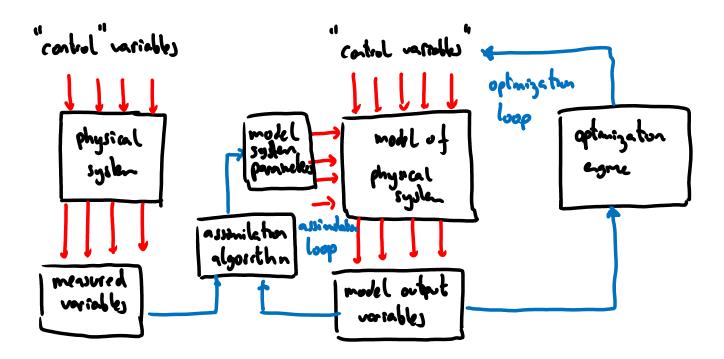
Time scales of production optimization and models


Long term	Short term	Shorter term
Years, months	Daily, weekly	Seconds, minutes, hours
-Models are highly uncertain (limited data) -Models are typically transient (reservoir model) + steady-state models	-There is data to tune models -Models are typically steady state (network, well, processing plant)	-Transient/steady state -Model/real system

Integrated asset modeling

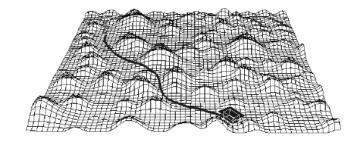


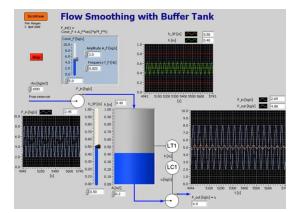
Model-based production optimization



Ensuring fidelity in model-based production optimization

Model-based production optimization workflow


Time scales of production optimization and examples


Long term	Short term	Shorter term
-Find:	-Find: Choke opening,	-Find:
-well placement, well	gas lift rate, pump	-Control choke
rates, field development	frequency	opening, gas lift rate,
strategy	-That:	control valve position
-That:	-Maximize oil	-That:
-maximize recovery	production, condensate	-Maximize
factor, NPV, reduce	production, gas	production, revenue,
water cut and GOR	production, revenue	reduce and mitigate
		fluctuations

Optimization types

- Parametric (static) using a model
- Dynamic (control) using a model, physical system, or a combination of both

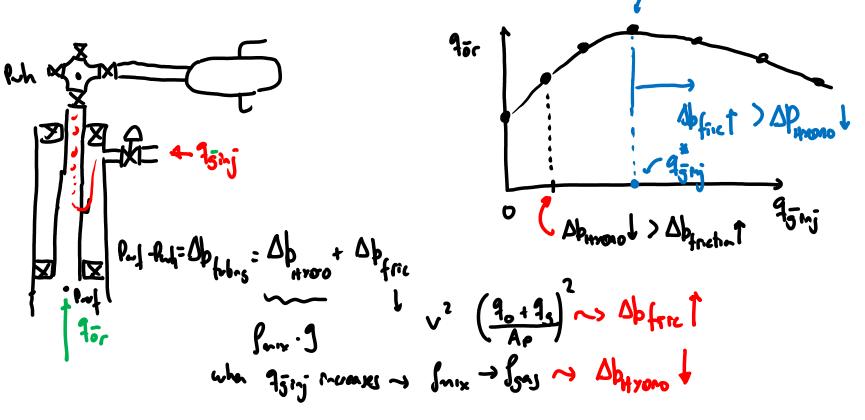
Optimization types

- Parametric (static) using a model
- Dynamic (control) using a model, physical system, or a combination of both

Milan

Optimization types

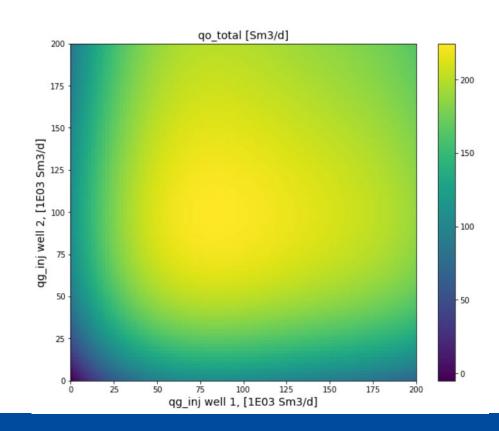
- Parametric (static) using a model
- Dynamic (control) using a model, physical system, or a combination of both


Alexey

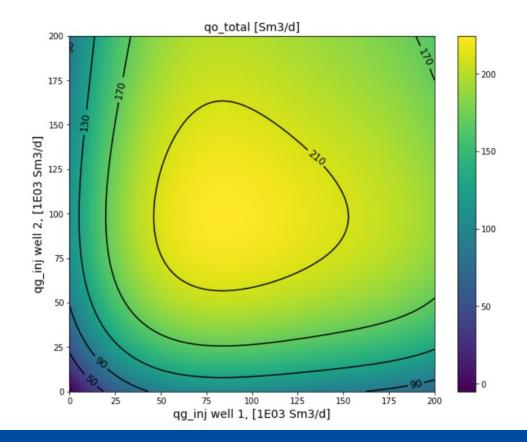
Example: two gas-lifted wells

System description

System sketch



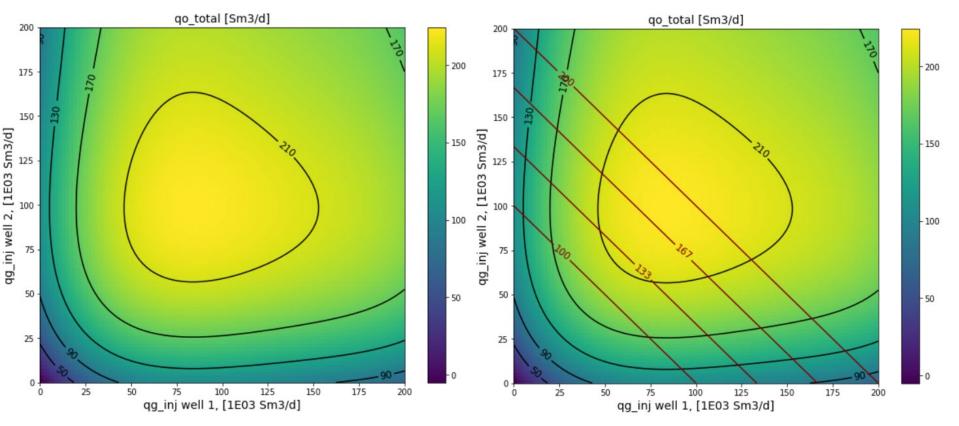
Brute force solution


Color map of total oil production versus gas lift

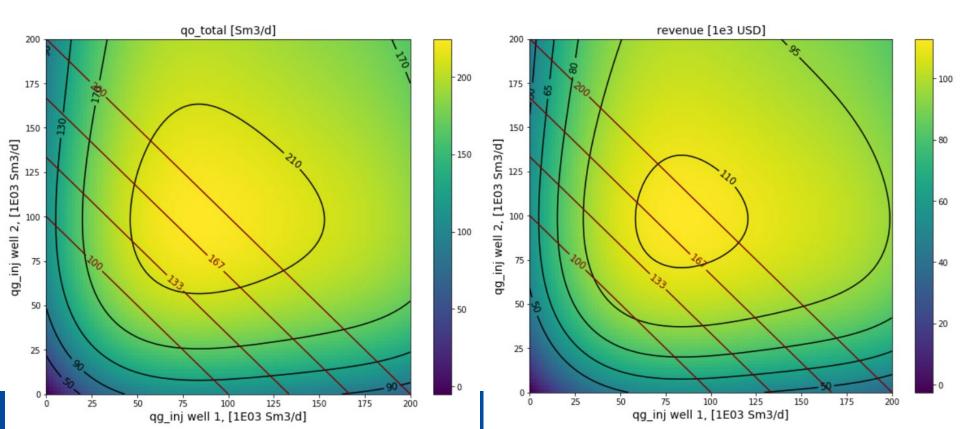
rates

NTNU

Contour lines of total oil production



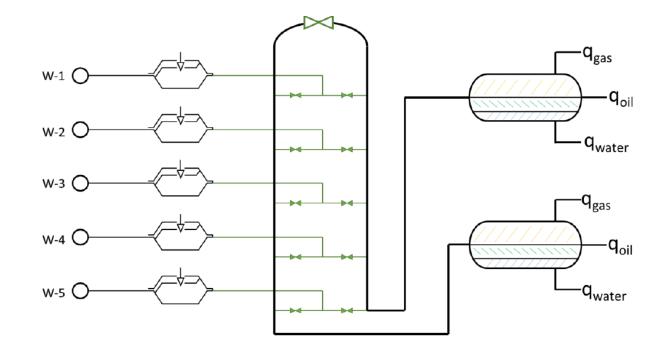
Constraints in available gas


Effect of constraints

Maximizing profit instead of total oil production

Maximizing profit instead of total oil production

Exercise: optimization of two gaslifted wells


Equation for gas lift performance curve

Discrete variables in production optimization Exercise: well routing to separators

System sketch

Estimating number of combinations

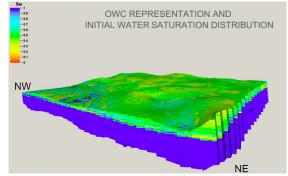
Example of industrial Project

Short term production optimization

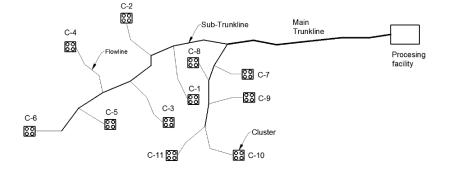
Model-based production optimization of oilfields with ESP-boosted wells

PEOPLE

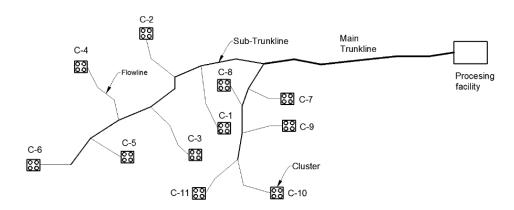
- Stein Ørjan Solrud, Ola Marius Røyset, Michael Golan, Wojciech Jurus, Øystein Kristoffersen (NTNU)
- Miguel Asuaje, Cesar Diaz, Miguel Guillmain, (Pacific E&P)
- Manuel Borregales, Diana Gonzalez, Abraham Parra (USB)



THE RUBIALES FIELD


(Endress+Hauser, 2011)

(Ellis et al, 2010)



(Gomez et al, 2013)

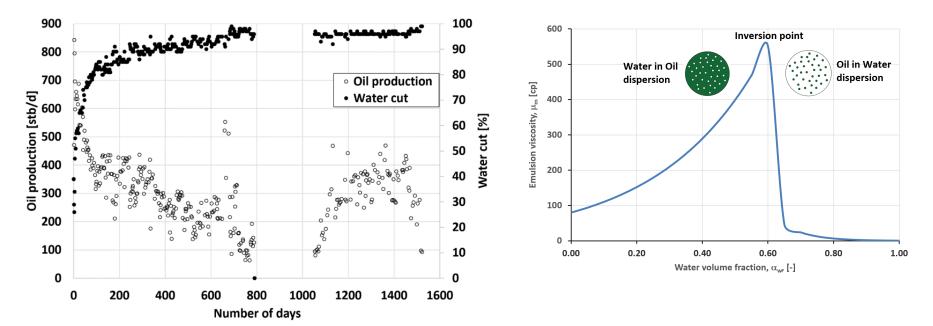
- ~160 000 STB/D, >90% watercut
- 900+ wells
- 12.5° API, 300-700 cp
- Many trunklines

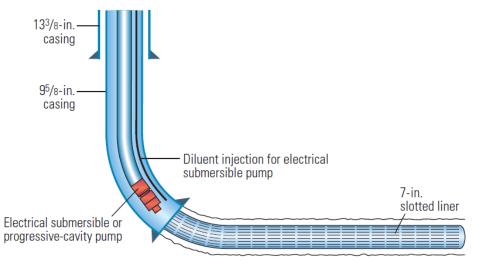
PRODUCTION SYSTEM

Hydraulically dependent wells in the network

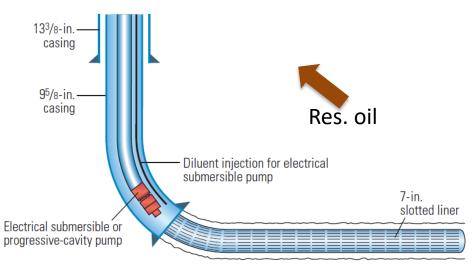
SPE-174843-MS • Model-Based Production Optimization of the Rubiales Field, Colombia • Milan Stanko

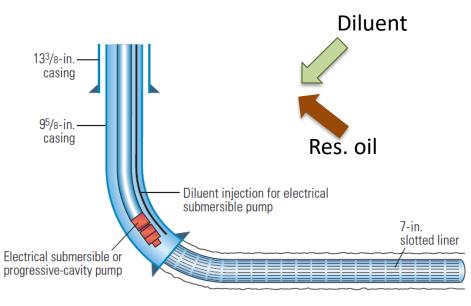
(Florez et al., 2013)

