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Production Optimization; System Identification and Uncertainty
Estimation

Steinar M. Elgsaeter∗ Olav Slupphaug Tor Arne Johansen

1 Abstract

Real-time optimization of oil and gas production requires a
production model, which must be fitted to data for accuracy.
A certain amount of uncertainty must typically be expected in
production models fitted to data due to the limited informa-
tion content in data. It is usually not acceptable to introduce
additional excitation at will to reduce this uncertainty due to
the costs and risks involved.

The contribution of this paper is twofold. Firstly, this paper
discusses estimation of uncertainty in production optimiza-
tion resulting from fitting models to production data with
low information content, a concept that has previously mainly
been applied in reservoir management. Secondly, this paper
illustrates how system identification can be used to find pro-
duction models which can be solved with little computational
effort and which are designed to be easily fitted to production
data.

The method is demonstrated on a synthetic example before
being applied to a case study of a North Sea oil and gas field.
In offshore oil and gas production, the suggested method is ex-
pected to have applications in the development of structured
approaches to uncertainty handling, for instance excitation
planning and real-time optimization under uncertainty.

2 Introduction

Production in the context of offshore oil and gas fields, can
be considered the total output of production wells, a mass
flow of components including hydrocarbons, in addition to
water, CO2, H2S, sand and possibly other components. Hy-
drocarbon production is for simplicity often lumped into oil
and gas. Production travels as multiphase flow from wells
through flow lines to a processing facility for separation, il-
lustrated in Figure 1. Water and gas injection is used for
optimizing hydrocarbon recovery of reservoirs. Gas lift can
increase production to a certain extent by increasing the pres-
sure difference between reservoir and well inlet.

Multiphase flow rates are hard to measure. Measurements
of total produced single phase oil and gas rates are usually
available, and estimates of total water rates can often be
found by adding different measured water rates after sepa-
ration. To determine the rates of oil, gas and water produced
from individual wells, the production of a single well is usually
routed to a dedicated test separator where the rate of each
separated component is measured. In single-rate well tests
rates are only measured for the current setpoint, while rates
are measured for several setpoints in multi-rate well tests.

∗The authors would like to thank the Research Council of Norway,
StatoilHydro and ABB for funding this work.

The total amount of oil, gas and water which can be sepa-
rated and processed is constrained by the capacity of facilities,
these capacities are themselves uncertain. Normally produc-
tion is at setpoints where some of these capacities are at their
perceived constraints, therefore a multi-rate well test cannot
be performed without simultaneously reducing production at
some other well, which may cause lost production and a cost.
There is also a risk that changes in setpoints during testing
may cause some part of the facilities to exceed the limits of
safe operation, which may force an expensive shutdown and
re-start of production. Well tests are only performed when a
need for tests has been identified due to the costs and risks
involved. Well tests are a form of planned excitation, some
planned variation in one or more decision variables designed
to reveal information on production through measurements.

Production is constrained by several factors including, on
the field level, the capacity of the facilities to separate compo-
nents of production and the capacity of facilities to compress
lift gas. The production of groups of wells may travel through
shared flow lines or inlet separators which have a limited liq-
uid handling capacity. The production of individual wells may
be constrained due to slugging, other flow assurance issues or
due to reservoir management constraints.

In the context of oil and gas producing systems, real-
time optimization has been defined as a process of measure-
calculate-control cycles at a frequency which maintains
the system’s optimal operating conditions within the time-
constant constraints of the system [1]. It has been suggested
that real-time optimization could be divided into subproblems
on different time scales to limit complexity, and to consider
separately reservoir management, optimization of injection
and reservoir drainage on the time scales of months and years,
and production optimization, maximization of value from the
daily production of reservoir fluids [1]. Reservoir management
typically specifies constraints on production optimization to
link these problems.

The aim of production optimization is to determine set-
points for a set of chosen decision variables which are optimal
by some criterion. These setpoints are implemented by alter-
ing the settings of production equipment. Decision variables
may be any measured or computed variables associated with
production which are influenced by changes in settings, but
the number of decision variables is limited by the number of
settings. We may for instance determine the settings of a
gas lift choke by deciding a target lift gas rate, a target an-
nulus pressure or a target gas lift choke opening. On short
timescales the flow from individual wells can be manipulated
by production choke settings, by gas lift choke settings and
possibly by routing settings.

