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Abstract 

In model based oil field operations, engineers rely on simulations (and hence simulation models) to make important 
operational decisions on a daily basis. Three problems that are commonly encountered in such operations are: on-demand 
access to information, integrated view of information and knowledge management. The first two problems of on-demand 
access and information integration arise because a large number of, and different kinds of simulation models, each modeling a 
different facet of the oil-field, are used. An engineer is generally an expert in one aspect of oil-field modeling and trained to 
use a few tools; therefore, accessing information captured in models that do not lie in an engineer’s area of expertise is not 
easy. Moreover, since these models are created by different processes and people, the same information is represented 
differently across models. A unified view of the models and their simulations is desirable for decision making, and thus the 
necessity for information integration. In the third problem- knowledge management problem, we address the situation in which 
an engineer performs many analyses before making a decision. A systematic way to capture the rationale (knowledge) behind 
the various decisions is needed for audit tracking purposes as well as for future references. We examine the application of 
semantic web technologies to address these three problems, present a prototype implementation which addresses them and 
provide an evaluation of the technology. 
 
1. Introduction 

The work described in this paper is part of the Integrated Asset Management (IAM) project at the Chevron-funded Center 
for Interactive Smart Oilfield Technologies at the University of Southern California, Los Angeles[17] . The current focus of 
the IAM project is on enabling model-driven reservoir management.  As a motivating example, consider a typical oil-field 
operation setting for a green field. Since little or no performance related data for the field exists, the production engineer has to 
rely on simulations for making the initial set of asset development decisions. Different simulation models of the oil-field are 
created and used – these include earth models, reservoir simulation models, network models, integrated (coupled) simulation 
models, etc. These simulation models are built and used at different times, different locations, and by different asset team 
members – earth scientists, reservoir engineers, production engineers, asset managers, etc.  A particular member of the team 
(say, the reservoir engineer) is typically an expert in a particular modeling and simulation technology and intimately familiar 
with certain software toolkits in that domain. This also means that models, workflows, and results created by other software 
tools in other domains are not usable and accessible by that expert. As a result, the insights and understanding of a team 
member in one role (say, geologist) are not fully utilized by another role (say, production engineer). Moreover, these 
simulation models could be constantly modified as new data is continuously produced in the oil-field and interpreted by one or 
more members of the asset team. In this situation, changes made to the model(s) by one team member should be immediately 
communicated to other team members who may be using that model as the basis of scenario planning and forecasting, or who 
may need to modify their own models to match the updates. Three of the many problems that are observed in this setting are: 

• Efficient access to information: No engineer has complete knowledge of all the data in the system and finding the 
relevant piece of information required to make a decision is a challenge. 

• Unified view of the information: Every simulation model, models one facet (reservoir, network etc) of the oilfield in 
detail. However, a unified view of the information related to the asset elements is generally not accessible from one 
place or application. 
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• Knowledge management: As the models are constantly being calibrated and decisions are taken, the rationale 
(knowledge) behind the changes and decisions are generally lost. Such knowledge could be extremely useful for 
auditing the decisions made and also to train new engineers. 

Similar problems are observed widely in IT enabled businesses and IT enabled science (e-science), as large scale 
instrumentation of physical and non-physical elements, have led to increasing amounts of data being generated and used. Users 
are increasingly overwhelmed by the large volumes of data generated and systems that help them quickly search for the right 
data and access it are the need of the hour. Such systems, knowledge bases, should capture the key information in the data 
objects, the business context in which the data was created, the context in which the information in the data set can be 
applicable, etc. This makes it possible for the user to search for information using terms relevant to and within the context of 
the business. 

The problem of finding information in a system with large amounts of largely unstructured data is also seen on the internet. 
To address this problem the W3C organization, the leading standards definition body for the web, has proposed a set of 
standards for data modeling, knowledge capture, and semantic querying and retrieval of data- commonly called the semantic 
web standards. In this paper we examine the applicability of these standards for the problems described above in real time 
reservoir management. The main motivation for employing these technologies for our problem setting are, because it provides 
a simple and intuitive data model, is designed for collaborative and distributed evolution, provides capability for inferencing- 
which allows conformant tools to infer additional facts from the data provided by the user.   