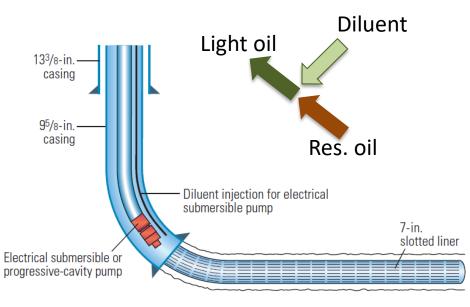

Individual pump frequency control

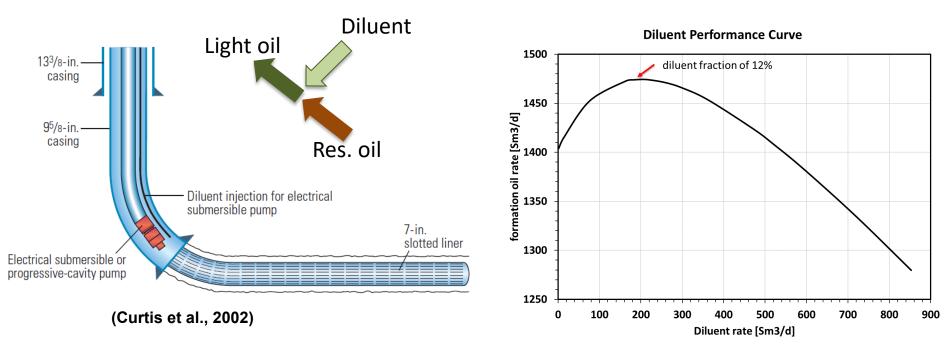

CHALLENGES

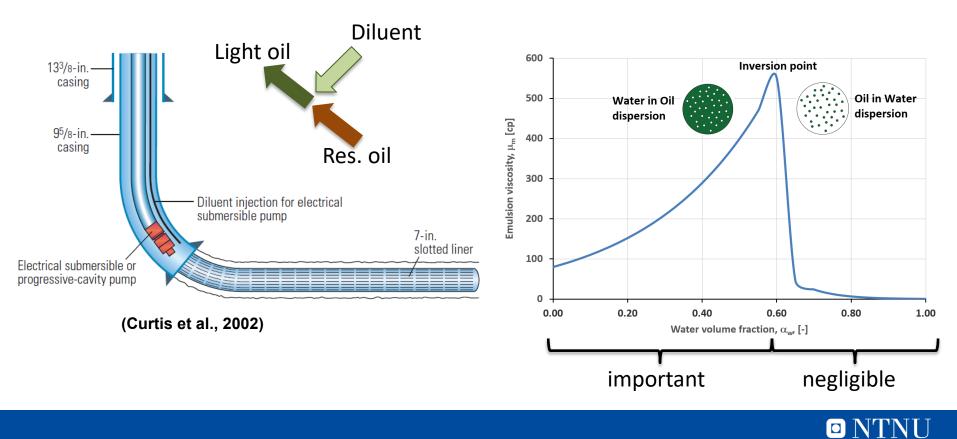
Rapid changes in time

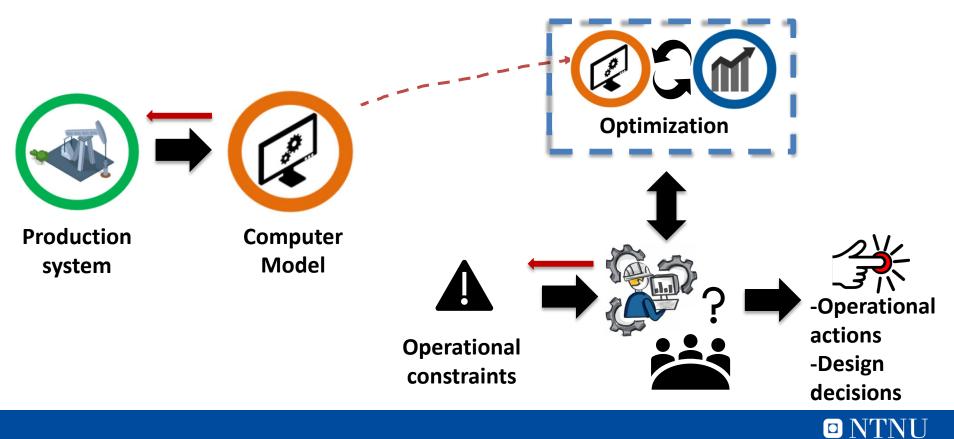

Oil-water emulsion behavior

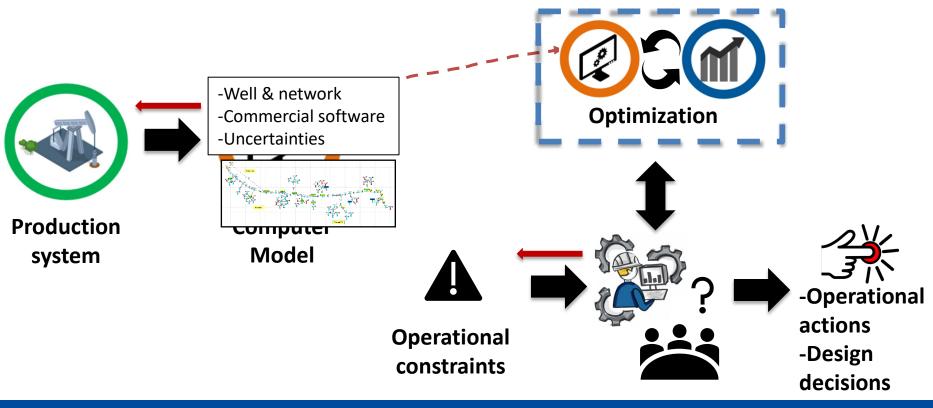

NTNU



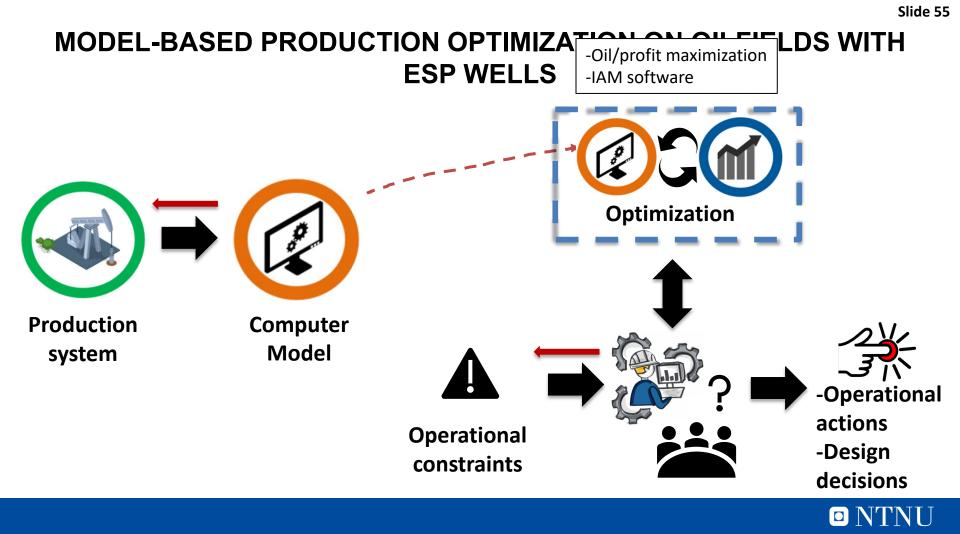


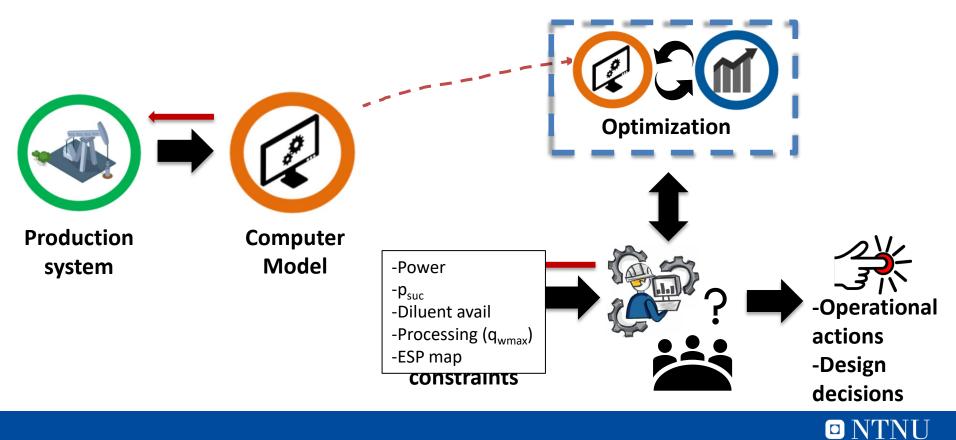


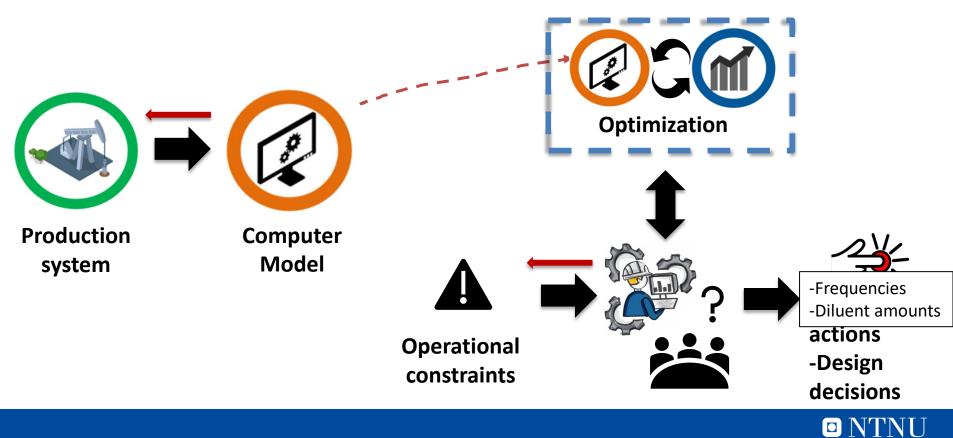




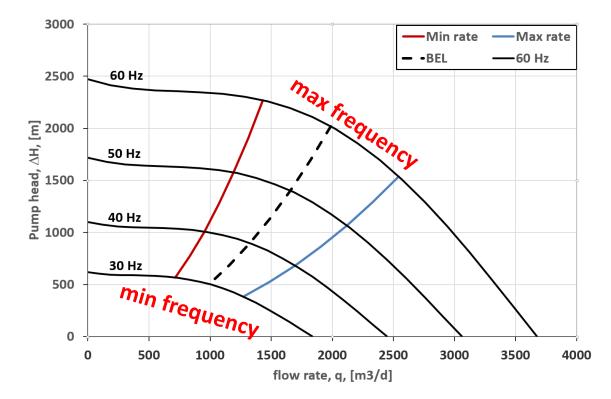
@Constant wellhead pressure and ESP frequency







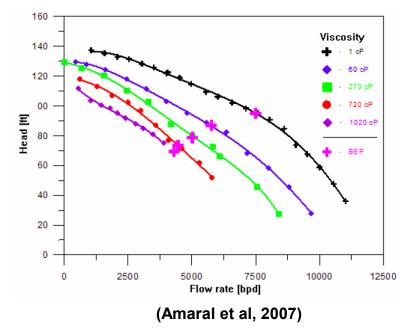
NTNU



Slide 56


ESP OPERATIONAL CONSTRAINTS

Slide 58


ESP OPERATIONAL CONSTRAINTS

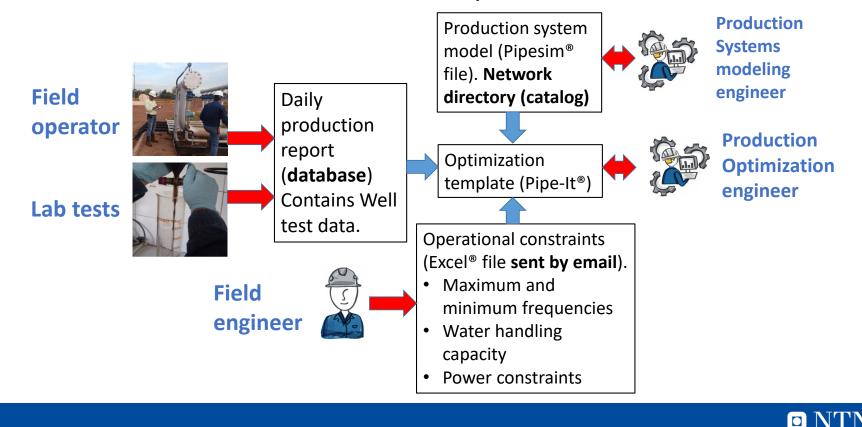
CHALLENGES

ESP performance with emulsions and viscous fluids

Slide 60

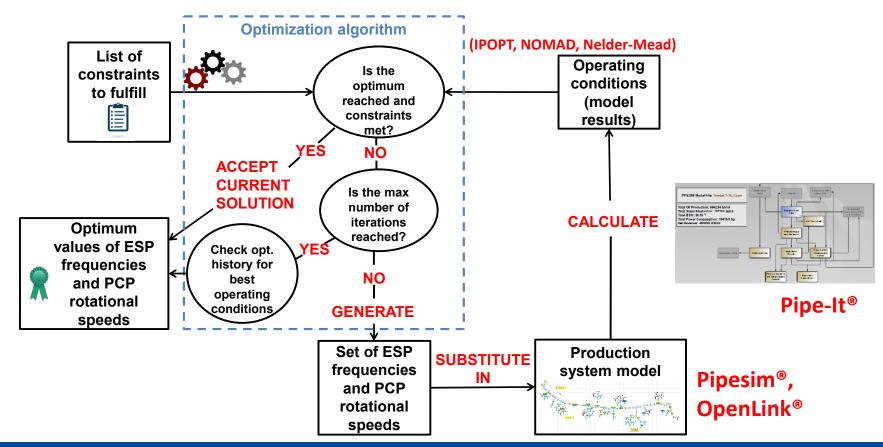
DEPLOYMENT: THE RUBIALES FIELD

SPE-174843-MS

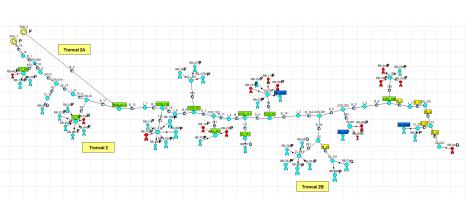

Model-Based Production Optimization of the Rubiales Field, Colombia

Milan Stanko, NTNU; Miguel Asuaje, Pacific Rubiales Energy & USB; Cesar Diaz, and Miguel Guillmain, Pacific Rubiales Energy; Manuel Borregales, and Diana Gonzalez, USB; Michael Golan, NTNU & MEGO A/S