There are many reasons why a production model may not
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describe production accurately. One reason may be structural
uncertainty, the model may have a structure which makes
it impossible to describe production truly regardless of the
choice of parameters. An important cause of structural un-
certainty may be un-modeled disturbances, influences which
are not accounted for in the model but which cause produc-
tion to change with time. A second reason may be measure-
ment uncertainty, measured production may differ from the
actual production for some reason, for instance due to incor-
rect calibration of measurement equipment. A third reason
may be lack of informative data, the data may have insuffi-
cient excitation to uniquely determine the parameters of the
model. In practice all of these factors are usually present to
some extent. Modeling uncertainty in the context of reser-
voir management has received some attention in recent years
[2] [3], while uncertainty in production optimization has re-
ceived less attention. One recent discussion of the topic is
[4], which considered uncertainty in well tests for wells with
rate-independent gas-oil ratio and water cut. In prior work
we showed that the information content in production data
may be low, and suggested investigating uncertainty in pro-
duction optimization to be a topic for further research [5]. A
recent technology survey has noted that few implementations
of real-time optimization exist on offshore oil and gas produc-
tion systems, which the authors attribute to the difficulty of
fitting models to production data [6].

Production optimization requires a production model
which is able to predict how changes in setpoints affect pro-
duction. Models used in the production optimization of gas-
lifted wells are normally based on commercial multiphase flow
simulators, either by querying the simulator directly [7] or
by building tables of simulator predictions, so called proxy-
models [8]. Deriving production models using physics alone
can be difficult, as physical equations describing multiphase
flow may depend on a large number of parameters or variables
which are not fully known. For instance, the relationship be-
tween flow rate and pressure drop in porous media such as
reservoirs is very complex and depends on parameters such
as rock properties, fluid properties, flow regime, fluid satura-
tions in rock, compressibility of the flowing fluids, formation
damage or stimulation, turbulence and drive mechanism [9].
Some physical phenomena in production are only modeled us-
ing empirical relationships, due to limited understanding of
the physics involved. Multiphase flow in the reservoir and
through flow lines, including gas-lift performance curves, flow
through restrictions, and inflow from reservoir into well, re-
quire empirical closure relations (for recent discussion of such
empirical relations for flow lines, see for instance [10], [11],
for flow through restrictions see [12], for inflow relations see
[9], and references therein). Empirical relationships can be
fitted against laboratory experiments, but experiments can
be costly and small deviations between laboratory model and
field can produce large differences in observed flow [13]. Even
the most carefully constructed production model will require
some fitting against production data to reflect the influence
of un-modeled disturbances and structural uncertainty, for in-
stance skin effects near the well, erosion of chokes or the build
up of wax or hydrates in flow lines.

Inferring relationships between past input-output data and
present/future outputs of a system when very little a priori
knowledge is available is known as black-box modeling, and

the study of such methods is the topic of system identifica-
tion [14]. System identification takes a pragmatic view of the
choice of model structure, seeking model structures in a trial-
and-error fashion which can be relatively easily fitted to data
yet describe observations with sufficient accuracy. Emphasis
is usually on keeping the number of parameters to be fitted
low while introducing some physical knowledge to achieve
required performance [15]. Experience has shown that for
some applications black-box modeling may meet the require-
ments of industry as well as models derived using physical in-
sight. For instance the majority model-predictive controllers
are based on black-box models and these controllers are used
extensively in refineries and petrochemical plants [16].

System identification has been applied to model offshore
production of oil and gas earlier, notably for well monitoring
in [17], and for production optimization of gas-coned wells
[18]. Some authors have suggested that the main bottleneck
in production optimization is the computational effort re-
quired to solve rigorous physical production models [8]. Mod-
els found through system identification tend to be solvable
with little computational effort due to their simplicity, and
to be easily maintainable, as they are designed to be updated
against data with little human intervention.

2.1 Problem formulation
Cost-effective methods for the design and maintenance of pro-
duction models is a significant hurdle for the proliferation of
production optimization in oil and gas production. This pa-
per makes two contributions toward reducing the cost of de-
signing and implementing production optimization. Firstly,
we investigate modeling production with the general meth-
ods of system identification, motivated by a desire for mod-
els which can be easily fitted to production data. Secondly,
we study fitting production models to recent historical pro-
duction data describing normal operations, as such data is
available at little or no cost, and suggest how to quantify un-
certainty that may result when such data has low information
content.

3 Modeling for production optimiza-
tion under uncertainty

In this section a system identification approach to modeling
for production optimization is outlined, and we outline how
to quantify parameter uncertainty when models are fitted to
data with low information content.

