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Abstract 
 

Short-term production optimization relying on model-based predictions over a short period (weeks to months) requires the 

use a near-borehole reservoir model. Such a model is usually developed and validated through standard well testing.  

Standard well testing has to be repeated periodically, with related loss of production.  Production losses may be reduced by 

prolonging the interval between tests, but that may compromise the quality of information about reservoir properties, such as 

skin (or productivity index), which would ultimately compromise production as well.  Therefore, a need exists for a 

methodology that maximizes both reservoir information and production simultaneously.  Because these two tasks are 

inherently contradictory, a compromise has to be found.  In this work we propose a methodology that combines well testing 

and production in an optimal way, resulting in overall production optimization.  This methodology relies on a short-term 

moving-horizon optimization of an objective function that includes terms referring both to the quality of reservoir 

information and to production net present value.  Reservoir information is captured by empirical (proxy) models that are built 

adaptively on-line as a result of optimal perturbations of production rates and recording of dynamic responses of related 

bottomhole pressures.  Besides, the entire workflow can be automated.  Simulations are presented that illustrate the 

mechanics and value of the proposed methodology. 

 

Introduction 
 

The oil and gas industry is facing remarkable challenges to maximize profitability in a dynamic and uncertain environment 

while satisfying a variety of constraints. Current practices of production optimization involve combining mathematical 

models, field data and experience to make decisions about optimal production scenarios. In recent literature, a number of 

proxy modeling techniques  [1-10] have been proposed where the output variables (oil recovery factor, multiphase flow rates 

etc.) are modeled as a function of the input variables. However, most of these methods focus on data-driven approaches such 

as response surface techniques based on regression, interpolation, neural network etc. These methods are relatively easy to 

setup and capture the nonlinear effects in the training data set. However, reservoir phenomena unseen in the past (e.g., water 

breakthrough) or operating regimes that lie outside the range of training data set are not adequately predicted by such models. 

Further, most proxy modeling approaches used in production optimization actually model the reservoir simulator outputs and 

are seldom validated against real field data. 

 

The authors of this paper have developed a parametric modeling methodology for Real-Time Production Optimization 

(RTPO) strategy [11, 12]. Since the parametric model structure is derived from reservoir physics, it is expected that the 

model will be suitable to extrapolate outside the training data set. A feasible approach to continuous model updating and 

short-term forecasting using this approach was presented in [13]. 

 

Though continuous field data (production/injection rates and pressure) is used in the proposed approach to periodically 

update the parametric model, the production rates are often not measured but estimated through production allocation. In 

many oil and gas assets, commingled production from multiple wells (or even zones in a stacked reservoir) is a common 

practice, where flow rate measurements are taken downstream of the mixing point. This introduces uncertainties in 
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determining the individual production rates of each well (or zone) in the reservoir. The accuracy and quality of allocated 

production data can significantly impact history matching of reservoir models, estimation of remaining reserves, production 

optimization (short-term and long-term) and reservoir management decisions. Regulatory reporting requirements address this 

problem by mandating periodic surface well tests, where an individual well (or sometimes zone) is routed to a test separator 

and multiphase flow rates are measured without the intervention of other wells in the field. An allocation factor is computed 

for each well (or zone) based on its relative contribution to the total production. However, this procedure may require 

rerouting or shutting down other wells (or zones) in the field for the duration of the test. Thus, it is often associated with 

increased operating costs or deferred production. Additionally, it is assumed that the well does not change behavior in 

between the well tests. Error-spreading is another common drawback of this approach, especially when pressure information 

is used without reconciling with known downtime events as described in [14, 15]. 

 

In this paper, we focus on the methodology to update the parametric reservoir model with relevant field data whenever it 

becomes available – namely well test information in addition to daily production data. This information is used in a 

production allocation workflow to estimate the well (and zonal) rates from regular field data in a commingled production 

scenario. A brief overview of the modeling framework and reservoir parametric modeling methodology is presented followed 

by a discussion of the least squares optimization problem formulation that is used to back allocate the rates. This reduces the 

distribution of allocation errors to all wells (or zones) – either spread evenly or weighted according to the last observed well 

(or zone) potential, as observed in conventional practice. Continuous reconciliation with field data and use of reservoir 

physics can also potentially reduce the number of surface well tests conducted significantly. The following sections describe 

the results of the proposed approach using two case studies and sensitivity analysis on selected reservoir parameters. 