Copyright 2015, Society of Petroleum Engineers

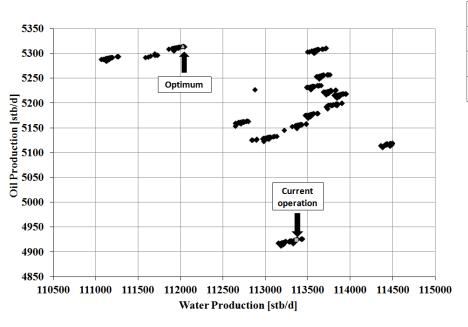


IMPLEMENTATION IN THE RUBIALES PRODUCTION MANAGEMENT SYSTEM)


Slide 62

OPTIMIZATION WORKFLOW AND ALGORITHM

Slide 63


EXAMPLE CASE: TRUNK-LINE 2

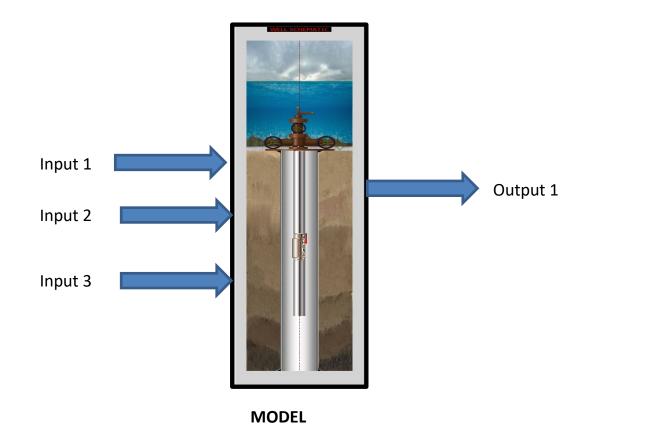
Description	Expression	Туре		
Total oil production	q_{o}	Objective		
ESP frequencies and PCP rotational speeds.	$(f_1, f_2, \dots, f_{32})$	Variable		
$ \mathbf{f} f_i > 60 \ hz$	$58 hz < f_i \le 66 hz$	Variable bounds		
$ \mathbf{f} f_i < 60 \ hz$	$30 hz < f_i \le 60 hz$	Variable bounds		
Maximum total water production	$q_w \leq 113370 stb/d$	Constraint		
Minimum ESP suction pressure	$p_{ps1}, p_{ps2}, \dots p_{ps32} \ge 200 \ psia$	Constraint		
Maximum well liquid flow rate	$q_1, q_2,, q_{32} \le 13000 stb/d$	Constraint		
ESP Upthrust and downthrust	$q_{\min}(f_i) \le q_i \le q_{\max}(f_i)$	Constraint		

DNTNU

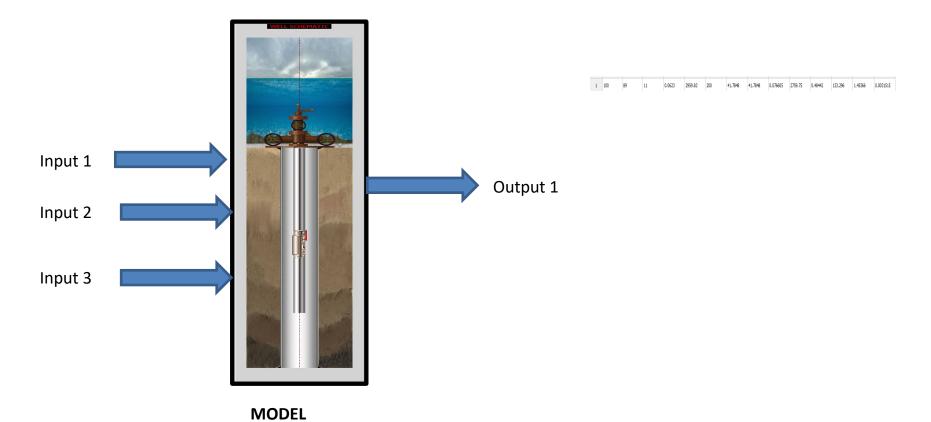
TRUNK-LINE 2: OPTIMIZATION RESULTS

	Oil production	Inc.* Water production		Inc.	ESP power	Inc.	
	[stb/d]	[%]	[stb/d]	[%]	[hp]	[%]	
Current operation	4924.4	-	113 361.0	-	2 182.3	-	
Optimum	5314.2	+7.9	112 025.9	-1.2	2 187.4	+0.2	

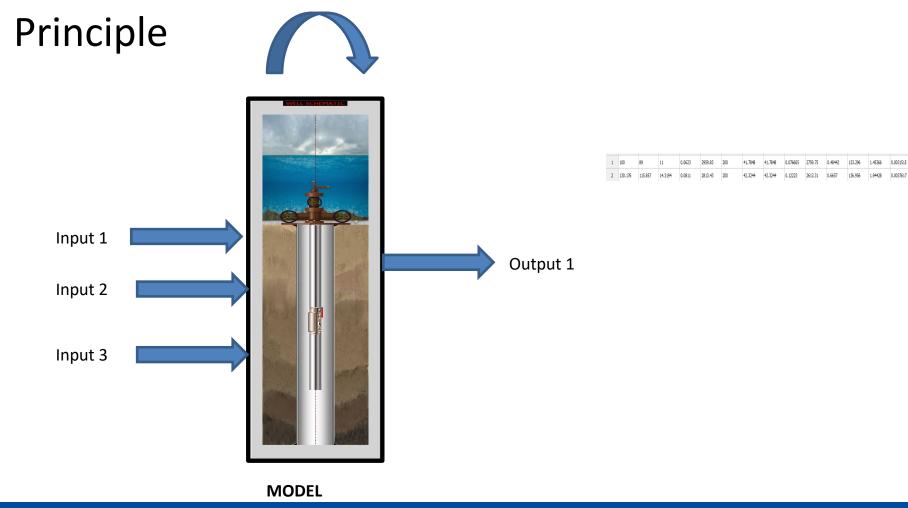
COMMENTS


- Non-intuitive actions
- Similar increase reported when operational settings implemented on the field
- Assisting and motivating field operators to adopt
 the new technology
- Flag limiting constraints (water production, power)
- Readily add new constraints
- Long running times 8 -24+ hrs
 Accept un-converged solutions
- Limitations in commercial software
- Added value (system improvement) as a byproduct of QC-ing model