3.1 Production optimization and parameter
estimation

Throughout this paper, variables with a hat (ˆ) denote esti-
mates and variables with bars (¯) denote measurements. The
intended application of the model suggested in this section is
the production optimization problem on the form[

û(θ) x̂(θ)
]

= arg max
u,x

M(x, u, d) (1)

s.t. 0 = f(x, u, d, θ) (2)
0 ≤ c(x, u, d). (3)
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u are decision variables, for instance the opening of produc-
tion valves or gas-lift rates. θ is a vector of model parameters
which are fitted to a tuning set. d is a vector of measured
and modeled disturbances which are independent of u. x
is a vector which expresses the production of each modeled
fluid for each modeled well. Which fluids to model in x is a
design question which depends on the choice of c(x, u, d) and
M(x, u, d). Production optimization determines decision vari-
ables û(θ) and the associated optimal production x̂(θ) which
maximizes an objective function M(x, u, d), while obeying the
production model (2) and production constraints (3). (3) may
express constraints in the capacity of downstream processing
equipment to separate oil, gas and water, as well as reservoir
constraints and other constraints. M(x, u, d) is most often
the total rate of produced oil.

Let ȳ(t) be a vector of measurements, and let
ŷ(x(t), u(t), d(t), θ) be an estimate of those measurements.
The parameter estimation problem attempts to determine θ
so that ȳ(t) and ŷ(x(t), u(t), d(t), θ) match as closely as pos-
sible. Parameter estimation considers a set of historical pro-
duction data called the tuning set

ZN =

[
ȳ(1) d̄(1) ū(1) ȳ(2) d̄(2) ū(2) . . .

ȳ(N) d̄(N) ū(N)
]
.

(4)

Let the residuals for a given model structure and estimate θ
be given by

ε(t, θ) = ȳ(t) − ŷ(x(t), u(t), d(t), θ), ∀t ∈ {1, 2, . . . , N} .
(5)

A parameter estimate θ̂ is found by minimizing the sum of
squared residuals:

θ̂ = arg min
θ

N∑
t=1

w(t)‖Dyε(t, θ)‖2
2 + Vs(θ), (6)

s.t. cθ(θ) ≤ 0, (7)

where w(t) is a user-specified weight. The components of y
may have different ranges, yet parameter estimation should
give similar weight to minimizing residuals of all measure-
ments, which motivates normalizing residuals with a diagonal
matrix Dy. To improve parameter estimates, physical knowl-
edge can be included in (6)–(7) in terms of soft constraints
Vs(θ) or hard constraints cθ(θ). From (1)–(3) it should be
clear that θ̂ will influence û(θ), while (4)–(6) illustrate that θ̂
is influenced by the information content in ZN . These rela-
tionships are illustrated in Figure 2.

The tuning set should only consist of historical production
data which is consistent with current production, which im-
plies that the effects of un-modeled disturbances should be
negligible over the time interval spanned by the tuning set.
If the information content in the tuning set is low it may not
be possible to determine a unique θ̂ from (6)–(7).

3.2 Local production models for optimiza-
tion

Assume that the oil, gas and water rates measured at the
most recent well test are ql, measured at time tl and at set-
point (ul, dl). Consider a model which is locally valid in the

sense that it attempts to predict the rates q̂i for values of
(u, d) close to (ul, dl). The choice to consider locally valid
production models is motivated by two observations. Firstly,
a locally valid model may be sufficient as long as production
optimization only attempts to suggest new setpoints close to
ul, and as long as dl has not changed significantly since the
last well test. Secondly, decision variables often vary within a
narrow range in production data from normal operations [5].

To simplify modeling we assume that the effects of changes
in (u, d, t) from (ul, dl, tl) on qi, the vector of modeled rates for
well i, can be described by separate kernel functions fu, fd, ft:

q̂i = ql,if i
d(d

i, dl,i, θ) · f i
u(ui, ul,i, θ) · f i

t (t, t
l, θ) (8)

Each kernel function may be further separated as necessary,
ft may for instance be divided into kernel functions describ-
ing depletion and transients, and fu and fd may be divided
into kernel functions describing different components of u and
d as necessary. In addition, terms describing measurement
uncertainty may be added as appropriate for joint data rec-
onciliation and parameter estimation [19]. Kernel functions
can be found by different means, either simulators, physical
knowledge, well tests or fitted to a tuning set in a black-box
manner. The model structure (8) may need to be tailored to
describe the characteristics of each particular field.