 

Modeling Framework 
 

Over the years, reservoir simulators have been used for reservoir management purposes. With advances smart well 

technologies including downhole sensors and control elements, it is now possible to measure and analyze more and more data 

from the field. This increase in available data further enables development of advanced reservoir simulation strategies for 

improved reservoir characterization. While such large and complex models result in better long-term predictions and overall 

field management, these models are often achieved at the cost of high computation time. On the other hand, such model 

needs to be continuously updated to ensure accurate short-term predictions necessary for daily production optimization. 

 

In the past few years, various data-driven approaches for real-time decision making have been proposed, such as neural 

networks [16], wavelets [17], optimal control [18] etc. However, most of these approaches are purely data driven, do not 

consider the underlying physics and cannot be validated or updated based on plant measurements. The proposed modeling 

approach addresses this gap to make more accurate short-term predictions based on the real-time field data [12, 13]. It is 

briefly described in the following section. 

 

Short-term Parametric Model. From first principles (conservation of mass) and constitutive equations (Darcy’s law, 

compressibility equations, and capillary pressure equations) ― after discretization of derivatives with respect to the spatial 

co-ordinates ― one can get a reservoir model in vector-matrix form as follows: 
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p  contains values of block oil pressure, water saturation and gas saturation respectively, sufficient to complete the 

reservoir description at all discretization points (grid blocks) indexed by [ , , ]i j k . The vector q̂  contains all external fluid 

flows, using the convention that these external fluid flows are negative at production points, positive at injection points and 

zero at all other points. A more detailed discussion and related references are offered in [13]. 

 

In our previous work [12], we have shown that the time dependence of the matrices in Eq. (1) is relatively weak for short-

term time scales. Therefore, a simplified input-output model of the reservoir can be formulated using a state-space structure 

[19, 20], as follows: 
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where the vector x  comprises the states of the system, namely the values of ,  and 
o w g

p S S  at all discretization points in the 

reservoir; the vector y  captures the measured outputs, and the vector u  captures the effect of inputs. 

 

The inputs and outputs can be chosen relevant to the workflow application where the model will be used. For example, in 

production foreacasting, the relevant inputs and outputs are the bottomhole pressures (or production choke settings) and the 

multiphase production rates at the producer grid blocks respectively [13]. Similarly, when using such a model for multi-scale 

resolution of the production optimization problem, injection rates can be included as inputs in addition to bottomhole 

pressures, where it may be required to estimate the optimum injection rates by maximizing total profit over a period of time 

[21]. 

 

However, in all such cases the inherent assumption is the availability of individual production rates, which may or may 

not be available in a multi-layered reservoir where the rates need to be allocated on a zonal (per layer) basis for each well. 

 

Rate Allocation during Commingled Production 
 

Production allocation is particularly vital where multiple wells (and often layers) are present in a reservoir, where the most 

economical operating practice is to commingle the production from all the wells (and layers). Traditional operating practice is 

to isolate each well (or zone) during well testing or otherwise and estimate the potential at which each well (or zone) can 

produce. The well (or zonal) rates are then allocated over time assuming the well (or zone) can produce at its last estimated 

potential until new individual rates are measured again. A single well (or zonal) test requires dedicating the available 

resources (flowlines, manifolds, separator etc.) to the tested well (or zone), which requires re-routing of the remaining wells 

(and zones) in the field, often resulting in production losses. Futher, the level of instrumentation in each well typically allows 

surface control of wells but this may be difficult and often impossible for multiple producing zones in each well. 

 

In practice, such a rate-allocation exercise is often demanded by regulatory authorities. In addition, such well testing can 

provide valuable information for optimum reservoir developments and production optimization. 