Proxy modeling using tables

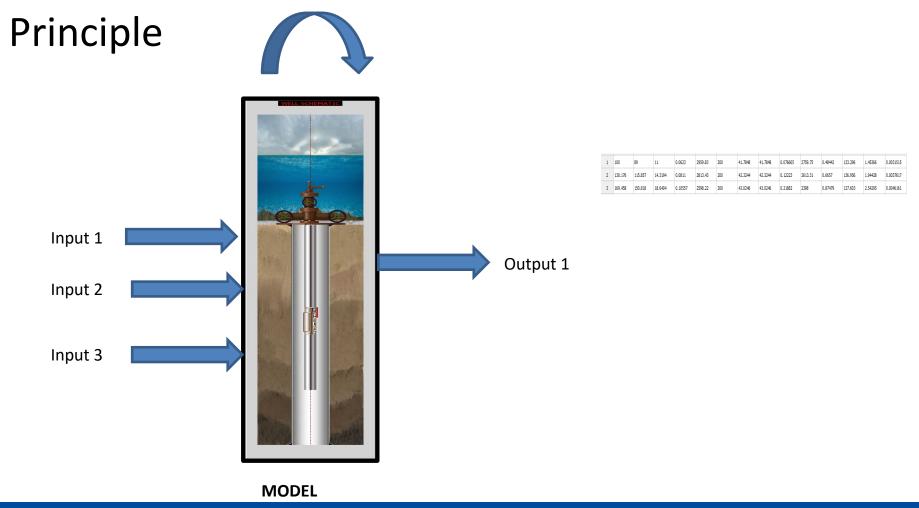


Principle

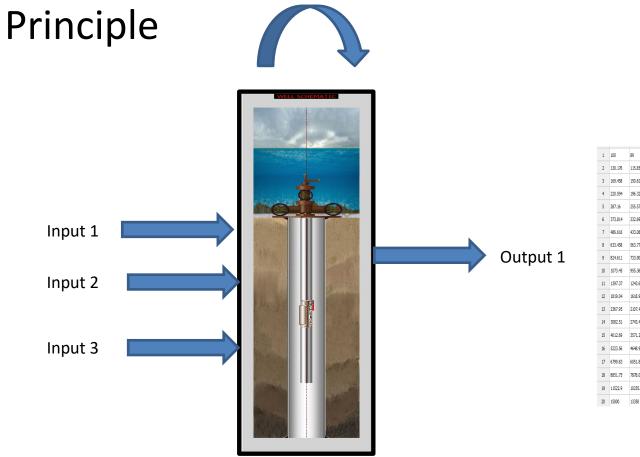


DNTNU

Principle

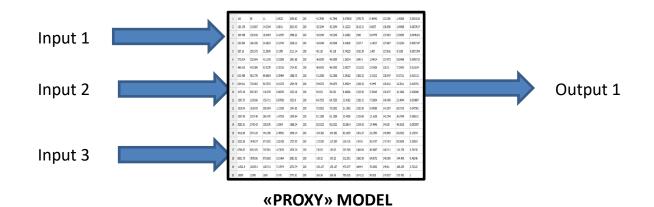


DNTNU

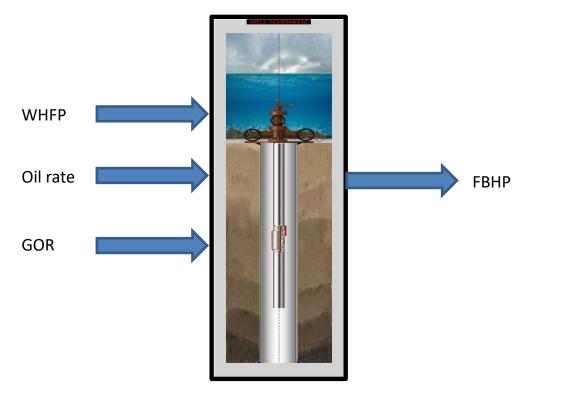


0.0031515

DNTNU

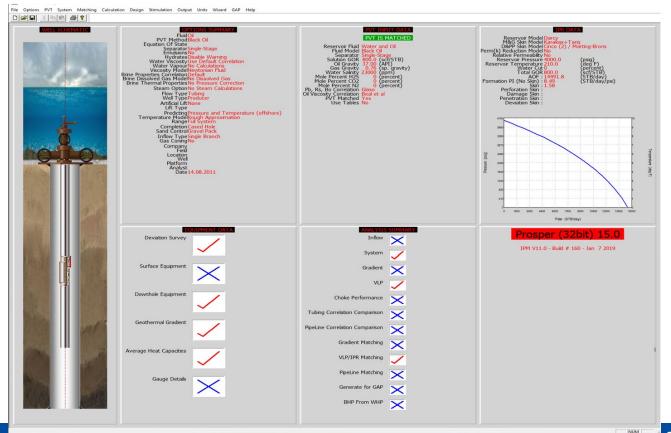


1	100	89	11	0.0623	2959.83	200	41.7848	41.7848	0.076605	2759.75	0.48442	133.296	1.45366	0.0031515
2	130.176	115.857	14.3194	0.0811	2813.43	200	42.3244	42.3244	0.12223	2613.31	0.6657	136.956	1.94428	0.0037617
3	169.458	150.818	18.6404	0.10557	2598.22	200	43.0246	43.0246	0.21882	2398	0.87479	137.603	2.54295	0.0046161
4	220.594	196.329	24.2653	0.13743	2338.12	200	43.9348	43.9348	0.41829	2137.7	1.14017	137.687	3.31234	0.0057147
5	287.16	255.573	31.5876	0.1789	2111.14	200	45.118	45.118	0.74225	1910.39	1.487	137.816	4.3159	0.0071794
6	373.814	332.694	41.1195	0.23289	1891.68	200	46.6559	46.6559	1.26334	1690.4	1.94014	137.973	5.62468	0.0090713
7	486.616	433.089	53.5278	0.30316	1714.93	200	48.6555	48.6555	2.09277	1512.82	2.53426	138.21	7.33453	0.011634
8	633.458	563.778	69.6804	0.39464	1588.75	200	51.2558	51.2558	3.39182	1385.32	3.31512	138.547	9.57111	0.015113
9	824.611	733.903	90.7072	0.51373	1534.78	200	54.6373	54.6373	5.39024	1329.33	4.3445	139.012	12.5011	0.019751
10	1073.45	955.367	118.079	0.66876	1532.18	200	59.032	59.032	8.49909	1323.59	5.70645	139.637	16.3466	0.026098
11	1397.37	1243.66	153.711	0.87056	1533.9	200	64.7255	64.7255	13.4182	1320.31	7.51604	140.458	21.4044	0.034887
12	1819.04	1618.95	200.094	1.13326	1541.85	200	72.0202	72.0202	21.1952	1320.36	9.93086	141.507	28.0716	0.047581
13	2367.95	2107.48	260.475	1.47524	1559.84	200	81.1299	81.1299	33.4509	1325.88	13.1638	142.794	35.8749	0.066011
14	3082.51	2743.43	339.076	1.9204	1588.34	200	92.0322	92.0322	52.8814	1334.55	17.4946	144.28	48.5018	0.093597
15	4012.69	3571.29	441.396	2.49991	1646.14	200	104.382	104.382	83.1839	1361.37	23.2783	145.869	63.8332	0.13534
16	5223.56	4648.97	574.592	3.25428	1737.99	200	117.559	117.559	130.416	1404.8	30.9437	147.404	83.9698	0.20003
17	6799.83	6051.85	747.981	4.23629	1876.24	200	130.83	130.83	202.509	1468.89	40.9987	148.711	110.278	0.30158
18	8851.75	7878.06	973.692	5.51464	2081.02	200	143.52	143.52	312.051	1560.59	54.0072	149.595	144.409	0.46246
19	11522.9	10255.3	1267.51	7.17874	2372.74	200	155.127	155.127	473.577	1684.9	70.5062	149.81	188.255	0.72122
20	15000	13350	1650	9.345	2771.01	200	165.36	165.36	705.925	1841.21	90.825	149.027	243.782	1



MODEL

Principle



NTNU

PROSPER MODEL

<u>D</u> one <u>C</u>	ancel Cages Calcul	ate <u>P</u> lot <u>E</u> xp	oort Lift Curv	e <u>E</u> xport	Help		<u>G</u> enerat	e <u>S</u> ave F	Results	<u>T</u> ransfer Data	GAP									
Тор	Node Pressure Water Cut 0 Total GOR 800	psig percent scf/STB	Point	Liquid Rate	Oil Rate	Water Rate	Gas Rate	VLP Pressure	WellHead Pressure	WellHead Temperature	First Node Temperature	dP Friction	dP Gravity	Total NoSlip Velocity	Erosional Velocity	C Factor	Maximum Grain Diameter	Erosion Rate	Corrosion Rate	Erosiona Velocity Fla
Surface Equipm	nent Correlation Beggs and Bri	1		(STB/day)	(STB/day)	(STB/day)	(MMscf/day)	(psig)	(psig)	(deg F)	(deg F)	(psi)	(psi)	(ft/sec)	(ft/sec)		(inches)	(0.001	(0.001	
Vertical	Lift Correlation Petroleum Exp	perts 2 1.03 1.01	1	100	100	0	0.07	2813.29	200	41.6084	41.6084	0.086236	2613.21	0.56482	144.43	1.56426	0.0032735			No
	Rate Method User Selected		2	130.176	130.176	0	0.091123	2613.88	200	42.0942	42.0942	0.14071	2413.74	0.73791	144.691	2.03997	0.0038838			No
	Rate Type Liquid Rate		3	169,458	169,458	0	0.11862	2390.72	200	42,7244	42.7244	0.25104	2190,47	0.96782	145,235	2,66554	0.0047382			No
	First Node 1 Xmas Tree 0 Last Node 8 Casing 927		- 4			0														
clude Sand Co	ntrol Pressur No	liecy		220.594	220.594	•	0.15442	2093	200	43.5436	43.5436	0.48479	1892.51	1.26117	145.31	3.47168	0.0059588			No
	E5 Stability Flag No		5	287.16	287.16	0	0.20101	1842.9	200	44.6084	44.6084	0.85156	1642.04	1.64448	145.431	4.52305	0.0074235			No
iter kates	,		6	373.814	373.814	0	0.26167	1654.36	200	45.9926	45.9926	1.42577	1452.92	2.14494	145.574	5.89374	0.0094985			No
Point	Liquid F	Rate ^	7	486.616	486.616	0	0.34063	1501.13	200	47.792	47.792	2.32833	1298.79	2.80059	145.793	7.68376	0.012184			No
- Curre	(STB/c	lay)	8	633.458	633.458	0	0.44342	1399.08	200	50.1319	50.1319	3.7293	1195.31	3.66152	146.109	10.0241	0.015907			No
1	100		9	824.611	824.611	0	0.57723	1396.36	200	53.1748	53.1748	5.83527	1190,46	4.79514	146,548	13.0882	0.020728			No
3	169.458			-		-														
4	220.594		10	1073.45	1073.45	0	0.75141	1401.02	200	57.1311	57.1311	9.15553	1191.75	6.2929	147.143	17.1069	0.027319			No
5	287.16		11	1397.37	1397.37	0	0.97816	1410.05	200	62.266	62.266	14.3799	1195.48	8.27971	147.93	22.3882	0.036534			No
6	373.814		12	1819.04	1819.04	0	1.27333	1424.77	200	68.8836	68.8836	22.606	1201.83	10.9267	148.946	29.3442	0.049778			No
7	486.616		13	2367.95	2367.95	0	1.65757	1441.26	200	77.2505	77.2505	35.5421	1205.13	14.4667	150.211	38.5236	0.069185			No
8	633.458		14	3082.51	3082.51	0	2.15776	1481.55	200	87.4555	87.4555	55.9552	1224.57	19.2082	151.703	50.6467	0.097991			No
9	824.611 1073.45		15	4012.69	4012.69	0	2.80888	1543.05	200	99.2851	99.2851	87.7619	1253.49	25.5467	153.339	66.6409	0.14169			No
10	1397.37			-		•														
12	1819.04		16	5223.56	5223.56	0	3.65649	1638.02	200	112.216	112.216	137.195	1297.68	33.9674	154.972	87.6739	0.20906			No
13	2367.95	¥	17	6799.83	6799.83	0	4.75988	1781.71	200	125.537	125.537	213.179	1363.03	45.0327	156.394	115.178	0.31355			No
🗁 Sensitivit	y Cases (10 x 10 x 10 = 1000) cases)	18	8851.75	8851.75	0	6.19622	1991.74	200	138.531	138.531	327.076	1455.15	59.3583	157.373	150.873	0.47759			No
🕂 1 - (T	op Node Pressure=200) (Gas	Oil Ratio=700) (Water Cu	19	11522.9	11522.9	0	8.066	2291.49	200	150.619	150.619	493.381	1581.89	77.5219	157.629	196.72	0.73831			No
	op Node Pressure=200) (Gas op Node Pressure=200) (Gas		20	15000	15000	0	10.5	2706.2	200	161.425	161,425	734,369	1744.69	99.8259	156.776	254.696	1			No
- 4- (T	op Node Pressure=200) (Gas op Node Pressure=200) (Gas	Oil Ratio=700) (Water Cu	20	13000	13000	•	10.3	2700.2	200	101.720	101.723	737.305	1,11.05	55.0235	130.770	207.050	*		_	140

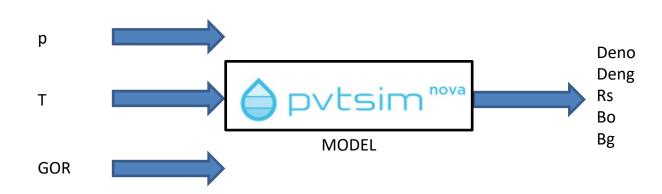
🖸 NTNU

SELECT VARIABLES (Well1A.out)			_	×
Done Cancel Main Help	Reset All Combinati	ions		
Variables	Variable Data			
		Top Node Pressure		
1 Top Node Pressure 2 Gas Oil Ratio	psig	Reset		
3 Water Cut	1 200	Generate		
4	2 622.222	Clear Data		
5 •	3 1044.44			
6	4 1466.67			
7	5 1888.89			
8	6 2311.11			
9	7 2733.33			
10 🔽	8 3155.56 9 3577.78			
	10 4000			
	11			
	12			
	13			
	14			
	15			
	16			
	17			
	18			
	19			
	20			

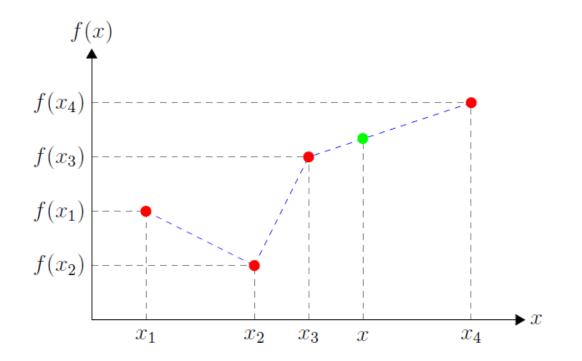

Done	Cancel	Cages	Calculate	Plot	Export	t Lift Curve	Export	Help		Generat	e <u>S</u> ave F	Results	<u>T</u> ransfer Data	GAP									
To	Wa	ressure 200 ter Cut 0 al GOR 800		psig percent scf/STB		Point	Liquid Rate	Oil Rate	Water Rate	Gas Rate	VLP Pressure	WellHead Pressure	WellHead Temperature	First Node Temperature	dP Friction	dP Gravity	Total NoSlip Velocity	Erosional Velocity	C Factor	Maximum Grain Diameter	Erosion Rate	Corrosion Rate	Erosional Velocity Fla
urface Equip							(STB/day)	(STB/day)	(STB/day)	(MMscf/day)	(psig)	(psig)	(deg F)	(deg F)	(psi)	(psi)	(ft/sec)	(ft/sec)		(inches)	(0.001	(0.001	
Vertic	al Lift Corr	elation Pet	roleum Experts :	2 1.03 1.01		1	100	100	0	0.07	2813.29	200	41.6084	41.6084	0.086236	2613.21	0.56482	144.43	1.56426	0.0032735			No
	Rate I	Method Use	r Selected			2	130.176	130.176	0	0.091123	2613.88	200	42.0942	42.0942	0.14071	2413.74	0.73791	144.691	2.03997	0.0038838			No
		e Type Liqu				3		169,458	0	0.11862	2390.72	200	42,7244	42,7244		2190.47	0.96782	145,235	2.66554	0.0047382			
			mas Tree 600 (fe			-	169.458		-	0.11862			42.7244		0.25104		0.96782						No
			asing 9275 (feel	t)		4	220.594	220.594	0	0.15442	2093	200	43.5436	43.5436	0.48479	1892.51	1.26117	145.31	3.47168	0.0059588			No
clude Sand C		ty Flag No				5	287.16	287.16	0	0.20101	1842.9	200	44.6084	44.6084	0.85156	1642.04	1.64448	145.431	4.52305	0.0074235			No
ter kates	PEJ Stabil	ity hag no				6	373.814	373.814	0	0.26167	1654.36	200	45.9926	45.9926	1.42577	1452.92	2.14494	145.574	5.89374	0.0094985			No
			Liquid Rate		^	7	486.616	486.616	0	0.34063	1501.13	200	47.792	47.792	2.32833	1298.79	2.80059	145.793	7.68376	0.012184			No
Point			(STB/day)			<u> </u>	633.458	633.458	0	0.44342	1399.08	200	50.1319	50.1319	3.7293	1195.31	3.66152	146.109	10.0241	0.015907			
1	100					8			-														No
2		. 176				9	824.611	824.611	0	0.57723	1396.36	200	53.1748	53.1748	5.83527	1190.46	4.79514	146.548	13.0882	0.020728			No
3		.458				10	1073.45	1073.45	0	0.75141	1401.02	200	57.1311	57.1311	9.15553	1191.75	6.2929	147.143	17.1069	0.027319			No
4	220	16				11	1397.37	1397.37	0	0.97816	1410.05	200	62.266	62.266	14.3799	1195.48	8.27971	147.93	22.3882	0.036534			No
6		. 10 .814				12	1819.04	1819.04	0	1.27333	1424.77	200	68,8836	68.8836	22.606	1201.83	10.9267	148.946	29.3442	0.049778			No
7		.616							0	1.65757	1441.26	200	77.2505	77.2505	35.5421	1205.13	14.4667		38.5236				
8	633	.458				13	2367.95	2367.95										150.211		0.069185			No
9	824	.611				14	3082.51	3082.51	0	2.15776	1481.55	200	87.4555	87.4555	55.9552	1224.57	19.2082	151.703	50.6467	0.097991			No
10	107	3.45				15	4012.69	4012.69	0	2.80888	1543.05	200	99.2851	99.2851	87.7619	1253.49	25.5467	153.339	66.6409	0.14169			No
11	139	7.37				16	5223.56	5223.56	0	3.65649	1638.02	200	112.216	112.216	137.195	1297.68	33.9674	154.972	87.6739	0.20906			No
12		9.04				17	6799.83	6799.83	0	4,75988	1781.71	200	125.537	125.537	213.179	1363.03	45.0327	156.394	115.178	0.31355			No
13	236	7.95			· · ·				-														
			l Ratio=700) (W		^	18	8851.75	8851.75	0	6.19622	1991.74	200	138.531	138.531	327.076	1455.15	59.3583	157.373	150.873	0.47759			No
			l Ratio=700) (W l Ratio=700) (W			19	11522.9	11522.9	0	8.066	2291.49	200	150.619	150.619	493.381	1581.89	77.5219	157.629	196.72	0.73831			No
(Top Node P	ressure=2	100) (Gas O	l Ratio=700) (W	ater Cut=33	6	20	15000	15000	0	10.5	2706.2	200	161.425	161.425	734.369	1744.69	99.8259	156.776	254.696	1			No
Top Node P Top Node P			l Ratio=700) (W											1	1	1			1	1			

