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Abstract 

Determining injector-producer relationships, i.e., to quantify the inter-well connectivity between injectors and producers 
in a reservoir, is a complex and non-stationary problem. In this paper, we present a neural-network-based sensitivity analysis 
approach to address this problem. To the best of our knowledge, sensitivity analysis has never been applied for identification 
of the injector-producer relationships, yet we show that it is an intuitive while fundamental approach to address this problem. 
Sensitivity analysis is based on a theory with which the functioning of a closed system is derived by analyzing the derivatives 
of the output with respect to each input combination. For the injector-producer relationship identification problem, we use 
sensitivity analysis to determine the injector-producer relationships by varying the injection rates, i.e., the inputs to a trained 
neural network model of the oilfield, and analyzing the outputs, i.e., the production rates.   

With our approach, we first generated a neural network to define the mapping function between each producer and its 
surrounding injectors based on the historical injection and production data. We employed Back-Propagation-Through-Time 
(BPTT) learning algorithm to train the three-layer feed-forward neural network using real data collected from 1911 to 2005.  
Next, we utilized the generated neural network model to apply sensitivity analysis in order to quantify the significance of the 
injectors on the corresponding producers.  

We evaluated our proposed injector-producer relationship identification technique by experiments with real oilfield 
dataset as well as field trials. Experimental results show that our sensitivity analysis approach is not only an efficient method 
for identifying injector-producer relationships but also reveals significantly higher correlation accuracy as compared to the 
correlation typically estimated by the field engineers.  
 
1. Introduction 

Forecasting injector-producer relationships and modeling fluid flow in petroleum reservoirs is the key to recover 
maximum oil with reduced operation costs. Based on the analysis of the historical injection and production data from a 
reservoir, one can observe that the production performance is not only controlled by the injection rates itself but also maybe 
affected by various other factors. For example, new fractures in underground structures, fluctuation in permeability, and 
changes in reservoir temperature can easily impact the oil recovery. Typically, certain parameters may affect the output to a 
larger extent as compared with others, whereas some may have no effect on the behavior of the system. This complex 
behavior of oilfields renders the identification of the allocation factors between injectors and producers as an extremely hard 
problem.  

Currently, reservoir engineers determine allocation factors between injectors and producers based on their past 
experience, production and injection historical data, numerical simulations.  These approaches are not only time consuming 
but also error prone as they neglect non-linear interactions between various parameters.  

In this paper, we present a novel neural-network-based sensitivity analysis approach to identify the injector and producer 
relationships in oilfields. Neural networks are mostly used when analytical model of the system either is not known or does 
not exist.  In addition, neural networks employ historical data to learn the underlying system by developing a function that 
maps the input vectors to output vectors without knowing the system characteristics. In a typical neural network, the response 
at a particular time depends not only on the observable event but also on the past events. Moreover, neural networks [1] are 
adaptive systems as they arrange their weight functions on the basis of external or internal information that flows through the 
network. All these features of neural networks allow us to capture the complex characteristics of an oilfield and thus 
motivating us to develop a neural network based approach.   

In our study, we first created producer-centric patterns, in which each producer was surrounded by multiple injectors, 
based on the real injector and producer coordinates in an active oilfield. With each pattern, we selected time varying monthly 
injection rates of each injector as the input vector where as oil, gas and water production as the output vector.   In order to 
capture the mapping function between the injection rates and the production data, we first trained a three-layer feed-forward 
neural network using historical data. Next, we applied sensitivity analysis [2-3] to the trained neural network model to 
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identify the injectors that have significant effect on the producers. For the injector-producer problem, we used sensitivity 
analysis to derive the relationships by varying the injection rates to a trained neural network model of the oilfield, and 
analyzing the production rates. 

The rest of the paper is organized as follows: Section-2 briefly surveys the related work on injector-producer relationship 
identification problem, while Section-3 presents the construction of our neural network model and our sensitivity analysis 
method applied on the trained neural network. Finally, Section-4 presents experimental results performed in an active 
oilfield, and Section-5 concludes with directions for future work.  