Similar work in applying semantic web technologies to address the information integration and the knowledge 
management problems in the oil and gas industry have been proposed [14] [15] [16] . An industry wide ontology based on 
semantic web technologies, called the Oil and Gas Ontology (OGO), has been proposed by POSC Caesar, in an attempt to 
provide standard means for data integration within and across business domains [14] . In [15] the author proposes different 
use-cases for the application of semantic web technologies in the oil and gas industry. A system for knowledge management 
for drilling experiences is presented in [16]  In contrast, we apply this technology to address the problems in the reservoir 
management and real-time oil field operations setting.  In particular, we present the issues in developing an ontology, 
acquiring knowledge for the knowledge base and some examples of applications that help solve the integration and knowledge 
management problems that we have encountered.  

The rest of the paper is organized as follows. In section 2, we introduce the background technologies and terminology used 
in the rest of the document, in section 3; we highlight the key application areas for ontologies and semantic web technologies 
in this problem setting. Then in section 4 and 5, we outline the key elements of the ontolgies and the design methodology that 
we have used to develop our solution.  In section 6 we present some workflows and tools from our prototype that uses the 
ontologies.  We finally present some discussions, lessons learnt and future directions for our work. 

 
2. Background 
 
Ontologies and Knowledge Bases 

An ontology is a shared representation or a data model of a set of concepts in a domain and the relationships between 
them [2] . An ontology has been commonly used to solve two important and related problems occurring in large organizations: 
information integration and knowledge management. The information integration problem occurs as, different systems and 
databases represent and store information in different ways. These differences are not just syntactic, i.e., using different 
technologies (XML, RDBMS Object Oriented etc.) to represent and store the information, but also semantic in nature. 
Semantic differences in information representation means that data is named or encoded differently in different data sources. 
E.g., a very commonly observed phenomenon in oil-field operation is that the same entity (say a well), is called by different 
names in different sources (aliasing). As another example, different unit systems are used to represent information in different 
information systems. Such issues have been successfully addressed by using an ontology. The definitions of the concepts and 
relationships are only a means to categorize and capture the real instance data in the domain. A data store which contains data 
that are instances of the concepts in the ontology is called a knowledge base. The ontology can be considered to be the schema 
for the knowledge base. Shared data models like PRODML and WITSML, defined by POSC, also address similar problems 
and can also be considered as ontologies. But in this paper we consider ontologies defined using the semantic web 
technologies, to encode such ontologies and argue that some of these applications that are better implemented using such data 
models.  

Ontologies are captured or represented by ontology languages. Since an ontology is used as a shared representation, the 
ontology it is desirable that it be represented in a language which is non-proprietary or open. Further, the ontology language 
must provide enough features to represent rich definition of concepts. Thus, another important requirement for an ontology 
representation language is that of expressiveness. Finally, the ontology language should support the ability to represent and 
query instance data. 
 
Semantic Web Technologies 

Tim Berners Lee, the pioneer of the World Wide Web, has put forth the idea of semantic web, as the next generation web 
where computers become capable of analyzing all data on the web [1] . The World Wide Consortium (W3C) which is the 
main body defining the standards for the web, has proposed a set of standards, that build upon the currently prevalent ones, 
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like XML, and address some of the key needs of such a semantic web. These standards address such areas as languages for 
rich knowledge representation, querying, security etc. Figure 1 below show the semantic web standards related standards by 
the W3C consortium. In this paper we will focus on the standards highlighted in the figure which are useful in defining 
ontologies and implementing knowledge bases.   

 
RDF 

Resource Description Framework (RDF) is a World Wide Web Consortium (W3C) specification originally designed as a 
metadata model but has been used as a general method of modeling information. The RDF paradigm is based upon the idea of 
making statements about resources. Thus, the basic unit of data representation in RDF is a statement or triple, which is of the 
form subject-predicate-object.  A set of related statements form an RDF graph. Although the graph based RDF paradigm can 
be encoded in different ways, the most common and important way of encoding it is as a XML document, using a well defined 
convention.   

Two important specifications closely related to RDF are the RDF Schema (RDFS) and SPARQL. RDFS is used to define 
the meaning of the concepts used in or the schema for, a RDF document. The relationship between RDFS and RDF is similar 
to the relationship between XML schema and XML. The difference between XMLS and the RDFS is that unlike XMLS which 
only allow the definition of syntactic structures, RDFS supports the notions of class, class hierarchies etc. This difference can 
be likened to the difference between imperative programming like C which supports the definion of structs versus the object 
oriented languages which support richer notions of classes, class hierarchies etc. SPARQL is a query language specially 
designed to query RDF data sources. Thus, SPARQL is to RDF as XQuery is to XML. 