DNTNU

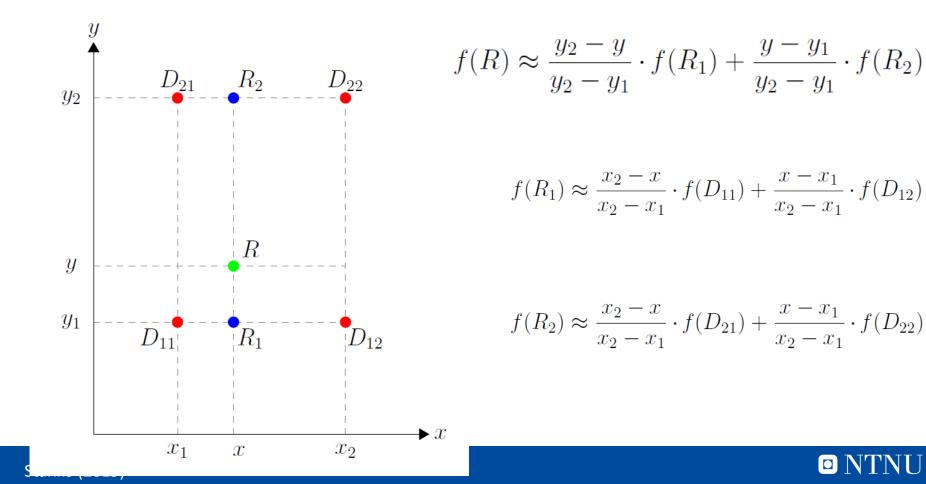
one <u>C</u>	ancel	Cages	Calculate	Plot	Export	Lift Curve	Export	Help		Generati	e <u>S</u> avel	Results	<u>T</u> ransfer Data	GAP									
Тор		essure er Cut <mark>0</mark> I GOR 800		psig percent scf/STB		Point	Liquid Rate	Oil Rate	Water Rate	Gas Rate	VLP Pressure	WellHead Pressure	WellHead Temperature	First Node Temperature	dP Friction	dP Gravity	Total NoSlip Velocity	Erosional Velocity	C Factor	Maximum Grain Diameter	Erosion Rate	Corrosion Rate	Erosion Velocity F
rface Equipm	nent Corre	lation Beg	gs and Brill				(STB/day)	(STB/day)	(STB/day)	(MMscf/day)	(psig)	(psig)	(deg F)	(deg F)	(psi)	(psi)	(ft/sec)	(ft/sec)		(inches)	(0.001	(0.001	
Vertical	Lift Corre	lation Pet	oleum Experts 2	2 1.03 1.01		1	100	89	11	0.0623	2959.83	200	41.7848	41.7848	0.076605	2759.75	0.48442	133.296	1.45366	0.0031515			No
	Rate M	ethod Use	r Selected			2	130.176	115.857	14.3194	0.0811	2813.43	200	42,3244	42.3244	0.12223	2613.31	0.6657	136.956	1.94428	0.0037617			No
	Rate	Type Liqu	id Rate			-																	
			nas Tree 600 (fe			3	169.458	150.818	18.6404	0.10557	2598.22	200	43.0246	43.0246	0.21882	2398	0.87479	137.603	2.54295	0.0046161			No
			asing 9275 (feet)		4	220.594	196.329	24.2653	0.13743	2338.12	200	43.9348	43.9348	0.41829	2137.7	1.14017	137.687	3.31234	0.0057147			No
ude Sand Co		v Flag No				5	287.16	255.573	31.5876	0.1789	2111.14	200	45.118	45.118	0.74225	1910.39	1.487	137.816	4.3159	0.0071794			No
PI Er Kates	co Stabilit	y riag ino				6	373.814	332.694	41.1195	0.23289	1891.68	200	46.6559	46.6559	1.26334	1690.4	1.94014	137.973	5.62468	0.0090713			No
			Liquid Rate		^	7	486.616	433.089	53.5278	0.30316	1714.93	200	48.6555	48.6555	2.09277	1512.82	2.53426	138.21	7.33453	0.011634			No
Point			(STB/day)			Ľ																	
1	100					8	633.458	563.778	69.6804	0.39464	1588.75	200	51.2558	51.2558	3.39182	1385.32	3.31512	138.547	9.57111	0.015113			No
2	130.	176				9	824.611	733.903	90.7072	0.51373	1534.78	200	54.6373	54.6373	5.39024	1329.33	4.3445	139.012	12.5011	0.019751			No
3	169.					10	1073.45	955.367	118.079	0.66876	1532.18	200	59.032	59.032	8.49909	1323.59	5.70645	139.637	16.3466	0.026098			No
4	220.					11	1397.37	1243.66	153.711	0.87056	1533.9	200	64,7255	64,7255	13.4182	1320.31	7.51604	140.458	21,4044	0.034887			No
5	287.					12	1819.04	1618.95	200.094	1.13326	1541.85	200	72.0202	72.0202	21, 1962	1320.36	9.93086	141.507	28.0716	0.047581			No
7	373.																						
8	633.				_	13	2367.95	2107.48	260.475	1.47524	1559.84	200	81.1299	81.1299	33.4509	1325.88	13.1638	142.794	36.8749	0.066011			No
9	824.					14	3082.51	2743.43	339.076	1.9204	1588.34	200	92.0322	92.0322	52.8814	1334.55	17.4946	144.28	48.5018	0.093597			No
10	1073	.45				15	4012.69	3571.29	441.396	2.49991	1646.14	200	104.382	104.382	83.1839	1361.37	23.2783	145.869	63.8332	0.13534			No
11	1397	.37				16	5223.56	4648.97	574,592	3,25428	1737.99	200	117.559	117,559	130,416	1404.8	30.9437	147,404	83,9698	0.20003			No
12	1819	.04																					
13	2367	.95			×	17	6799.83	6051.85	747.981	4.23629	1876.24	200	130.83	130.83	202.509	1468.89	40.9987	148.711	110.278	0.30158			No
Sensitivit	y Cases (10 x 10 x 1	0 = 1000 cases	s)	^	18	8851.75	7878.06	973.692	5.51464	2081.02	200	143.52	143.52	312.051	1560.59	54.0072	149.595	144.409	0.46246			No
			100) (Gas Oil Rat 100) (Gas Oil Rat			19	11522.9	10255.3	1267.51	7.17874	2372.74	200	155.127	155.127	473.577	1684.9	70.5062	149.81	188.255	0.72122			No
🗄 3 - (T	op Node I	Pressure=2	00) (Gas Oil Rat 00) (Gas Oil Rat 00) (Gas Oil Rat	tio=700) (Wa	ter Cul	20	15000	13350	1650	9.345	2771.01	200	165.36	165.36	705.925	1841.21	90.825	149.027	243.782	1			No
			100) (Gas Oil Rat 100) (Gas Oil Rat																				


NTNU

Example: PVT tables from PVTsim


Example: PVT tables from PVTsim

WAT:	ER-OPTION EN	TROPY 'GAS-WELL	US	GAS WITH H2O	DRY US GAS - W	
	50 50 .	101355E-01				
	.209093E+06	.226757E+01				
	.965263E+05	177778E+02				
	.100000E+10	.100000E+10		.100000E+10	.100000E+10	.100000E+10
	.100000E+10	.100000E+10		.100000E+10	.100000E+10	.100000E+10
	.100000E+10	.100000E+10		.100000E+10	.100000E+10	.100000E+10
	.100000E+10	.100000E+10		.100000E+10	.100000E+10	.100000E+10
	.100000E+10	.100000E+10		.100000E+10	.100000E+10	.100000E+10
	.100000E+10	.100000E+10		.100000E+10	.100000E+10	.100000E+10
	.100000E+10	.100000E+10		.100000E+10	.100000E+10	.100000E+10
	.100000E+10	.100000E+10		.100000E+10	.100000E+10	.100000E+10
	.100000E+10			.100000E+10	.100000E+10	.100000E+10
	.100000E+10			.100000E+10	.100000E+10	.100000E+10
	.000000E+00	.000000E+00		.000000E+00	.000000E+00	.000000E+00
	.000000E+00			.000000E+00	.000000E+00	.000000E+00
	.000000E+00			.000000E+00	.000000E+00	.000000E+00
	.000000E+00			.000000E+00	.000000E+00	.000000E+00
	.000000E+00			.000000E+00	.000000E+00	.000000E+00
	.000000E+00			.000000E+00	.000000E+00	.000000E+00
	.000000E+00			.000000E+00	.000000E+00	.000000E+00
	.000000E+00			.000000E+00	.000000E+00	.000000E+00
	.000000E+00			.000000E+00	.000000E+00	.000000E+00
	.000000E+00			.000000E+00	.000000E+00	.000000E+00
	DENSITY (KG			.0000002700	.0000002400	.0000002400
GRD	.802592E+00			.788442E+00	.781555E+00	.774790E+00
	.768144E+00			.755196E+00	.748889E+00	.742689E+00
	.736596E+00			.724716E+00	.718923E+00	.713197E+00
	.707562E+00			.696556E+00	.691182E+00	.685890E+00
	.680679E+00			.670493E+00	.665514E+00	.660609E+00
	.655776E+00			.646321E+00	.641695E+00	.637136E+00
	.632641E+00 .611090E+00			.623840E+00 .602877E+00	.619531E+00 .598854E+00	.615281E+00 .594884E+00
	.590966E+00			.583284E+00	.579518E+00	
						.575801E+00
	.572131E+00 .256073E+01	.568507E+00 .253737E+01		.564930E+00 .251446E+01	.561397E+00 .249196E+01	.557909E+00 .246988E+01
	.256073E+01	.253/3/E+01 .242690E+01		.251446E+01 .240599E+01	.249196E+01	.246988E+01 .236525E+01
	.234542E+01	.232592E+01 .223329E+01		.230676E+01	.228792E+01	.226940E+01
	.225120E+01 .216458E+01			.221568E+01	.219836E+01	.218133E+01 .209982E+01
	.216458E+01 .208423E+01	.214804E+01 .206888E+01		.213172E+01	.211565E+01 .203885E+01	
				.205375E+01		.202417E+01
	.200969E+01	.199543E+01		.198138E+01	.196752E+01	.195386E+01
	.194039E+01	.192710E+01		.191400E+01	.190108E+01	.188834E+01
	.187577E+01	.186337E+01		.185113E+01	.183905E+01	.182713E+01
	.181537E+01	.180376E+01		.179230E+01	.178099E+01	.176982E+01
	.434634E+01	.430571E+01		.426587E+01	.422679E+01	.418846E+01
	.415084E+01	.411393E+01		.407770E+01	.404213E+01	.400721E+01
	.397291E+01	.393922E+01		.390612E+01	.387360E+01	.384165E+01
	.381024E+01	.377937E+01		.374903E+01	.371919E+01	.368985E+01
	.366100E+01	.363263E+01		.360472E+01	.357727E+01	.355027E+01
	.352357E+01	.349724E+01		.347131E+01	.344577E+01	.342062E+01
	.339584E+01	.337143E+01		.334738E+01	.332367E+01	.330031E+01
	.327729E+01	.325459E+01		.323221E+01	.321014E+01	.318838E+01
	.316693E+01	.314576E+01		.312488E+01	.310429E+01	.308397E+01
	.306392E+01	.304413E+01		.302461E+01	.300534E+01	.298632E+01
	.616023E+01	.610119E+01		.604334E+01	.598665E+01	.593108E+01
	.587660E+01	.582317E+01		.577076E+01	.571935E+01	.566890E+01
	.561938E+01	.557078E+01		.552305E+01	.547619E+01	.543017E+01
	.538496E+01	.534054E+01		.529690E+01	.525401E+01	.521185E+01
	.517041E+01	.512967E+01		.508961E+01	.505022E+01	.501149E+01
	.497339E+01	.493592E+01		.489903E+01	.486249E+01	.482652E+01
	.479109E+01	.475620E+01		.472184E+01	.468799E+01	.465463E+01