A balance is required between models which are too rigid
to describe the observed tuning set and models which are
too flexible. Models which are too flexible can suffer from
a phenomenon known as over-fitting, where the fitted model
describes the tuning data set well while the model describes
other data poorly. Fitted models which are almost equally
capable of describing a set of independent data, a “validation
data set” and the tuning set should be preferred, as such
models do not suffer from over-fitting [14].

3.3 Estimating parameter uncertainty

We wish to exploit production data from normal operations
as much as possible as such data can be obtained at low costs,
yet low information content can result in significant param-
eter uncertainty if models are fitted to such data. If θ̂ is
erroneously assumed to describe production while parameter
uncertainty is significant, production optimization may sug-
gest setpoint changes û(θ̂) that are infeasible, sub-optimal or
may even reduce profit. Rather than abandon the use of pro-
duction data from normal operations, we propose quantifying
parameter uncertainty. Further work may focus on exploit-
ing this quantification of uncertainty to devise strategies for
production optimization under uncertainty.

A standard result of system identification is that the matrix

Pθ = lim
N→∞

1
N

N∑
t=1

λ0

⎡
⎣E

⎧⎨
⎩
(

∂ŷ(t, θ̂)
∂θ

)(
∂ŷ(t, θ̂)

∂θ

)T
⎫⎬
⎭
⎤
⎦
−1

(9)

is the covariance matrix of the asymptotic distribution of
prediction-error estimates [14]. Estimates P̂θ are an expres-
sion of parameter uncertainty which can be found from the
tuning set and model, the diagonal elements of P̂θ are the
variance of each component of θ.
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The derivation of (9) requires ε(t, θ̂) to be a sequence of
zero mean independent variables with variance λ0, as well
as some technical conditions and invokes the central limit
theorem. Approximations of Pθ can be obtained from a finite
set of data of length N , but this approximation can introduce
errors, especially when N is small. In nonlinear identification,
numerical solvers may return estimates θ̂ which are one of
several local optima rather than the global optima of (6)–(7).
In such cases it is not clear that (9) will be a valid description
of parameter uncertainty. The matrix product in (9) may
be an ill-conditioned matrix when ZN has low information
content, in which case matrix inversion can be numerically
inaccurate.

Parameter uncertainty can also be estimated numerically
using bootstrapping [20]. Bootstrapping decomposes ȳ(t) into
a systematic, modeled component y(u, d, θ̂) and a stochas-
tic process e: ȳ(t) = y(u, d, t) + e(t), and assumes that
the observed residuals ε are a representative distribution of
e(t). Bootstrapping uses this assumption to construct a large
number of synthetic measurements with a set of re-sampled
stochastic component, and re-estimates θ̂ for each of the
synthetic measurements. Residuals for time-instances where
measurement errors or large un-modeled disturbances cause
gross errors should be detected in pre-analysis and excluded.

The advantage of bootstrapping over asymptotic analysis
is that it makes assumptions about the model and data set
which are possibly less stringent, but finding estimates of un-
certainty requires significant computational effort as the pa-
rameter estimation problem is solved a large number of times
numerically.

3.4 Summary
The suggested approach to modeling and parameter uncer-
tainty estimation is summarized in Algorithm 1.

Algorithm 1 Given a dataset ZN (4) of historical data de-
scribing production, and let Ns be the desired number of re-
samples.

• Choose a model structure (2) on the form (8) as applica-
ble to the particular field, and

• estimate a nominal θ̂ from (6)–(7). Apply constraints to
assist parameter estimation as applicable.

• For the number of re-samples Ns

– generate a data set ZN
r , by sampling observed resid-

uals ε N times and adding them to the output es-
timated using the process model and the nominal θ̂,
and

– determine a re-sampled parameter estimate θ̂r for
ZN

r from (6)–(7).

• The distribution of θ̂r,i ∀i = 1, . . . , Ns is an estimate of
the parameter uncertainty.

4 Synthetic examples and a case
study

In this section the suggested approach is validated on a syn-
thetic example and a case study of actual field data is per-

formed. All simulations in this paper are implemented and
solved in MATLAB1 using the TOMLAB2 toolbox.

4.1 Production model
We consider a well decoupled from other wells when changes in
its production do not influence the production of other wells.
In this paper we will consider the case of a field with nw

decoupled, gas-lifted wells producing predominantly oil, gas
and water. We will consider change in gaslift rates Δqi

gl
def=

qi
gl

ql,i
gl

− 1, i ∈ 1, 2, . . . nw as the decision variable u = Δqgl.