 

Such conventional allocation practice relies on frequent well (or zonal) tests and the assumption that there isn’t any 

significant change in the reservoir properties during this interval, which is hardly the case. The following example 

demonstrates how the parametric model presented in the previous section can be validated as a viable model to make accurate 

short-term predictions when such measurements become available. 

 

Model Validation. The problem of allocating production rates on a well (or zonal) basis assumes that the field measurements 

available, are the total production rates and pressure at the separator, choke positions and wellhead (and maybe bottomhole 

pressures). The bottomhole pressures are increasingly made available with downhole sensors, as illustrated in Figure 1. 

 

The choice of inputs and outputs is reversed for the production allocation workflow, as compared to the previously 

discussed workflows [13, 21] – namely production forecasting and production optimization; and so we refer to this as the 

“inverse model approach”. In order to validate the model for short-term production, we use the two layered reservoir with 

one producer, one injector as shown in Figure 2. Both the wells (injector and producer) are perforated at each of the two 

layers. The reservoir has a (upper) low-permeability layer and a (lower) high-permeability layer, separated by an 

impermeable layer. The difference in the permeability values (ratio 1:2.5) between the two layers makes a pre-defined or 

rule-based allocation difficult and often inconsistent. 

 

Simulated production data from a full-physics reservoir model is used to identify the “inverse model”. The oil production 

rates from the two zones are the measured inputs; and the bottomhole pressures are the measured outputs, thus making it a 

2×2 multivariable input-output model. The evolution of inputs and outputs for both the zones, i.e., upper Zone-1 and lower 

Zone-2 are plotted in Figure 3 over a period of 2000 days. The daily identified linear models are used with the corresponding 

input values (zonal rates) to make 7-day-ahead (Figure 4) and 30-day-ahead (Figure 5) predictions of the resulting 

bottomhole pressures of the two zones. 

 

The average errors (for both zones) between the actual (solid line) and the predicted value (dotted line) for the 7-day-

ahead and 30-day-ahead predictions are 0.7% and 10% respectively.  The predicted pressures match the actual values better 

for the 7-day-ahead case as expected, while the accuracy of the match deteriorates for long-term (30-day-ahead) predictions. 

The increase in this error can be attributed to the cumulative errors involved in estimating the average values in the future. It 

should be noted that the predictions compared here only account for the early days of the reservoir, i.e., when water has not 

reached any of the producer zones. 
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The modeling approach used here focuses on predicting bottomhole pressures, assuming the allocation rates are known, 

which establishes a parametric model between the two and results in predictions of reasonable accuracy (<10%). The same 

strategy can be extended to ensure optimal zonal allocations using an optimization procedure as discussed in the following 

section. 

 

Production Allocation: A Least Squares Optimization 
 

In this work, bottomhole pressure data is used to allocate production rates to their respective zones and wells using the 

“inverse model” approach developed earlier, while ensuring that the total measured production (
T

Q ) is honoured. As the 

pressure data (
wf

m
p ) and total rate (

T
Q ) are continuously measured, the optimal zonal rates are calculated by minimizing the 

following least squares objective function: 
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where 
,

m

i k
y  is the measured bottomhole pressure of zone i  at time k , 

,
ˆ

i k
y  is the predicted bottomhole pressure of zone i  at 

time k , u  is the vector of zonal production rates, 
z

N  is the total number of zones and P  is the prediction horizon. 

 

The least squares optimization is solved over a prediction horizon P  (days), if an allocation is done on a fixed schedule. 