 
OWL 

Although the RDF and the RDFS standards 
provides a richer set of primitives than XML, the 
semantic web community found the need for a 
language that improves RDF by adding constructs that 
make it more expressive. OWL, Web Ontology 
Language, is the resultant language, which builds on 
the RDF standards, and improves its expressiveness, 
while, making sure that the computational complexity 
of the language is reasonable. By layering it on RDF, 
many of the RDF tools support and querying can be 
re-used. The OWL specification itself is designed as 
three flavors (OWL-Lite, OWL-DL and OWL-Full), 
to support tradeoffs between semantics and 
computational complexity. OWL-lite is the least 
expressive dialect of OWL, while being simplest to 
implement and OWL-Full is the most expressive but is 
also computationally most expensive. OWL-DL falls 

in the middle of the spectrum of expressiveness and computational complexity. An important functionality that OWL and 
RDFS support is the ability to derive new information based on the existing information and the schema definition that we 
refer to as inferencing. E.g., we could define a class called SubsurfaceFacility and define the class Well as a sub-class. Thus, 
when a record asserting that Well_A isA Well is added to the knowledge base, it implicitly adds a record asserting Well_A  isA 
SubSurfaceEntity.  
 

Commonly used paradigms1 for creating data models are relational, ER, UML, XML and semantic web languages 
(RDF/OWL). The table below summarizes some of the features of ontology languages. 
 

Feature Category OWL RDF/RDFS XML/XMLS UML 
Classes and class hierarchies Data modeling Y Y Partial Y 
Properties and Property Hierarchies Data modeling Y Y N N 
Functional properties (Primary keys), Transitive 
Properties, inverse properties etc. 

Data modeling Y N N N 

Class definition as constraints (E.g. ClosedWell 
is a Well that has status=closed) 

Data modeling Y N N N 

Ability to infer new information based on 
existing information 

Reasoning Y Y N N 

                                                            
1 Note that the term data-model is interchangeably used in literature, to refer to the data-modeling paradigm (relational, XML 
etc.) as well as the data model instances (also schemas). We have used the word to refer to the latter. 

 
Figure 1. The Semantic-web layer cake  



4  SPE 112267 

Standard representation based on open standards Representation Y Y Y Y 
Ability to represent and query instance data Instance Data Y Y Y Y 

 
Thus OWL satisfies all the key requirements of an ontology language viz., based on open standards, expressiveness, and 
ability to store and query instance data. The semantic web standards are not very mature technologies, key risks, in terms of 
tool availability and scalability need to be addressed. But historically, the W3C has had a track record of creating good and 
successful standards (e.g., HTML, XML and related standards etc.). We hope that the semantic web standards are equally 
successful, leading to a wide adoption and tool support. 
 
3. Applying Ontologies for Oil-Field Operations 

As discussed earlier, it is difficult for an engineer trying to make a decision or performing a study, to locate or access a 
piece of information that he/she needs. It is estimated that a typical petroleum engineer spends about 60% of his time searching 
for information [18] . In settings where much of the data is stored in semi- or un-structured data-sources, e.g., in simulation 
models etc., the problem is further compounded.  
 
Enabling Efficient Access to Simulation Artifacts 

Metadata has often been suggested as a way to address this problem of finding information. Metadata are commonly (and 
simplistically) defined as data about data. In this work, we have used the term metadata to be the data that describe the 
structure and workings of an organization's use of information and which describe the systems it uses to manage that 
information [3] . Metadata are information that addresses the following five questions: What data do we have, What does it 
mean?, Where is it?, How did it get there?, How do I get it?[4] . The figure below shows a categorization of metadata types 
based on the kinds of information it denotes. At the bottom of the metadata types is the syntactic metadata like file size etc. 
Structural metadata stores richer metadata like the format of the data. Finally semantic metadata and ontologies provide the 

richest description of the data in terms of the meaning of 
the information within the business context of the 
organization. 

The metadata ontology is centered on the data objects 
like simulation models, their results etc. in the system. For 
each data object, we define three kinds of metadata, Acess 
info metadata which defines how the data object can be 
accessed, typically its file location, Provenance Metadata 
which describes metadata about how the data object was 
created including, the name of the engineer who created it, 
other objects from which this data object is derived from 
etc. Finally the Data specific metadata is used to capture 
metadata specific to each data object. Typically, a concise 
summarization of the important elements of the data object, 
e.g., the field elements that are represented in the 
simulation model, the key assumptions made in the 
simulation model etc. are captured in this category. This 
allows the user to search for data objects which model 
certain realizations of the asset (e.g. show me all simulation 
models in which the estimate of the initial oil in place is > 
1B barrels). A similar categorization of the metadata 
elements has been proposed in the grid community [5] . 