We consider the relative production valve opening z ∈ [0, 1]
as a modeled disturbance. Let the most recently measured
rate of a given component of production be ql,i, measured
for gas lift rate ql,i

gl and relative valve opening zl,i at time
tl. As profit depends on total oil production and constraints
are linked to total production of gas and water, we choose
to model the production of oil, gas and water for each well,
(q̂i

o, q̂
i
g, q̂

i
w) ∀i = 1, 2, . . . , nw. To simplify estimation of θ̂ we

will assume that kernel functions f i
z(zi, zl,i) based solely on

physical knowledge will describe production sufficiently well.
The error introduced by this assumption should be small, as
the production chokes for most wells are either fully opened or
fully closed most of the time. As gas lift rates are the decision
variable, we choose to fit the parameters of gas-lift kernels
f i

gl(q
i
gl, q

l,i
gl , θ) to production data. It is feasible to model time-

variant effects by interpolating between single-rate well tests,
but we choose not to include such effects in our model as
test-separator measurements of gas are unreliable and often
exhibit large non-physical variations. We choose to not model
transients as few transients are visible on the time-scales and
sampling rate considered. We will assume that discrepancies
between test separator and total rate measurements can be
described sufficiently by identifying bias terms βy for each
total rate measurement, and will not attempt to compensate
further for measurement uncertainty. We assume that wells
are decoupled and elect to not model coupling between wells.
The form of (8) we choose to consider in this paper is

q̂i
o = max{0, ql,i

o · fz(zi, zl,i)(1 + αi
oΔqi

gl + κi
o(Δqi

gl)
2)} (10)

q̂i
g = max{0, ql,i

g · fz(zi, zl,i)(1 + αi
gΔqi

gl + κi
g(Δqi

gl)
2)} (11)

q̂i
w = max{0, ql,i

w · fz(zi, zl,i)(1 + αi
wΔqi

gl + κi
w(Δqi

gl)
2)}

(12)

Kernel functions fgl(qi
gl, q

l,i
gl , θ) are chosen as second order

polynomials, where αi
o, α

i
g, α

i
w expresses gradient information

and κi
o, κ

i
g, κ

i
w expresses curvature in oil, gas and water gas-lift

curves for well i, respectively. fz(zi, zl,i) is a nonlinear ker-
nel which should express the nonlinear relationship between
valve opening and production, which obeys fz(0, zl,i) = 0 and
fz(zi, zl,i) = 1. In this paper we choose

fz(zi, zl,i) =
1 − (1 − zi)k

1 − (1 − zl,i)k
. (13)

We will consider the total rates of oil, gas and water qtot
o

def=∑nw

i=1 qi
o, q

tot
g

def=
∑nw

i=1 qi
g, q

tot
w

def=
∑nw

i=1 qi
w as elements in the

1The Mathworks,Inc., version 7.0.4.365
2TOMLAB Optimization Inc., version 5.5
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measurement vector y
def=
[
qtot
o qtot

g qtot
w

]T . Let R be a

routing matrix of ones and zeros defined such that ȳ
def= R̄x

when measurement uncertainties can be neglected. Let an
estimate of production for a given parameter estimate θ̂ be

ŷ(u(t), d(t), θ̂, t) def= Rx + βy (14)

where βy is a time-invariant measurement bias to be esti-
mated. The components of θ in this paper are αi

o, α
i
g, α

i
w

and κi
o, κ

i
g, κ

i
w for all wells i = 1, 2, . . . , nw and βy. (10)-(12)

does not assume rate-independent ratios, and may therefore
be able to describe wells with oil-, gas- or water coning in
steady state.

4.1.1 Numerical solution of the parameter estima-
tion problem

Estimating the parameters of (8) is a nonlinear programming
problem in general, while (10)–(12) has a linear-in-variables
structure, and we estimate θ̂ with the linear-least squares
solver lssol in TOMLAB.

The parameter estimation problem can be divided into
three separate sub-problems, one for oil, one for gas and one
for water, but we choose to solve these problems as a sin-
gle parameter estimation problem and use constraints to link
these problems, as we will discuss in the section below.

4.1.2 Physical knowledge in parameter estimation

It is impossible to give an exhaustive list of all conceivable
physical constraints on θ, but a short review is given.