However, the value of using such a methodology is when solving it in real-time (relevant time scale), e.g., daily, where the 

allocation routine will be run as soon as the downhole pressure and surface rate measurements become available. To account 

for the surface rate measurement, the optimization problem is subject to the following total rate constraint over the prediction 

horizon P : 
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where 
,i k

u  is the zonal production rate for zone i  at time k  and 
,T k

Q  is the total production rate at time k  measured at the 

separator. The optimization problem in Eq. (3) with the constraint in Eq. (4) can be simplified as the following convex 

optimization problem (see Appendix A): 
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The rate-allocation workflow is illustrated in Figure 6 where the optimal allocation rates are calculated based on the least 

squares optimization and the constraint described in Eq. (3) - (4). It is assumed that the well test information (less frequently) 

can also be incorporated into the workflow whenever available. The first step in the process is to start from an initial model 

that can be obtained through well tests by isolating the respective zones. Once such a model (described by the state-space 

form in Eq. (2)) is established, individual zonal rates are estimated using the new bottomhole pressure and surface rate 

measurements and solving the least squares optimization in Eq. (3) subject to the total constraint in Eq. (4). The process is 

repeated over a period of time using the last available model until a new model is available, i.e., when a new well test or 

zonal test is performed. Such an update can be infrequent and can vary for different wells and zones. On the other hand, a 

structured model update procedure is important and needs to be consistent with the optimization problem. 

 

Model Updating 
 

As shown in Figure 6, the optimal allocated rates are calculated until new measurements are available, i.e., when the model 

needs to be updated and new optimal rates are calculated. In practice, individual zonal rates can be measured by shutting-in 

the zone using downhole flow control valves during scheduled well (or zonal) tests. Once individual well or zonal rates are 

acquired, the corresponding well or zone model needs to be updated with higher emphasis placed on recent data. 

 

Our previous discussion of identifying parametric models, as shown in Eq. (2), can be extended to the following state-

space model (discrete time domain) for each zone: 
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where , , ,
i i i i

A B C D  are the system matrices for the th
i  zone.  The separate linear models for all the zones (and wells), i.e., 

1,2,.....,
z

i N=  can be combined in a compact form (see Appendix B): 

 

1

1 1 1
ˆ

k k k

k k k

+

+ + +

= +

= +

x Ax Bu

y Cx Du
                    (7) 

 

where the state matrix A  is in the block diagonal form capturing the internal dynamics of the system: 
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The structure of this compact parametric model provides the flexibility to update each of the model matrices (
i

A ) 

individually, whenever required. For example, a well (or zone) scheduled to be tested at the beginning of the month can be 

updated separately and another at the middle of the month. 

 

Results 
 

The two examples discussed here illustrate the optimal production allocation approach on a small reservoir with a few wells. 

We used a simulated model to generate daily data, assuming: 

• Average daily bottomhole pressures are known 

• Total rate (
T

Q ) is known 

• Initial model was estimated using the zonal rates measured by isolating individual zones 

 

Case Study I. This case study involves a two-layered (two zones) reservoir with one injector and one producer in a line drive 

problem (one-quarter 5-spot configuration [21]) as shown in Figure 2. The production plan as shown in Figure 3 involves 

commingling the production from both the zones using common production tubing equipped with permanent downhole 

pressure gauges. Both the injector and the producer are perforated at each of the two zones and water was injected in both the 

zones for pressure maintenance. The main challenge here is to allocate rates for the two zones with different permeability 

values (ratio 1:2.5).  

 

The model was updated as the well test is performed at the end of each month, and each zone is tested separately. The 

parametric model for each zone will then be updated every 30 days and the allocation exercise was repeated over a period of 

1600 days, well after water breakthrough has occurred in both zones. Figure 7 shows comparison between the optimal 

allocated (oil) rates (dotted line) and the actual rates (solid line) for both zones (Zone-1 and Zone-2). The accuracy of the 

estimated allocated rates can be determined based on the following per-cent error calculated as: 
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ˆ
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−

= −

−

y y
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where 
i

y  is the time vector of the i-th measured output and ˆ
i

y  is the time vector of the i-th predicted output. 

 

The total allocation error calculated using Eq. (9) is 5.9% showing that the optimization problem can be solved with 

reasonable accuracy. Also, the total calculated rate matched up with the measured rate 
T

Q  ensuring feasibility of the 

optimization problem. 
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Figure 8 shows comparison between predicted bottomhole pressures during optimization (dotted line) and the measured 

values (solid line), showing an 8% error. The linear parametric model used here may not be perfect; however it captures the 

reservoir dynamic behavior that is important for the rate-allocation strategy. 