Linear interpolation – 1D



Linear interpolation – 2D

Linear interpolation – 3D

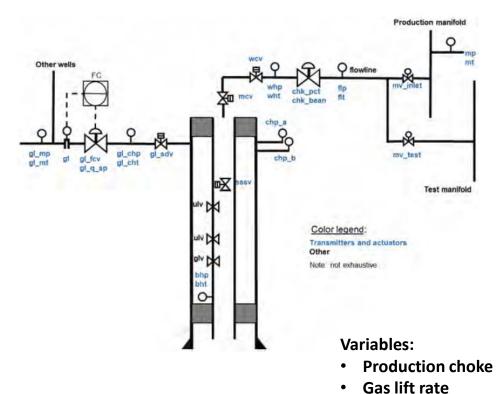
$$egin{aligned} x_{ ext{d}} &= rac{x-x_{0}}{x_{1}-x_{0}} \ y_{ ext{d}} &= rac{y-y_{0}}{y_{1}-y_{0}} \ z_{ ext{d}} &= rac{z-z_{0}}{z_{1}-z_{0}} \end{aligned}$$

$$egin{aligned} c_{00} &= c_{000} \left(1 - x_{
m d}
ight) + c_{100} x_{
m d} \ c_{01} &= c_{001} \left(1 - x_{
m d}
ight) + c_{101} x_{
m d} \ c_{10} &= c_{010} \left(1 - x_{
m d}
ight) + c_{110} x_{
m d} \ c_{11} &= c_{011} \left(1 - x_{
m d}
ight) + c_{111} x_{
m d} \end{aligned}$$

$$egin{aligned} c_0 &= c_{00}(1-y_{
m d}) + c_{10}y_{
m d} \ c_1 &= c_{01}(1-y_{
m d}) + c_{11}y_{
m d} \end{aligned}$$

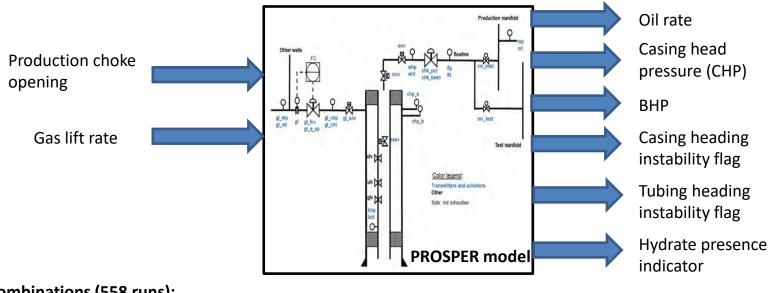
$$c=c_0(1-z_{
m d})+c_1z_{
m d}$$

Advantages of using tables


- Faster than running the model
- Introduces no approximation errors (except interpolation)
- The O&G industry has extensive experience
- Easy to set up
- Can optimize software and license usage

Example: Gas-lifted well including several constraints and using a table

SPE-202840 (ADNOC, UAE)



Constraints:

- 1. Dead (no flow)
- 2. Unstable flow (tubing heading)
- 3. Casing heading
- 4. Max CHP (1800 psig)
- 5. Min BHP (2750 psig)
- 6. Max oil (2080 bopd)
- 7. Hydrate formation in gas lift valve

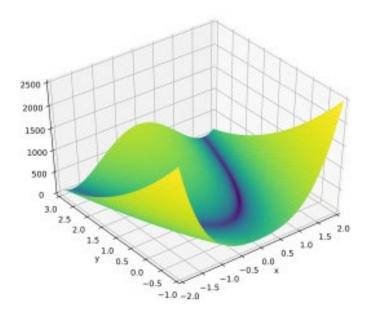
Combinations (558 runs): Production choke opening: 5, 10,, 100% Gas lift rate: 0, 0.1,..., 3 MMscfd

Excel file

Issues with interpolation

- If system changes points usually must be generated again
- (Usually) requires regular grid
- Can be expensive to create the table
- Complexity grows with number of variables
- Logic (IF) and looping (FOR) is required to find the bounding values in the interpolation
- Handling discontinuities
- Be careful with the limits
- Number of points required
- Point spacing

How do solvers work?

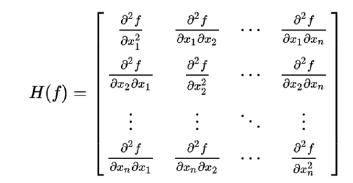

Optimization methods

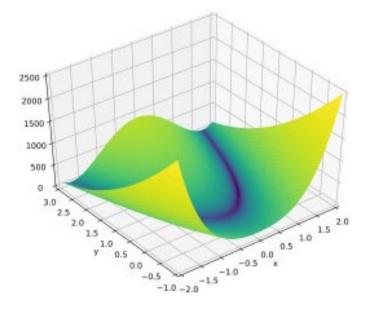
- Simplex (linear problems)
- Derivative-based (gradients, hessians)
- Line search/ Trust region
- Heuristic

 $x_k + \Delta x$ is a local extremum if:

$$\nabla f(x_k + \Delta x) = 0$$

https://jamesmccaffrey.wordpress.com/page/2/

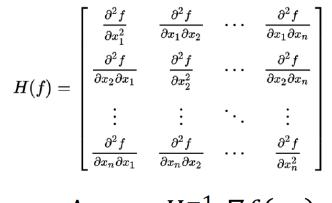



Stanko (2019)

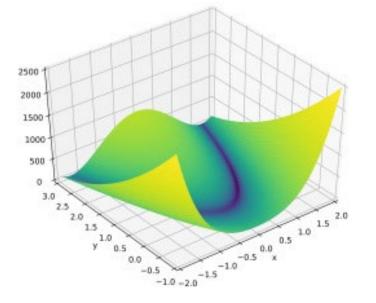
$$\nabla f(x_k + \Delta x) = 0$$

 $abla f(x_k) + H$. $\Delta x = 0$ (Taylor expansion)

https://jamesmccaffrey.wordpress.com/page/2/

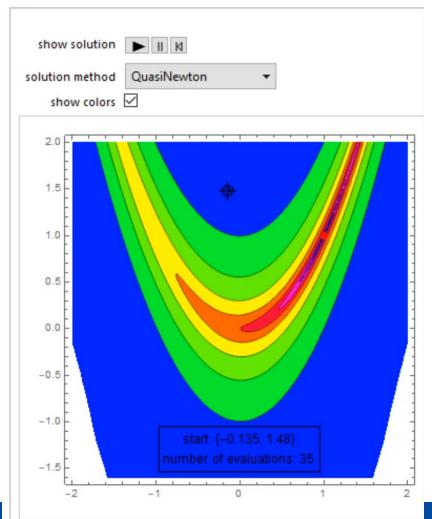


Stanko (2019)


$$\nabla f(x_k + \Delta x) = 0$$

 $abla f(x_k) + H$. $\Delta x = 0$ (Taylor expansion)

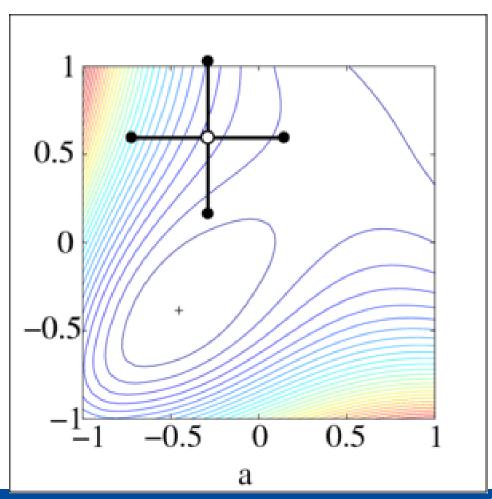
$$\Delta x = -H^{-1}.\nabla f(x_k)$$


 $x_{k+1} = x_k + \Delta x$

https://jamesmccaffrey.wordpress.com/page/2/

Taken from Arnand Noffmann

Stanko (2019)



Stanko (2019)

demonstrations.wolfram.com/MinimizingTheRosenbrock

NTNU

Pattern search

Stanko (2019)

https://en.wikipedia.org/wiki/Pattern_search_(

Multi-objective production optimization

DEFINITION

- More than one optimization objective (KPI), e.g.
 - Oil, condensate or gas production
 - NPV
 - Equipment efficiency
 - Energy consumption
 - Downtime
 - Maintenance cost
 - OPEX
 - CAPEX
 - CO₂ emissions

COMPLEXITIES

- Techniques are usually developed for optimizing one objective
 - When an objective is optimal usually all rest are not
 - \rightarrow How to combine all objectives into one?

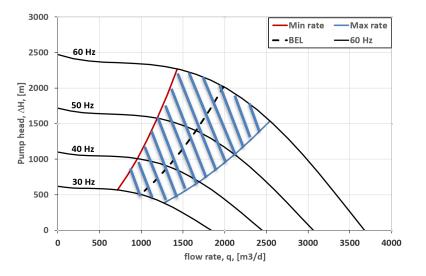
COMPLEXITIES

- Techniques are usually developed for optimizing one objective
 - When an objective is optimal usually all rest are not
 - \rightarrow How to combine all objectives into one?
- Conflicting (non-trivial) objectives
 - High revenue \rightarrow more energy usage
 - High rates \rightarrow more equipment failure
 - High production \rightarrow more CO₂ emissions

APPROACHES – CONSTRAINT METHOD

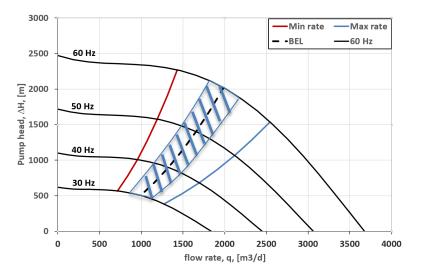
- Set most important KPI as objective
- Set the rest as constraints.
- Define an acceptable level for the constraints
- Run the optimization and evaluate results, adjust levels as necessary

$$egin{array}{lll} \min & f_j(x) \ {
m s.t.} & x\in X \ & f_i(x)\leq \epsilon_i ext{ for } i\in\{1,\ldots,k\}\setminus\{j\}, \end{array}$$

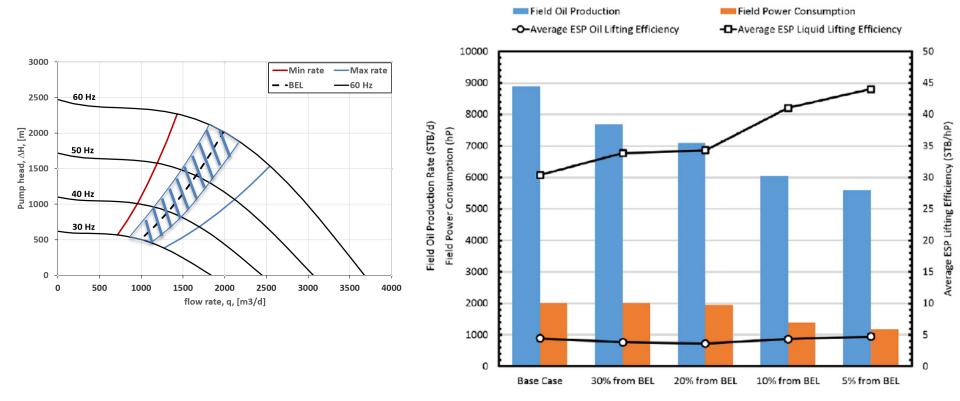

Example: Industrial Project

Short term production optimization

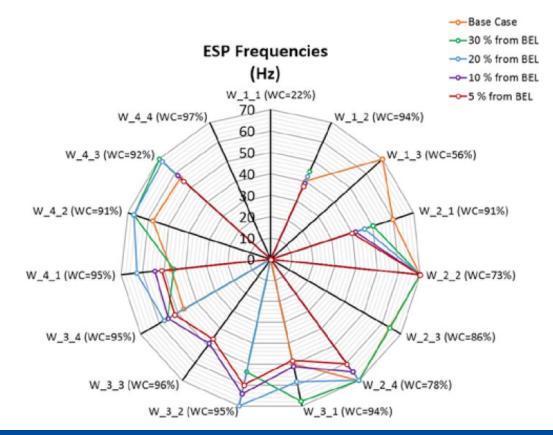
Model-based production optimization of oilfields with ESP-boosted wells



MAXIMIZE OIL PRODUCTION AND ESP EFFICIENCY



HOW TO INCREASE EFFICIENCY?


HOW TO INCREASE EFFICIENCY?