The ratios between phases, such as gas-oil ratio or water-oil
ratio, are rate-independent for some wells, and this qualitative
knowledge can be used to simplify the parameter estimation
problem. The ratio r between phases m and n for well i is
ri
m,n

def= qi
m

qi
n

. A rate-independent ratio ri
m,n obeys

ri
m,n =

ql,i
m (1 + αi

mΔqi
gl + κi

mΔ(qi
gl)

2)

ql,i
n (1 + αi

nΔqi
gl + κi

n(Δqi
gl)2)

∀Δqi
gl. (15)

(15) could be enforced by hard constraints αi
m = αi

n and
κi

m = κi
n, or alternatively by a soft constraint

Vs(θ) = wr

(
αi

m − αi
n

)2
+ wr

(
κi

m − κi
n

)2
. (16)

On wells where the gas-oil or water-oil ratios are known to
be rate-dependent we may still know that these ratios do not
vary by more than a given percentage and this may be in-
cluded as difference constraints. If we expect

ql,i
m

ql,i
n

RL <
qi
m(qi

gl)
qi
n(qi

gl)
<

ql,i
m

ql,i
n

RU , ∀qi
gl, (17)

where 0 < RL < 1 < RU , we could enforce constraints
αi

oRL ≤ αi
g,κi

oRL ≤ κi
g, αi

oRU ≤ αi
g and κi

o ≤ RUκi
g.

For gas-lifted wells it is reasonable to expect the increas-
ing friction at increased gas-lift rates to result in performance
curves with negative curvature ∂2mi

tot

∂q2
gl

< 0, and this qualita-

tive knowledge can be expressed in terms of θ. Let ṁi(Δqi
gl)

be the mass rate of production from well i for a given gas

lift rate Δqi
gl, and let Δṁi def= ṁi(Δqi

gl) − ṁi(0). If the rate
of produced mass from well i can be assumed to consist pre-
dominantly of oil, gas and water with densities ρo, ρg and ρw,
respectively:

Δṁi
tot = ρoq

l,i
o

(
αi

oΔqi
gl + κi

o(Δqi
gl)

2
)
+

ρgq
l,i
g

(
αi

gΔqi
gl + κi

g(Δqi
gl)

2
)
+

ρwql,i
w

(
αi

wΔqi
gl + κi

w(Δqi
gl)

2
)
+

ρg(qi
gl − ql,i

gl ).

(18)

with second derivative

∂2Δṁi
tot

∂(Δqi
gl)2

= ρoq
l,i
o κi

o + ρgq
l,i
g κi

g + ρwql,i
w κi

w < 0. (19)

(19) could be added as a soft-constraint. One technique that
can help reduce over-fitting is regularization [21]. Let α be a
vector of αi

o, α
i
g, α

i
w, i = 1, . . . , nw and let κ be a vector of

κi
o, κ

i
g, κ

i
w, i = 1, . . . , nw. Regularization terms

Vs(θ) = wα
reg(α − αreg)T (α − αreg)+

wκ
reg(κ − κreg)T (κ − κreg)

(20)

can be added as soft constrains, penalizing deviation from
α = αreg and κ = κreg. wα

reg and wκ
reg are weighting parame-

ters. αreg and κreg could be estimates of gradients and curva-
ture determined from multi-rate well tests. Upper and lower
bounds on θ̂, based on knowledge of the expected shape of
the gas lift performance curve, may improve the performance
of some solvers. Such bounds should be loose, i.e. so wide
that the solver is expected to find solutions within rather than
on these bounds when there is any excitation of the decision
variables associated with a given parameter. Loose bounds
also ensure that unrealistic parameter values are not chosen
in those cases when there is very little excitation of certain
modes.

4.2 A synthetic example
In this subsection the properties and capabilities of the pro-
posed modeling approach is illustrated on a synthetic exam-
ple. Consider a field with 8 gas-lifted wells, each with pro-
duction of oil qi

o, gas qi
g, and water qi

w, at rates which vary
with the gas lift rate qi

gl. Wells are grouped into pairs with
performance given by similar equations. Wells 1 and 2 have
rate-independent gas-oil ratio and water-oil ratio:

qi
o = 10 + 0.025qgl +

√
qi
gl − 0.000013(qi

gl)
2 (21)

qi
g = 30qi

o (22)

qi
w = 0.5qi

o (23)