 

Case Study II. The rate-allocation optimization in Case Study I was performed for a single well with multiple zones. 

However, the problem is more challenging in a practical scenario with multiple wells and multiple zones as shown in the 

schematic in Figure 9. The two symmetrically distributed producers (Well-1 and Well-2) are connected to the same separator 

through the surface network where the total rate is measured and reported. All the wells, i.e., both producers and injectors are 

perforated at each of the two zones. 

 

The wells are equipped with smart completions with remotely activated valves and downhole sensors. We adopt the 

model update strategy where a well test for the two producers is scheduled such that Well-1 (both zones - Zone-1 and Zone-

2) is tested at the end of each month while Well-2 (both zones - Zone-1 and Zone-2) is tested at the middle (15
th

) of every 

month. The two zones have distinct permeabilities, i.e., upper zone (Zone-1) equals 40 md and lower zone (Zone-2) equals 

100 md. The optimization routine is solved continuously over a period of 1600 days. 

 

The total measured rate is back allocated to the two producers (Well-1 and Well-2) and then to their respective zones 

(Zone-1 and Zone-2) as shown in Figure 10. The calculated rates (dotted line) match well with the actual (solid line) values 

and can be gauged based on the average allocated error of 10% calculated using Eq. (9). As shown in Figure 10 (lower right) 

the high permeability zone i.e. Zone-2 of Well-2 was intermediately shut-in (e.g., 1000 days) as a part of the production plan 

and the model was able to adapt to the field plan and allocate rates appropriately. However, it should be noted that to ensure 

proper allocation the model needs to be updated accordingly. 

 

While the optimization strategy is implemented, the parametric model continuously predicts the output while minimizing 

the objective function in Eq. (3) at each time step. As shown in Figure 11 the model predicts the bottomhole pressures (dotted 

line) with a prediction error of 6% when compared to the measured bottomhole pressure (solid line) values. The accuracy of 

the predictions and the allocated errors indicates that such an allocation optimization can be generalized to multiple well and 

multiple zone reservoirs. 

 

Sensitivity Analysis 
 

The sensitivity of the proposed optimization algorithm was analyzed with respect to different operating conditions. For 

example, here we consider different reservoir characterizations, i.e., with different permeability ratios for the two-layered 

reservoir described in Figure 2 while the production plan implemented is the same as used in Case Study I. Figure 12 shows a 

comparison between different fields with different permeability ratios; i.e., 
2 1

/k k  where 
1

k  is the permeability of the low 

permeability zone, and 
2

k  is the permeability of the high permeability zone. The cumulative allocation errors are plotted at 

each time step when the model was updated, i.e., at the end of every month. While all the scenarios shown in Figure 12 are 

within reasonable accuracy, the permeability ratio of 5 (diamond marker) has the minimum allocation error.  

 

Figure 13 shows the cumulative prediction errors during the optimization process, where the model is updated after 30 

days. Similar to the allocation errors, the prediction errors are within reasonable accuracy; and the field with permeability 

ratio of 5 (diamond marker) has the minimum error. The reason for the least error corresponding to the field with 

permeability ratio of 5 compared to other fields can be attributed to using similar production plan and field constraints even 

when applying them to entirely different fields, which requires further studies. 

 

Conclusions 
 

In this work, an optimization-based rate-allocation method was developed and successfully applied to two case studies with 

smart wells. The problem is presented as a convex optimization problem using a parametric model to make bottomhole 

pressure predictions. A linear constraint on the individual zonal rates was implemented, in order to satisfy the total measured 

rate. Also, a model update strategy is applied to ensure the model is kept up-to-date, as soon as any information on the 

respective well (or zone) is reported. 