The concepts and relationships, captured in the ontology are further elaborated in Section 4.  
The metadata for data objects itself is stored in a knowledge base called the Metadata Catalog. The metadata is created 

when a engineer publishes a data object into the system. Since much of the metadata is present in the data object itself, special 
metadata extraction components for each data object were written to parse the data objects and obtain the metadata. This is 
then persisted in the metadata catalog and consumed by various applications.  Some of the tools that use this metadata to 
provide useful functionality to the end users are presented in Section 5.  
 
Knowledge Management: Tracking Decisions  

An engineer making decisions typically performs analyses, involving, for example, different uncertainty realizations of 
the asset and different operational strategies. Much of the information and the rationale behind the decision, including the 
analyses are often lost after the decision is made. Such information could be valuable for two reasons. First, an audit trail of 
the decision making process can be maintained, including information about the data consumed and generated during the 
process, timeline and people involved in that decision, etc. Second, such knowledge capture will contribute towards reliable 

 
Figure 2 Data and metadata types[11]  
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operation in face of personnel turnover by enabling new members of the workforce to retrieve and understand in detail the 
procedures used by predecessors.  

Our system allows the engineer to perform analyses by creating different scenarios, each of which encodes different 
operational strategy of the field [6] . Different tools and methods can then be used to evaluate these scenarios and the engineer 
can choose the scenario which maximizes the target metric. Apart from this, the analysis is performed under a decision frame, 
which explicitly records the setup of the problem, the types of analyses made and omitted, the rationale for doing so, the 
summary of results from the analyses, etc. For instance, a simulation-based decision frame will record information about the 
models used for simulation, the output of the simulation, etc. This information can be queried and retrieved in future for audit 
tracking purposes or for instructing the new employees. 

 
4. Ontology Design  
In this section we briefly discuss our approach to building ontologies, modularizing them and the salient elements in them. Our 
ontologies were built for an in-house application, and thus our design goals are different from those of POSC Caesar’s Oil and 
Gas Ontology (OGO), which is intended to be a comprehensive domain vocabulary for the industry [14] . Our ontologies were 
also designed to be used as a basis for a knowledge-base and for efficiency reasons we have designed it to be small and 
modular. Currently we have designed three ontologies with approximately 300 classes - the OGO ontology in contrast has 
more than 10,000 classes.  Figure 3 shows the modularization of our ontologies as a set of ontologies that capture different 
aspect of the problem space. The ontologies in the lower levels of the figure use the ontologies in the upper layers. OWL 
provides the ability to import ontologies defined elsewhere, which makes it easy to modularize ontologies. The elements of the 
three layers in the figure are described below. 

 
Domain independent or upper ontologies: which 
describe concepts which are independent of oil-field 
semantics. We have considered the (re-)use of time 
ontology from Pan et al [7] , and the units ontology from 
the SWEET ontologies[8] . However, we found that both 
these ontologies are too detailed for our needs and we 
hence created smaller subsets of these ontologies to fulfill 
our needs. Larger ontologies are undesirable because they 
decrease the performance of reasoning.  
 
Domain ontology: This defines elements of the oil field 
domain. The elements of the domain ontology are shown 

in the left hand side of figure 4 below. It mainly consists of physical entities in the oil-field, like, Well, Reservoir, Fault, OOIP 
regions etc. Important properties of these entities like initial hydro-carbon estimates for the reservoir, on stream dates for the 
wells are also captured in the domain ontology. Further important relationships between entities like drawsFrom relation which 
links Well and OOIP Region is also captured in the ontology. As can be seen below, the domain ontology itself uses elements 
of the domain independent ontologies.  
 