Wells 3 and 4 have gas coning, and a rate-dependent gas-oil
ratio is chosen, while the water-oil ratio is rate-independent:

qi
o = 10 + 0.033qgl +

√
qi
gl − 0.000017(qi

gl)
2 (24)

qi
g = 30(

qi
gl

1000
− 1)qi

o (25)

qi
w =

0.5
1 − 0.5

qi
o (26)
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Wells 5 and 6 have water coning, and have a rate-dependent
water-oil ratio, while the gas-oil ratio is rate-independent:

qi
o = 15 + 0.028qgl +

√
qi
gl − 0.000022(qi

gl)
2 (27)

qi
g = 40qi

o (28)

qi
w =

0.4(1 + 0.3(qgl/1000− 1))
1 − 0.4(1 + 0.3(qgl/1000− 1))

qi
o (29)

Wells 7 and 8 have oil coning, and have a rate-dependent
water-oil ratio while the gas-oil rate is rate-independent:

qi
o = 14 + 0.15qi

gl − 0.00003(qi
gl)

2 (30)

qi
g = 35qi

o (31)

qi
w =

0.6(1 − 0.20(qi
gl/1000− 1))

1 − 0.6(1 − 0.20(qi
gl/1000− 1))

qi
o (32)

Suppose that we have a set of historical measured total pro-
duction rates and accompanying gas lift rates of each well,
against which to fit our model, shown in Figure 5. The model
is fitted with Algorithm 1, firstly with only loose bounds on θ,
secondly knowledge of rate-independent gas-oil and water-oil
ratios were applied as soft constraints where appropriate. The
resulting models and model uncertainties are shown in Figure
5. This example illustrates that the parameter estimation is
able to gain information from measurements of total rates for
a synthetic field with a small to medium number of wells with
varying characteristics. As the synthetic example has pairs
of similar wells, the effect of the level of excitation on the
estimates of uncertainty is visible in Figure 5. The matrix
Pθ was close to singular, with cond(Pθ) ≈ 1019, which would
make it difficult to obtain meaningful estimates of parameter
uncertainty using asymptotic analysis in this case.

Although the suggested methodology is able to produce un-
certainty estimates which describe the true gaslift-curves well
for most wells, the method can break down if the information
on the gas lift performance of some wells is virtually non-
existent, as is the case for well 2 as shown in Figure 5. Such
cases should be detected in post-analysis, and either further
excitation of such wells should be performed, or these wells
should be left out of production optimization.

4.3 Case study: Production data from a
North Sea oil field

In this section, the proposed method is applied to the pro-
duction data from an offshore North Sea oil field producing
mainly oil, water, and gas from 20 gas-lifted wells. The op-
erator of the field requested that data be kept anonymous
and all results are therefore presented in terms of normalized
variables. A tuning set spanning five months with sampling
time of one hour was considered. To compare the significance
on estimated uncertainty of including physical assumptions
as soft constraints, we will fit the model to production data
in two runs. In the first run, only loose bounds 0 < α < 1
and −1 < κ < 0 are implemented. In the second run soft con-
straints were on rate-independent ratios were enforced, differ-
ence constraints were applied to limit the rate-dependency of
gas-oil ratios, chosen as RL = 0.7,RU = 1.3 for all wells, and
the curvature constraint was enforced. Past well tests indicate
that the watercut is rate-independent, and soft-constraints

are included in the second simulation run to enforce this rate-
independence. We choose k = 5, so that changes in zi have
a large influence on production when zi is small and a small
influence on production when zi is large. To reduce the im-
pact of reservoir depletion, and un-modeled disturbances, on
estimates, measured oil rates were de-trended as is shown in
Figure 5 and in addition residuals in (6) were weighted with
a forgetting factor [14]

w(t) = λN−t, (33)

chosen as λ = 0.5
1

N−1 . As the production model is intended
to be a local description around (ql, ul, dl), we omitted shut-
downs from the tuning set.

4.3.1 Results

The fit between the nominal production model and the tun-
ing data set is shown in Figure 6. A set of Ns = 100 boot-
strap replications were designed and the parameters were re-
estimated, as outlined in Algorithm 1. The tuning sets used
when bootstrapping are shown in Figure 7. Estimates of the
bootstrap models are compared with the validation set in
Figure 8. The resulting models are compared in Figure 9.
Nominal parameter estimates result in models and estimates
similar to the those shown in and Figure 9 and Figure 8.