NTNU

COMMENTS

- It is possible to get higher ESP efficiency, but oil production is affected
- Maybe more to gain by optimizing ESP model and nr. stages

APPROACHES – LINEAR SCALARIZATION

- Normalize the KPIs with reference values
- Create an objective function that is the weighted sum of all KPIs

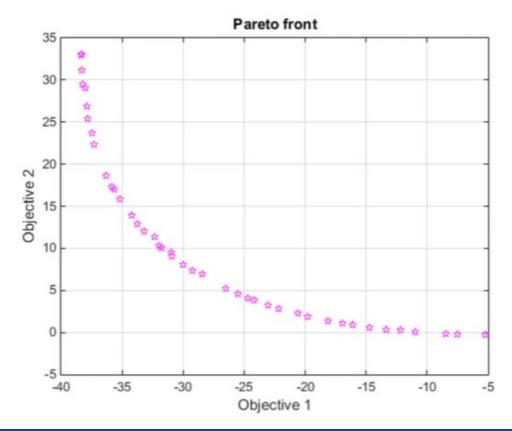
$$\min_{x\in X}\sum_{i=1}^k w_i f_i(x)$$

 Run the optimization and evaluate results, adjust weights as necessary

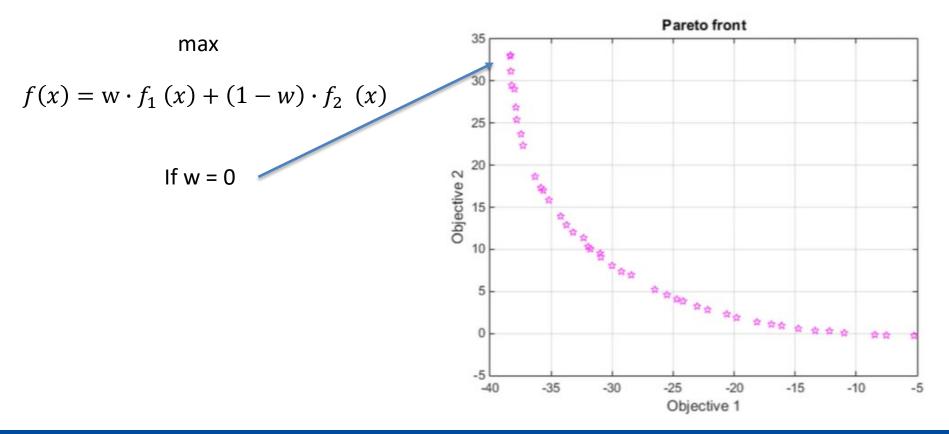
APPROACHES – LINEAR SCALARIZATION

- Normalize the KPIs with reference values
- Create an objective function that is the weighted sum of all KPIs

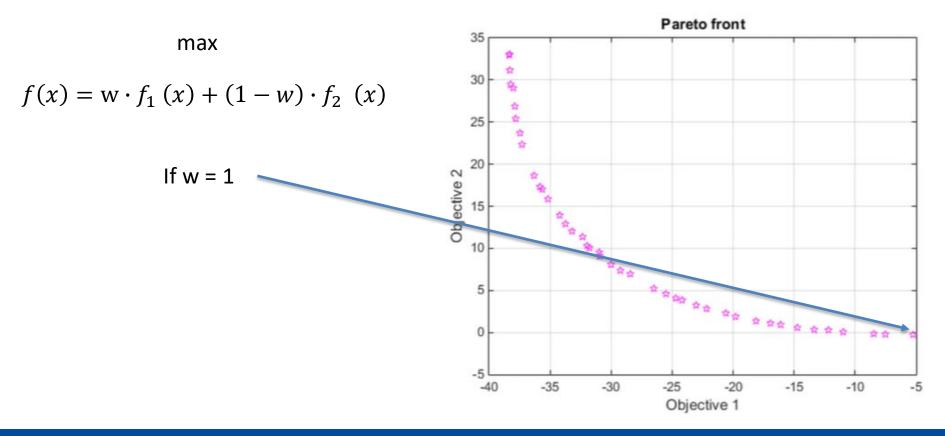
$$\min_{x\in X}\sum_{i=1}^k w_i f_i(x)$$

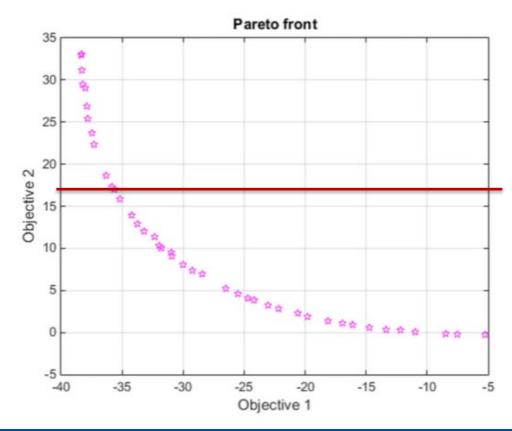

Be careful with the signs!, squaring might be needed, changing the sign or inversion

• Run the optimization and evaluate results, adjust weights as necessary



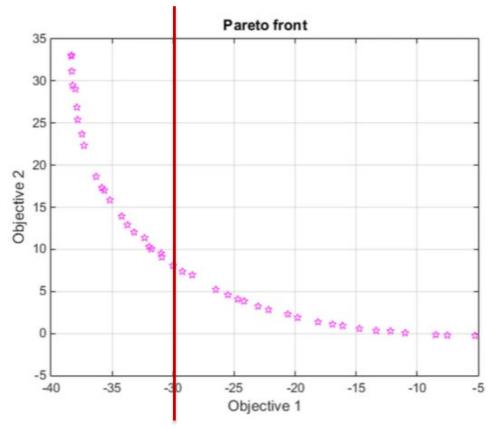
max


$$f(x) = w \cdot f_1(x) + (1 - w) \cdot f_2(x)$$



max

$$f(x) = w \cdot f_1(x) + (1 - w) \cdot f_2(x)$$



DNTNU

PARETO FRONT

max

$$f(x) = w \cdot f_1(x) + (1 - w) \cdot f_2(x)$$

Slide 116

Example Long term optimization

Early-phase field planning considering environmental KPIs

PEOPLE

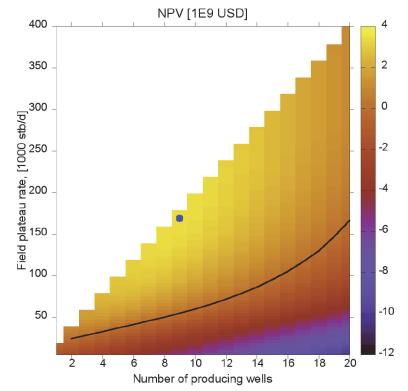
 Guowen Lei (BRU21 PhD, financed by Lundin)

 Seok Ki Moon (BRU21 PhD, financed by AkerBP)

 Leila Eyni (LowEmission PhD)

Base optimization

Find optimal production and drilling schedule, processing capacities of oil, gas, water, that maximize NPV:


$$f_{NPV} = \sum_{k=1}^{N} \frac{Rt_k}{(1+i)^k}$$

Where, for year «k»:

$$Rt_k = Revenue_k - OPEX_k - DRILLEX_k - CAPEX_k$$

Base optimization

Additional KPIs

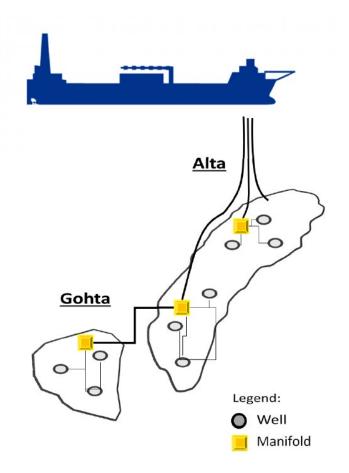
- CO₂ emissions, e.g.
 - Burning gas in GT to generate power

- CO₂ footprint, e.g.
 - Manufacturing (e.g. steel), transport, installation, repairs

Normalization

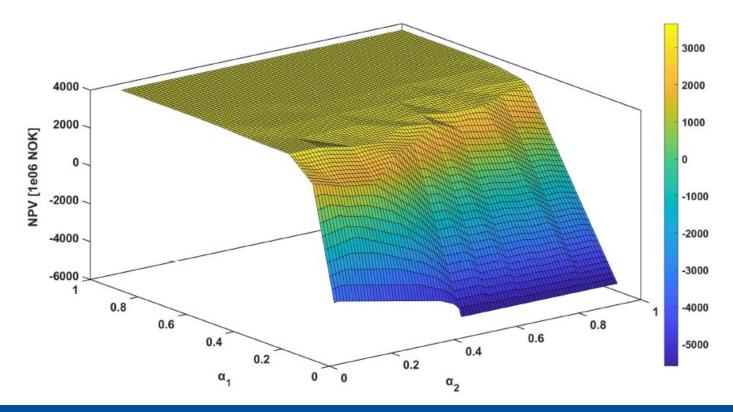
$$npv = \frac{NPV}{NPV_{ref}}$$
 $ce = \frac{CE}{CE_{ref}}$ $cf = \frac{CF}{CF_{ref}}$

Compound objective

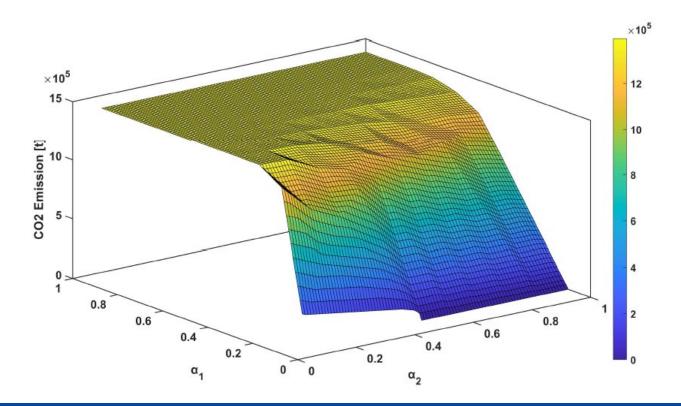

$$Obj = \alpha_1 npv - (1 - \alpha_1)[\alpha_2 ce + (1 - \alpha_2)cf]$$

Study case

Find optimal production and drilling schedule, processing capacities of oil, gas, water, that maximize

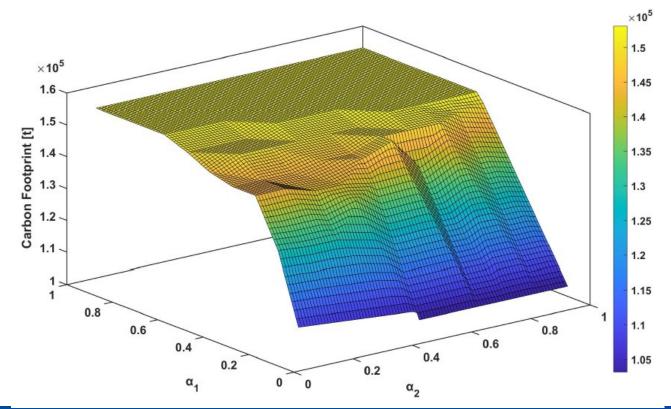

$$Obj = \alpha_1 npv - (1 - \alpha_1)[\alpha_2 ce + (1 - \alpha_2)cf$$

$$Obj = \alpha_1 npv - (1 - \alpha_1)[\alpha_2 ce + (1 - \alpha_2)cf]$$

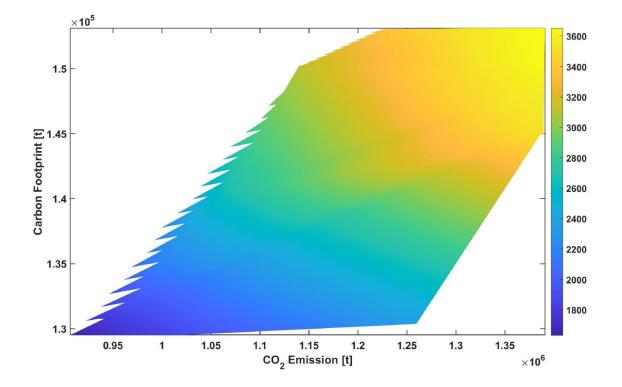

Results

DNTNU

 $Obj = \alpha_1 npv - (1 - \alpha_1)[\alpha_2 ce + (1 - \alpha_2)cf]$


Results

 \Box NTNU


 $Obj = \alpha_1 npv - (1 - \alpha_1)[\alpha_2 ce + (1 - \alpha_2)cf]$

Results

DNTNU

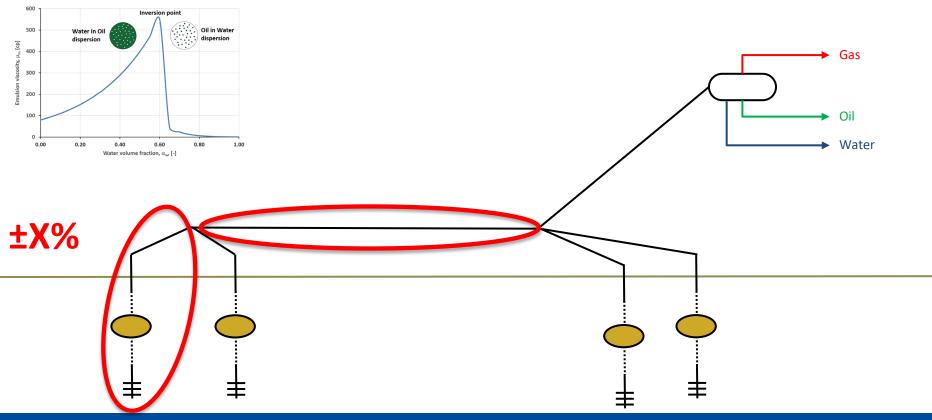
Results

COMMENTS

 It is possible to get field development strategies with lower carbon footprint and emissions (ca 30%). However, this will give a decrease of ca 10% in NPV.