  
Figure 4. The domain and metadata ontology 

 
Figure 3. Ontology design in IAM 
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The domain ontology is an important artifact in our system and building it has many interesting challenges. Since the 

domain ontology needs to be application independent i.e. store metadata about the domain elements in the different data stores, 
it must have minimal ontological commitment, i.e., the amount of information in the domain model needs to be minimal. For 
example, the semantics of an entity called Well, is different in different simulation models in the system. The domain model 
must commit to the least common properties of these applications. When designing a generic application and tool independent 
domain model, we must address the issue due to the heterogeneities in the way the elements of the domain model are 
represented in different data sources. Two examples of such heterogeneities mostly commonly observed in our domain are 
aliasing, where the same entity is addressed by different names in different data sources and scaling heterogeneities, where 
different scaling systems (SI vs. Oil field units etc.) are used to encode values. Aliasing is addressed in our system by allowing 
each entity to have multiple names. To deal with this problem we have created a logical entity called the asset inventory, 
which contains the physical entities which are the part of the asset. Every model, models one or more of these physical entities 
and thus a reference from the entities in the model to the entities in the asset inventory is created. Even if an entity is addressed 
by a different name in different models, since it points to the same entity in the asset inventory, the system understands it to be 
the same physical entity. The use of an units ontology allows us to address the problem where different data sources used 
different unit systems to record the information. 
 

Application specific ontologies:  We envisage our ontologies to be used in many IAM applications. An example of 
an application is the metadata store for simulation models. Another example is the Design Space Exploration tool, which 
enables the engineer to efficiently explore the design space of a problem by using simulations of different granularities. 
Although these also model elements in the same (oil field) domain, they are different from the domain ontologies because 
unlike the domain ontologies, the scenarios of usage for these ontologies are restricted to certain applications. Typically 
application specific ontologies build upon the domain and upper ontologies by using some of the entities described in them. As 
an example, consider the metadata catalog has its own application specific ontology, which is shown in the figure 4 above. As 
described earlier, each class in the metadata ontology is used to define the metadata associated with each kind of data object, 
e.g., geological model, reservoir simulation model, network model etc., and the various metadata associated with it. Each data 
object has metadata summarizing its contents in terms of the entities in the domain ontology. For example, for a simulation 
model, the domain elements it models and the key properties of these elements are captured.  
 
5. Development Methodology 

We have adopted an agile, iterative approach for developing the ontologies. The development was planned in short cycles 
(sprints), and in each sprint we followed the following steps, similar to those suggested in [12] .  
• Specification: The domain engineers and the ontologists were involved in defining the applications, e.g., different search 

parameters, the main parameters for the audit trails etc.  A number of subject matter experts from different areas of 
reservoir engineering were engaged to obtain a broader and a more general view of the problem domain.  

• Conceptualization and Formalization: Based on the user specifications, the main entities and their attributes were laid 
out and formalized as OWL axioms. A widely used open source tool called Protégé [10]   was used to create the OWL 
ontologies. Protege allows the designer to create the OWL ontology and saves it in xml based owl representation. 

• Review: Once the ontologies were created, they were reviewed by the domain experts. The object oriented formalization 
of the ontologies and the intuitive presentation of the information in Protégé made it easy for the domain engineer to 
understand and provide feedback, and foster discussion.  

• Application Development: Application development was carried on in parallel. Due to the iterative software 
development methodology followed in the project, the ontologies developed during an iteration were passed on to the 
developers in the next iteration. Constantly changing ontologies could hamper the software development because a change 
in the ontology could potentially affect the user interfaces, XML schemas used for data transfer, query formats to retrieve 
data from the knowledge base, etc. Therefore, the modifications were carefully planned and the successive iterations of 
the ontologies only added elements as far as possible. An automatic code generation package called Jastor [9] was used to 
create Java code from ontology definitions. This proved to be very useful in coping with the continuously evolving 
ontologies. We think that the availability of such automated tools will be critical to the adoption and success of this 
emerging technology. 

• Demonstration: Finally the applications were demonstrated to the end users for feedback. Not surprisingly, 
demonstration of functionality and the user interface is a powerful trigger for many ideas and extensions by the user base.   

 
The key stakeholders involved in our development process are: 
1. The business user community who decide the business entities and relationships are of interest. The key to ontology 

development is to engage a wide and representative set of business users, playing different roles in the oilfield operation 
process and with different perspectives on which metadata items and relationships are important enough to be captured in 
the knowledge base.  
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2. The ontology designer interacts with the business user community to capture the elements of the ontology, and encodes it 
in OWL. Additionally, it is the job of the ontology designer to communicate the ontology design to the system architect 
and the engineers on the development side. 

3. The solution architect designs the overall software solution and manages the development process. He is also responsible 
for coordinating with the ontology designer and the business user community with respect to the issues related with the 
ontology – especially the implementation issues that affect or constrain the design of the ontology.  