4.3.2 Discussion

An advantage of the chosen modeling approach is that es-
timated models can be interpreted by the shape of perfor-
mance curves, as in Figure 5, with which industry practition-
ers may already be familiar. In Figures 6 and 8 we observe
several large changes in measured rates which cannot be ex-
plained with changes in z or qgl. These deviations could be
the result of measurement error or disturbances stemming
from the reservoir or topside process facilities. As the model
is intended for determining day-to-day operating setpoints
rather than prediction for long time intervals, the bias be-
tween model estimates and measurements observed in Figure
8 is less significant than the ability of the model to predict
the change in production resulting from changes in setpoints
shown in Figure 8. From Figure 5 we see that the uncer-
tainty varies greatly between different phases and for different
wells. Comparing the relative degree of uncertainty for dif-
ferent wells may be useful for excitation planning. In this pa-
per we have assumed that the only measurement uncertainty
is a steady bias in total rate measurements βy. Measure-
ment uncertainty in rate measurements at the test separator
may cause errors in the operating point, and we have not
studied the significance of such errors on estimates or how
to mitigate or estimate these uncertainties. The assumption
of time-invariant production in the tuning set is clearly an
approximation, as a falling trend in oil production due to de-
pletion is visible and some wells have varying phase ratios
during the course of the tuning set. By choosing a relatively
long tuning set, we err on the side of caution with regards to
estimated uncertainties, but risk introducing biases in param-
eter estimates. Reservoir dynamics and changed processing
conditions are treated as un-modeled disturbances in this pa-
per and only the most recent well test was used. A visible
decline in measured oil production was treated by de-trending
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and introducing a forgetting factor. It may be possible to im-
prove on this approach either through modeling disturbances
and by exploiting older well tests. Although we have focused
on gas-lifted wells in this paper, the system identification ap-
proach to modeling is general and has extensions to other
types of field and wells, for instance wells where coupling is
significant or wells where production choke settings are de-
cision variables. The approach to estimating uncertainty re-
sulting from a low information content is general and has
extensions to estimating the uncertainty in proxy-models de-
rived from commercial simulators as well. The model and
uncertainty estimates described may be applied to estimate
the significance of uncertainty on production profits, for for-
mulating structured business cases for uncertainty mitigation
or for designing structured approaches to decision making un-
der uncertainty, as suggested in [5].

5 Conclusion

The contribution of this paper is twofold. Firstly, it is dis-
cussed how parameter uncertainty can be quantified when
models are fitted to data with little information content, a
concept that has been little explored in the context of mod-
eling for production optimization. Secondly, it is suggested
how system identification can be used to find models for pro-
duction optimization with the aim of reducing costs of design
and maintenance of production optimization. The method
was demonstrated on a synthetic example before being ap-
plied to a case study of real field data from a North Sea oil
and gas field. The method suggested in this paper has ap-
plications in real-time optimization of day-to-day production
and in the development of structured approaches to handling
uncertainty, such as excitation planning/well test planning or
robust production optimization.
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Figure 1: A schematic model of offshore oil and gas produc-
tion.
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Figure 3: Synthetic example: True performance curve
(solid), bootstrap performance curves without physical con-
straints (dashed), bootstrap performance curves with phys-
ical constraints (dotted), local operating point (circle) and
the span of gas lift rates observed in tuning set (vertical
solid).

8



qtot
o

qtot
g

qtot
w

t

qgl

0 100 200 300

8
7
6
5
4
3
2
1

660

680

700

720

1.8

2

550

600

Figure 4: Synthetic example: Top three graphs: Measured
total rates of oil, gas and water (dotted) compared with esti-
mates of the fitted model without soft constraints (dashed)
and with soft constraints (solid). Bottom graph: normal-
ized gas lift rates of wells 1 through 8 plotted in ascending
order.

qtot
o

t[hours]

0 500 1000

0.6

0.8

1

1.2

Figure 5: Case-study: Measured oil rates (dotted) and de-
trended oil rates used in tuning set (solid).
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Figure 6: Case-study: Case study: Last portion of tuning
set (solid) compared with estimates of the model including
physical constraints (dashed). Sampling time reduced to
five hours for clarity.
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Figure 7: Case-study: Tuning set (solid) and one boot-
strap replications (dashed), for model including physical
constraints.
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Figure 8: Case-study: Estimates of with bootstrap replica-
tions (dotted) compared with the validation data set (solid),
for model including physical constraints.
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Figure 9: Case-study: Bootstrap performance curves with-
out physical constraints (dashed), bootstrap performance
curves with physical constraints (dotted), local operating
point (circle) and the span of gas lift rates observed in tun-
ing set (vertical solid). Lower left bound of all plots is (0,0).
Well indices are along left margin.
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