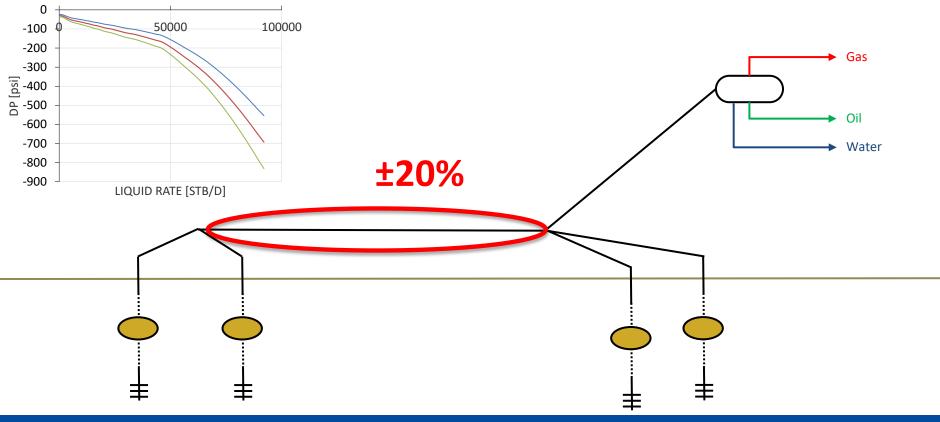
Production optimization: effect of uncertainties

EFFECT OF UNCERTAINTIES - A field case

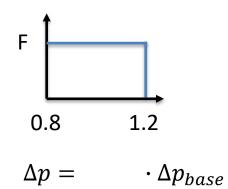

Short-term model-based production optimization of a surface production network with electric submersible pumps using piecewise-linear functions *

A. Hoffmann^{a,*}, M. Stanko^b

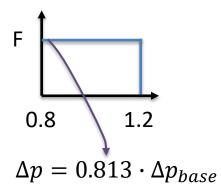
2017



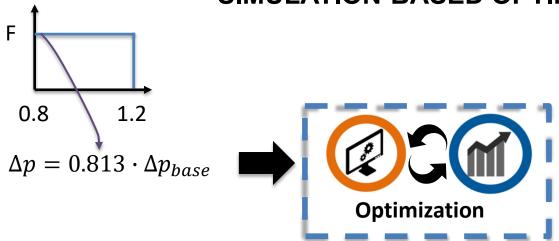
POOR MODEL PREDICTABILITY

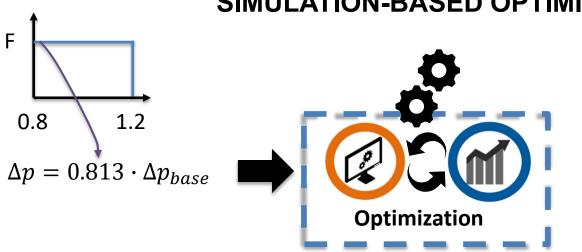


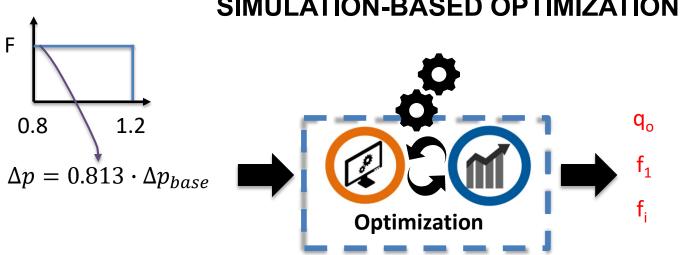
POOR MODEL PREDICTABILITY

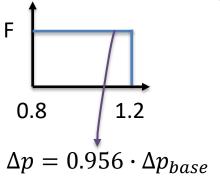


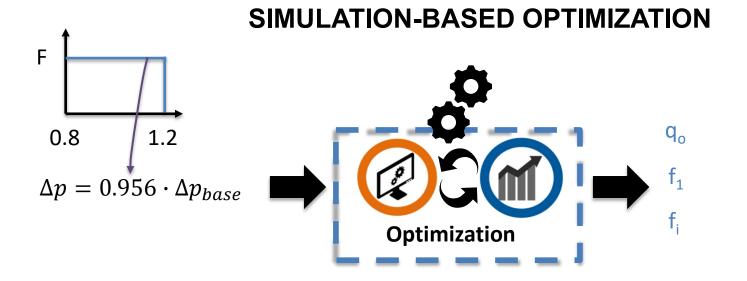
DNTNU

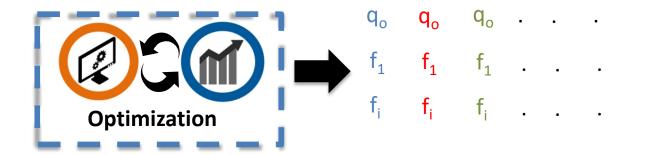


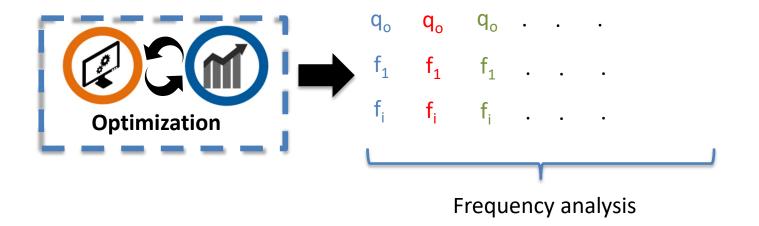




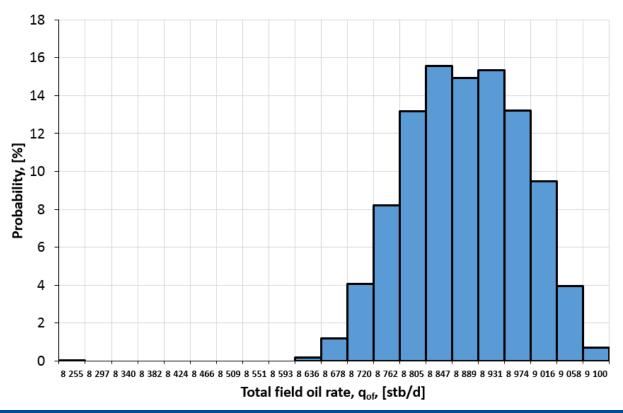


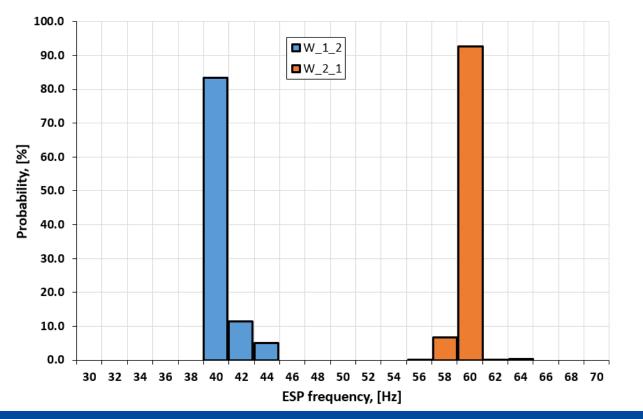






NTNU

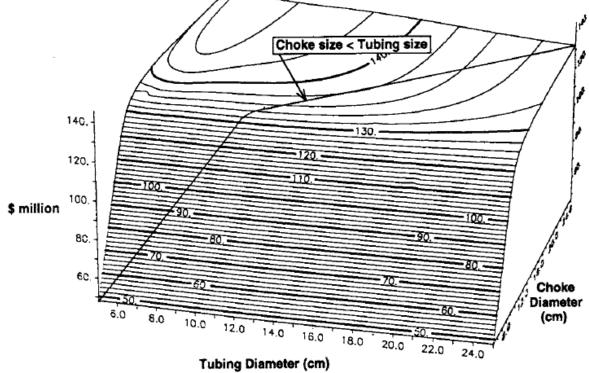



RESULTS OF MONTECARLO SIMULATIONS

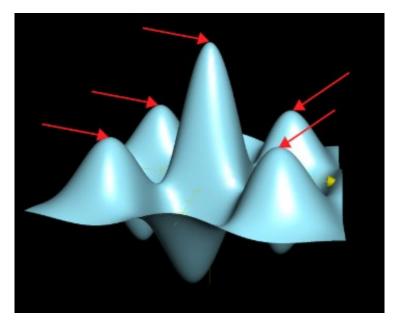
- 10 000 optimizations
- 17 uncertain variables

RESULTS OF MONTECARLO SIMULATIONS

Small variation in optimal frequencies found


Production optimization: Limitations and pitfalls

- Model fidelity
- Is it actually possible to change the decision settings?:
 - Is the equipment/actuator functional and available?
 - Am I allowed to operate the control element?
 - Actuator response time


Flat peak of optimum- more efforts give less results

 \Box NT

SPE-166027-MS Multivariate optimization of production systems optimization Carroll and Horne

- Local optima
- Starting point
- Running time
- Short term versus long term optimization

(Khan academy)

• Short term versus long term optimization

Maximize NPV By changing $q_o(t)$

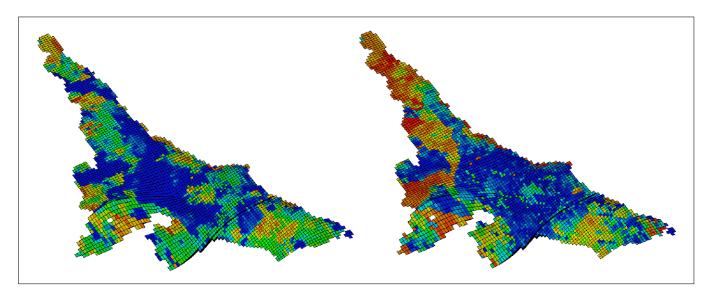
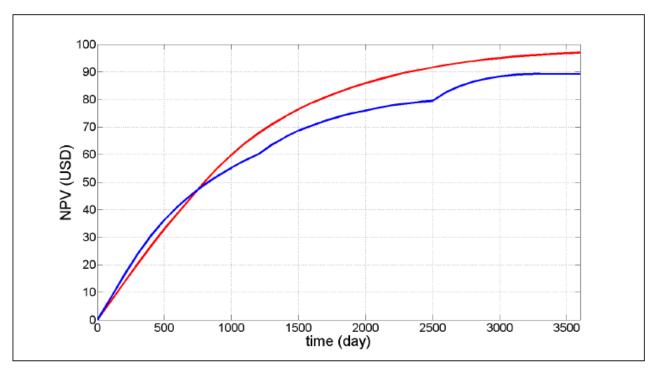



Figure 3: Permeability (left) and porosity (right) distributions of the south wing.

Short term versus long term optimization

SPE-166027-MS Decision analysis for long term and short-term production optimization Applied to the Voador field, Agus Has

Short term versus long term optimization

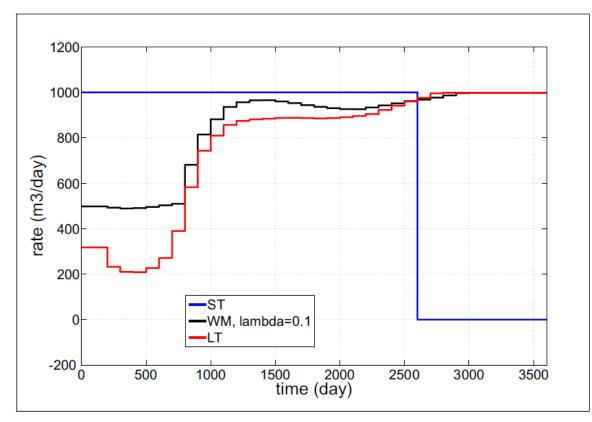


Figure 9: Oil rate from production well PROD3 using different strategies; reactive control (blue), adjoint-based optimization (red), and the weighted-sum method (black).

DNTNU

Take-aways when implementing prod optimization

- Look at the rest of the list first!
- Do we REALLY need to do optimization?
- Think carefully what is the main, most important, first order of magnitude problem

SLIDE 2

- Detect locations in the system with abnormally high-pressure loss and flow restrictions
- Verification of equipment design conditions vs actual operating conditions
- Identification and addressing fluid sources that have disadvantageous characteristics (e.g. high water cut, high H₂S content)
- Identify and correct system malfunctions and non-intended behavior
- Analyze and improve the logistics and planning of maintenance, replacement and installation of equipment or in the execution of field activities.
- Review the occurrence of failures and recognize patterns
- Calibration of instrumentation
- · Identification of operational constraints (e.g. water handling capacity, power capacity)
- Observe and analyze the response of the system when changes are introduced
- Find control settings of equipment that give a production higher than current (or, preferably, that give maximum production possible)
- Identify Bottlenecks
- Identifying and monitoring Key Performance Indicators (KPIs)

Take-aways when implementing prod optimization

- Define objective, constraints and variables
- Determine relevance of constraints
- Is it realistic to modify optimization variables?
- Formulate your optimization in a smart way (choose the right variable)
- Study how your input affects your results

THE END THANK YOU