4. The software developers build the applications that use the ontologies and thus are the consumers of the ontology.  
 
6. Workflows and Tools 

The figure below shows the workflow which describes how the metadata from simulation cases is added to the metadata 
catalog and queried and used by various IAM applications. When a simulation case is created and validated by an engineer, it 
is published either through a user interface or by copying it to a agreed upon network location. An IAM agent, which 
constantly polls this location for new simulation cases then, accesses the model. The metadata is extracted from the simulation 
model by using metadata extractors. Custom metadata extractors are created for each kind of simulation model in the system. 
We have created metadata components that parse ASCII based documents as well as components that use custom APIs to 
access information in the simulation models.  

After the metadata is extracted, reasoning is performed to materialize all the inferred information from the information 
extracted from the model. As mentioned earlier, based on the information (metadata) presented and the OWL ontology 
definitions, additional information can be inferred. In contrast to a materialized knowledge base, a non-materialized KB 
derives the inferred data only when a query is issued to it. The advantage of using a materialized KB over a non-materialized 
one is that the performance of query answering is always faster in the materialized KBs.  On the other hand adding information 
to the materialized KBs can be a slow process and materialized KBs occupy more space. We have adopted this approach in our 
application because, the frequency of publishing information into our KBs is relatively low when compared to the frequency of 
queries (simulation models are not created every day!).  After the information is uploaded into the KB, IAM users can access it 
through the various applications which in turn query the KB and present the information in intuitive ways. Two applications 
that we have prototyped- the metadata browser and the OOIP tracking application, are discussed below. 

 
Tool 1: Metadata Catalog Browser 

The metadata catalog browser allows the user to look at all the data that has been published and search for particular data 
based on the entities defined in the domain and the metadata ontologies. It also allows the user to search the metadata catalog 
in intuitive ways. As an example, the user could search for the reservoir model in which the OOIP of the reservoir is greater 
than a certain number. The user could also search for and navigate through data objects based on its relationships to other data 
objects. As an example, a search could be to find all the reservoir simulation models which are coarse grained versions of a 
given model. A screen shot from the tool we developed is shown below.  

 
 
 

 

Figure 5. Workflow in the IAM application 
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Figure 6. Metadata catalog browser application 

 
Tool 2: OOIP Comparison utility 

An important uncertainty parameter that is used in different kinds of models like the geological model, reservoir model and 
the field model is the OOIP information of the whole field as well as different regions of the field. A tool that allows the 
geologists or the reservoir engineer to compare the assumptions about the OOIP values in each of the models is extremely 
invaluable and provides insight into the understanding of the asset by the other engineers. The screenshot below shows a tool 
that provides such functionality. The regions in one model are not always the same as those modeled in another and thus a way 
to map the regions is provided, so that the user can compare regions in different models.  This application also provides a 
unified view of the information across models, because the estimates in different models can be compared irrespective of the 
various heterogeneities across the models. 

 

 
Figure 7. Tool to compare the OOIP values in different simulation models2 

 
 

                                                            
2 Names of regions and their OOIP estimates are obfuscated due to confidentiality reasons. 
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7. Discussion  
An important reasons for choosing the semantic web technologies was because of our strategic vision of IAM as a 

metadata and knowledge management platform for oil-field operations domain. We believe that the expressiveness afforded by 
the semantic web stack will prove to be highly beneficial for such functionality. As the semantic web technologies are still an 
emerging technology, we are addressing many questions with respect to the scalability, performance and tool support. Early 
performance testing was performed by using synthetic but realistic OWL data sets of various sizes, combined with different 
simulated user loads in terms of metacatalog queries. Although the performance appears to be acceptable for relatively small 
data sets, more foundational research is warranted to improving the performance and scalability of OWL knowledge bases. In 
particular, the OWL inference capabilities are the slowest and most resource intensive in terms of processor and memory 
usage. We are investigating various methods to improve the performance and scalability of OWL inferencing.  With major 
vendors like Oracle announcing support for these technologies in their product offerings [13] , we are hopeful of dramatic 
improvements in these areas in the near future. 

When designing an ontology in OWL the designer must be cognizant of the constructs being used and whether the 
reasoning tools that will be used support the OWL features used in the ontology.  For example, many of the currently 
developed OWL reasoning tools like Jena, Oracle[13] etc. are implemented using rule based engines, which only implement a 
subset of the OWL-Lite semantics. Constructs like nominals are not supported in any of the tools. Of the freely available 
reasoning only Pellet supports all the OWL features, but we have found the performance of such tableaux methods to not be 
satisfactory for our data-sets.   
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