

The specific energy that the stream has is usually split in internal energy (u), potential energy (z·g) and kinetic energy $(V^2/2)$.

A conduit doesn't exchange work with the surroundings, but the fluid must perform work to enter and leave the system. This specific work is: $(p_{in} \cdot v_{in} - p_{out} \cdot v_{out})$ (Here v is specific volume).

By combining the inlet and outlet specific internal energy "u" with the specific work to enter and leave the system to obtain specific enthalpy, the energy conservation equation is written as:

$$\dot{Q} = \dot{m} \cdot \left(h_{out} + z_{out} \cdot g + \frac{(V_{out})^2}{2} - h_{in} - z_{in} \cdot g - \frac{(V_{in})^2}{2} \right)$$
 Eq. 8-2

Or, alternatively

$$\dot{Q} = \dot{m} \cdot \left(\Delta h + \Delta z \cdot g + \frac{(V_{out})^2}{2} - \frac{(V_{in})^2}{2}\right)$$
 Eq. 8-3

Here Δ represents outlet minus inlet.

In differential form (for an infinitesimally small length of pipe) the equation can be expressed as follows:

$$\frac{d\dot{Q}}{dL} = \dot{m} \cdot \left(\frac{dh}{dL} + g \cdot \frac{dz}{dL} + v \cdot \frac{dz}{dL}\right)$$
 Eq. 8-4

Heat leaving the system is negative (the temperature of the outlet fluid is lower than the temperature at the inlet and the term Δh is usually negative). Heat entering the system is positive.

$$(T_f - T_{wb}) = -\frac{d\dot{Q}}{dL}$$

$$\cdot \left[\frac{1}{2 \cdot \pi \cdot r_{t,i} \cdot h_i} + \frac{1}{\frac{2 \cdot \pi \cdot k_t}{\ln\left(\frac{r_{t,o}}{r_{t,i}}\right)}} + \frac{1}{2 \cdot \pi \cdot r_{t,o} \cdot h_{ann}} + \frac{1}{\frac{2 \cdot \pi \cdot k_{pc}}{\ln\left(\frac{r_{pc,o}}{r_{pc,i}}\right)}} + \frac{1}{\frac{2 \cdot \pi \cdot k_c}{\ln\left(\frac{r_{ic,o}}{r_{pc,o}}\right)}} + \frac{1}{\frac{2 \cdot \pi \cdot k_c}{\ln\left(\frac{r_{ic,o}}{r_{pc,o}}\right)}} + \frac{1}{\frac{2 \cdot \pi \cdot k_c}{\ln\left(\frac{r_{ic,o}}{r_{ic,o}}\right)}} + \frac{1}{\frac{2 \cdot \pi \cdot k_c}{\ln\left(\frac{r_{ic,o}}{r_{ic,o}}\right)}}} + \frac{1}{\frac{2 \cdot \pi \cdot k_c}{\ln\left(\frac{r_{ic,o}}{r_{ic,o}}\right)}} + \frac{1}{\frac{2 \cdot \pi \cdot k_c}{\ln\left(\frac{r_{ic,o}}{r_{ic,o}}\right)}}} + \frac{1}{\frac{2 \cdot \pi \cdot k_c}{\ln\left(\frac{r_{ic,o}}{r_{$$

If the inner tubing radius will be used as reference radius, we then we divide by the inner perimeter of the inner tubing:

$$(T_f - T_{wb}) = -\frac{dQ}{dL} \cdot \frac{1}{2 \cdot \pi \cdot r_{t,i}}$$

$$\cdot \left[\frac{1}{h_i} + \frac{r_{t,i} \cdot \ln\left(\frac{r_{t,o}}{r_{t,i}}\right)}{k_t} + \frac{r_{t,i}}{r_{t,o} \cdot h_{ann}} + \frac{r_{t,i} \cdot \ln\left(\frac{r_{pc,o}}{r_{pc,i}}\right)}{k_{pc}} + \frac{r_{t,i} \cdot \ln\left(\frac{r_{ic,i}}{r_{pc,o}}\right)}{k_c} + \frac{r_{t,i} \cdot \ln\left(\frac{r_{ic,o}}{r_{ic,i}}\right)}{k_{ic}} + \frac{r_{t,i} \cdot \ln\left(\frac{r_{wb}}{r_{ic,o}}\right)}{k_c} \right]$$