 
2. Related Work 

In the past, several methods have been proposed to infer injector-producer relationship using historical injection and 
production rates [4-9]. Hefer et al. [4] utilized Spearman rank cross correlations to estimate the relationship between injector 
and producer pairs where each pair consisted of an injector and a producer. They also associated these relations with 
geomechanics of the oilfields. Refunjol et al. [5] also used Spearman rank correlation method to determine flow trends in an 
oilfield. In their work, they correlated time series of injection and production rates for an injector and adjacent producers 
while using time lags to find extreme coefficient value. Soeriawianata et al. [6], who also employed Spearman rank cross 
correlation, accounted for destructive and constructive effect of surrounding injectors to a producer. They inspired from the 
fact that injectors and producers operating simultaneously causes both superposition and noise. Even though, the spearman 
rank correlation is a very convenient non-parametric (distribution-free) statistic method, it suffers from the fact that the 
correlations that are calculated may give spurious negative correlations and no systematic behavior of correlations with time 
lag is found. Panda and Chopra [7] proposed a different approach other than the above statistics-driven methods to estimate 
the well interactions. Their work is similar to our approach however they do not apply the sensitive analysis over the trained 
neural network. They used an artificial neural network, where the multivariate data set includes the flow rate data of the well 
pairs and petrophysical parameters.  

In most recent works, Alborteni and Lake [8] utilized Multiple Linear Regression (MLR) method to determine the 
interwell connectivity using resistive (transmissibility) model (RM). The linear model coefficients calculated by MLR 
quantitatively indicated the relation between a producer and adjacent injectors. Their method offers two solutions covering 
the case when the field-wide injection rate is different than the field-wide liquid production rate and the case when the two 
are almost equal.  Yousef et al. [9] extended the method proposed by Alborteni and Lake by adding capacitance 
(compressibility) parameter to the model. Their capacitance model (CM) approach determines two coefficients to quantify 
the interwell connectivity using MLR. The first coefficient is the weight that quantifies the connectivity depending on the 
geology and the relative position of wells. The second one is the time constant which quantifies the degree of fluid storage 
between wells. In both approaches, they assumed that the parameters in the models are unchanged (stationary) during the data 
analysis period.  However, injector and producer relationship is non-stationary due to the fact that it changes constantly on 
the basis changing various factors such as natural geomechanical effects, bottom hole pressures, etc.  

To overcome the shortcomings of the previous methods, we propose a new neural-network-based sensitivity analysis 
approach. Neural networks have been widely used for pattern recognition and prediction in oilfields [10-13]. Despite the fact 
that the neural-network-based sensitivity analysis is a popular approach to identify input and output relationships; it has never 
been applied to injector-producer relationship identification problem. We discuss the advantages of the neural-network-based 
approach in the next section. 
 
3. Procedure 
The mathematical developments of both neural network modeling and sensitivity analysis are addressed in this section.  
 
Neural Network Modeling 

Artificial neural networks are computational models of biological neural structures. A basic neural network structure 
consists of one input layer, one or more hidden layers and one output layer. Each layer consists of different numbers of 
neurons and each of these neurons connects to next layer’s neuron with a weight. The neuron in each layer takes multiple 
inputs and produces an output on the basis of its activation function.  Therefore, each input, which can be a raw data or output 
of other neurons, is modified by weight before fed to the next layer. Each neuron combines these weighted inputs and 
processes them with an activation function and a threshold value before producing its output.  

Much of the interest in neural networks arises from their adaptiveness and ability to discover the underlying system by 
developing a function between input and output vectors on the basis of historical data.  Neural networks accumulate the 
knowledge implicitly in connection weights between the layers. As a consequence, the knowledge can be modified by 
changing the weights through back-propagation.  With the back-propagation rule, also referred as delta learning rule, the 
network first uses the input vector to produce an output, and compares this output to the desired output. In the case there is a 
difference, the weights are modified between the layers to further decrease the difference. This continues until the minimum 
desired error rate between the network produced and actual output. Fig. 1 illustrates a basic structure of a three layer neural 
network where x, y, z, δ   represent input vector, actual output vector, desired output vector and error rate respectively; 1y  is 
the output of the processing element which is derived  from summation of the input vector and the corresponding weights. 



SPE 112124  3 

 
 
 
The major aspects of a successful neural network design are the selection of learning algorithm, input vectors, number of 

hidden layers and number of neurons in each hidden layer.  The next section presents the methods that we used to select these 
features.  We do not explain each feature in detail since all these are very well described in artificial intelligence literatures 
and it is out of our scope. Our main focus in this paper is sensitivity analysis on neural networks.  

 
Inputs and Output Selection 
Based on the real injection-production dataset from a section of an active oilfield, we first constructed a set of producer-

centric patterns with which each producer was surrounded by multiple injectors.  Fig. 2 shows these patterns, where red and 
blue markers denote injectors and producers, respectively. In this section, there are 90 different patterns whose boundaries are 
determined by the reservoir engineers based on the past experience and historical injection/production rates. Fig. 3 illustrates 
a satellite image that depicts a single pattern which includes five injectors and one producer.  