 

The allocated production rates are best estimates of the respective zonal rates, given the uncertainty of the reservoir and 

the well parameters. The field examples illustrated that the proposed rate-allocation method can estimate rates that are 

reasonably accurate e.g., 6% for case study I and 10% for case study II. The predicted bottomhole pressures for the two case 

studies were consistent with the measured values with error values of 8% and 6% respectively. Also, a sensitivity analysis 

provided valuable information about the proposed method when applied to different fields, resulting in consistent rate-
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allocations. The method proposed here accounts for oil production and can be refined to account for water production after 

water breakthrough. 
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Nomenclature 
 

Boldface uppercase: Matrix 

Boldface lowercase: Vector 

 

q : Flow rate 

S : Saturation 

P : Prediction horizon 

wf

m
p : Measured bottomhole pressure 

T
Q : Total production rate 

ˆ
i

y : i-th predicted output vector 

u : Input vector 

y : Output vector 

x : State vector 

p̂ : Pressure vector 

A : Matrix determining system dynamics 

B : Matrix determining input effects 

C : Matrix determining system outputs 

ˆ
m

T : Transmissibility matrix 

ˆ
h

T : Transmissibility matrix for gravity driven flow 

B̂ : Storage matrix 

 

Abbreviations 

BHP:  Bottomhole pressure 

MPC: Model Predictive Control 

 

Subscripts 

o : Oil 

w: Water 

g:  Gas 

inj: Injection 

k: Current time 

m: Mobility term 

h: Gravity term 

i,j,k: Block indexes  
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Figures 
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Figure 1: Well configuration for a two-layered reservoir with downhole pressure sensors 
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Figure 2: Reservoir configuration for a two-layered reservoir with one producer and one injector 

 
 

 
Figure 3: Zonal production data for the injector/producer example in Figure 2 
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Figure 4: Comparison of actual and 7-day-ahead prediction of the bottomhole pressures (Zone-1 and Zone-2) for injector/producer 
example in Figure 2 

 

 
Figure 5: Comparison of actual and 30-day-ahead prediction of the bottomhole pressures (Zone-1 and Zone-2) for injector/producer 
example in Figure 2 
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Figure 6: Production allocation workflow 

 

 
Figure 7: Case study I – Comparison between the optimal allocated (predicted) oil rates and the actual rates for both the zones with 
the model updated every 30 days 
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Figure 8: Case study I – Comparison between the predicted bottomhole pressures and the actual (measured) pressure while the 
model is updated every month 
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Figure 9: A simple schematic of a two layered reservoir with two producers and one injector connected to the production separator 
(at the surface network) through pipes 

 

 
Figure 10: Case Study II - Comparison between the optimal allocated (predicted) oil rates and the actual rates for the two producers 
and their respective zones 
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Figure 11: Case Study II – Comparison between the predicted bottomhole pressures and the actual (measured) pressure 

 

 
Figure 12: Cumulative allocation error (%) for different permeability ratios as a function of time (days) 
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Figure 13: Cumulative prediction error (%) for different permeability ratios as a function of time (days) 
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Appendix A: Least Squares Optimization 
 
Given the objective function in Eq. (3), minimizing deviation between the measured and the predicted output over a 

prediction horizon P: 
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The objective function can be re-written as: 
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Using the parametric model in Eq. (2) to predict in the future, it can be shown that  
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Combining Eq. (12) and Eq. (14), gives: 
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The equality constraint in Eq. (4), can be re-written in the following matrix form: 
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The equality matrix 
e

A  is a diagonal matrix, with each individual diagonal element an identity matrix of size 
z z

N N× , where 

z
N  is the total number of zones. 

  
Appendix B: Compact Parametric Model 
 

The identified parametric model in Eq. (6) can be expanded for a given zone, i.e., 1i = : 
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Similarly, expanding them for all the zones and combining all the state equations, as follows: 
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It should be noted that the dimension of the state vector ( x ) in Eq. (20) is determined by the order 
i

n of the model, while the 

state vector ( x ) in Eq. (21) has the order n :  
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n n=∑                    (22) 

Similarly, the output equation can be combined as follows: 
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