$$U = \left(\frac{1}{h_i} + \frac{r_{t,i} \cdot \ln\left(\frac{r_{t,o}}{r_{t,i}}\right)}{k_t} + \frac{r_{t,i}}{r_{t,o} \cdot h_{ann}} + \frac{r_{t,i} \cdot \ln\left(\frac{r_{pc,o}}{r_{pc,i}}\right)}{k_{pc}} + \frac{r_{t,i} \cdot \ln\left(\frac{r_{ic,i}}{r_{pc,o}}\right)}{k_c} + \frac{r_{t,i} \cdot \ln\left(\frac{r_{ic,o}}{r_{ic,i}}\right)}{k_{ic}} + \frac{r_{t,i} \cdot \ln\left(\frac{r_{ic,o}}{r_{pc,o}}\right)}{k_c}\right)^{-1}$$

Then:

Oil	and G	Sas pi	roduc	tion v	vells																			Pr	of. M	ilan S	Stanko	(NTN	IU)
	•	Inne	er fo	rce	d cc	nve	ectic	n: T	The	inne	er fo	orce	d-c	onve	ectio	on c	oef	ficie	nt (h_i	is u	sual	ly ir	the	e rai	nge	100	_	
																											e O(
				1E-2																						Ü	,		
						met	al: I	nne	r ra	dii d	of w	ell t	ubu	ılars	and	d pig	oelir	nes	are	usu	ally	in t	he r	ang	e 0	.01-	0.25	m.	
_																								_			e us		
																							-				duc		
_				teel		-				_																			
_																													
											- 1															l			
																											has		
around 100 W/m ² K. The ratio between outer and inner tubing diameter can range from 1.05 to 1.3. Therefore, this term is usually O(1E-2).															re,														
t	his t	tern	n is i	usua	illy (O(1E	Ξ-2).																						
C	Cond	lucti	ion i	n ce	mei	nt (t	erm	s 5 a	and	7):1	The '	ther	mal	cor	duc	tivit	y of	cen	nent	(k_c)) is	usua	ally i	n th	e ra	nge	bet	wee	n
	Conduction in cement (terms 5 and 7): The thermal conductivity of cement (k_c) is usually in the range between 0.3 to 2 W/m K. The ratio between the outer and inner diameter of the annular space is usually around 1.2.																												
				bing																									
_																													
							_	_																					

Heat transfer in formation or soil

$$\frac{\partial^2 T_e}{\partial r^2} + \frac{1}{r} \cdot \frac{\partial T_e}{\partial r} = \frac{c_e \cdot \rho_e}{k_e} \cdot \frac{\partial T_e}{\partial t}$$

$$\frac{\partial^2 I_e}{\partial r^2} + \frac{1}{r} \cdot \frac{\partial I_e}{\partial r} = \frac{c_e \cdot \rho_e}{k_e} \cdot \frac{\partial I_e}{\partial t}$$

$$k_e$$
 Thermal conductivity, soil [W/m.K]

$$\it C_e$$
 Specific heat capacity, soil [J/K.kg]

An approximate, analytical

solution:

Wellbore Heat Transmission

 $T_{e}(r,t=0)=T_{ei}$

 $\frac{\partial T_e}{\partial r}(r \to \infty, t) = 0$

 $\frac{d\dot{Q}}{dz} = -2 \cdot \pi \cdot k_e \cdot r_{wb} \cdot \frac{\partial T_e}{\partial r} \Big|_{r=r_{wb}}$

H. J. RAMEY, JR. MEMBER AIME

Transient!!!!

MOBIL OIL CO. SANTA FE SPRINGS, CALIF.

Prof. Milan Stanko (NTNU)

Using that solution, and doing some math:

$$U_{eff}(t) = \left(\frac{U \cdot k_e}{k_e + T_D \cdot r_{t,i} \cdot U}\right)$$

SPE 22866

Heat Transfer During Two-Phase Flow in Wellbores: Part I—Formation Temperature

A.R. Hasan, U. of North Dakota, and C.S. Kabir, Chevron Oil Field Research Co.

$$T_D = 1.1281 \cdot \sqrt{t_D} \cdot (1 - 0.3 \cdot \sqrt{t_D}), \quad for \quad t_D \le 1.5$$

$$T_D = (0.4063 + 0.5 \cdot ln(t_D)) \left(1 + \frac{0.6}{t_D}\right) \quad for \quad t_D > 1.5$$

Dimensionless time, $t_D = \frac{\alpha_e \cdot t}{r_{wh}^2}$

And α_e is the thermal diffusivity of the soil, [m2/s], equal to $\frac{k_e}{\rho_e \cdot c_e}$