To construct our neural network model of the oilfield, we selected time varying injection rates of injectors as the input 
vector. We selected oil, gas and water production from the corresponding producer as the output of the neural network. We 
also normalized the input vectors since it enhances the training process by preventing large input values from invalidating 
other inputs that are equally important but have smaller values.  We used mean/standard deviation method to normalize the 
input and output vectors of our neural network.  
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where iX ' , iX , iμ , iσ  represent  normalized input vector, original input vector, mean of the original input vector, and 
standard deviation of the input vector, respectively.   

 
 Learning Algorithm  
Almost all of the previous neural network studies in petroleum engineering used the most-widely recognized back-

propagation algorithm.   In our study, we used Back Propagation Through Time [14] which unfolds discrete-time recurrent 
neural network into a multilayer feed-forward neural network where we can use classic back propagation with some 
modifications.  In other words, recurrent network is transformed into T-multilayer feed-forward network where each layer 
represents one unfolding of recurrent network in time.  This allows the network to remember the inputs in the past; hence, the 
training is more robust.  
 

 Hidden Layers 
The number of neurons in the hidden layers is very important since it affects the training time and generalization property 

of neural networks. On the one hand, too many neurons may cause the network to memorize (over-fitting)  as opposed to 
generalize, on the other hand a too few number  of neurons would require more training time in finding optimal 
representation or  generally result in under-fitting.   We adjusted the number of neurons in hidden layer experimentally   One 
rule of thumb in the neural network literature indicates that  the number of neurons in hidden layer should be 2/3 of input 
neurons plus number of output neurons. [13] We determined the number of neurons in each hidden layer for each pattern 
mainly based on this rule of thumb, along with many trial and error experiments.   For each neuron in all layers, we used the 
sigmoid function as the neuron’s activation function.  
 

Training  
We divided the data at hand into training and test dataset based on the years.   For example, for the best case scenario, we 

used the data from 1911 to 1985 as training set where as the data from 1985 to 2005 is used for testing the neural network 
model.  In some cases, we utilized bagging and boosting [1] techniques to increase reliability of the networks for weak 
learners (data short patterns). We trained our neural network model for each producer-centric pattern consisting of a producer 
and surrounding multiple injectors.  We first developed the network model using most of the default parameters in neural 
network software tool. Later, we tried different learning rules, number of iterations, activation functions and hidden layers 
until we find the optimal design.  We employed 1) actual output/network output plot, and 2) mean square error of the entire 
output metrics to understand how well-trained the network.  

 
Sensitivity Analysis 
After a neural network is adequately trained, it can be used for control and/or prediction of operational parameters. However, 
our goal is to utilize trained neural network for identifying the important input parameters instead of prediction. For this, we 
use sensitivity analysis which calculates a sensitivity matrix based on the partial derivatives outputs of the network with 
respect to each input. The sensitivity analysis methods for neural networks have been extensively discussed in artificial 
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intelligence literature [2, 3, 15-17]. Its effectiveness and some limitations have been shown [18]. The first approach is to add 
noise to each input variable, and to observe the effect upon the overall error [19]. There are some drawback in this approach 
such as deciding the volume of noise to add (i.e. cannot add noise to nominal variables).  The second approach is to analyze 
the derivatives of the fan-out weights of the input units, with a high derivative indicating high sensitivity [2].  As a part of our 
work, we conducted sensitivity analysis on injectors to determine how each injector would affect the oil production. We 
utilized the sensitivity analysis method proposed by Zurada at el. [2]. This enabled us to rank the influence of the injectors for 
each producer in the given oilfield pattern.   

The following is the definition of sensitivity analysis of our three layer feed-forward neural network model where 
[ ]nxxxx ...,, 21=

→ , [ ]mhhhh ...,, 21=
→ , [ ]pyyyy ...,, 21=

→   represent the input, hidden and output layers respectively. Given 
this information we can define the sensitivity of trained output with respect to an individual input as:  

 

(1) 
 
Using the standard notation of an error back propagation through time, the derivative of sensitivity can be expressed in 

terms of network weights as show below:  

 

(2)  

   

where mnv  denotes the weight value between input and hidden layer and pmw  denotes the weight value between the hidden 

and the output layer.  Here '
py , '

mh  represents the derivative of output and hidden layer activation function, respectively.  
Equation (2) defines the sensitivity of the production with respect to one injector at time t. Since our training set includes 

dataset in time series for each producer and injector in the given pattern, we define the pattern sensitivity matrix in order to 
include all entries in the training set.    

 

(3)  
 

where W and V are the output and the hidden layer weight matrices, respectively, and:  

 

(4)  
 
 
Equation (3) defines the sensitivity matrix for a specific training data vector at time t. However, each training pair 

produces a different sensitivity matrix. In order to apply sensitivity analysis, the sensitivity matrix must be evaluated over the 
entire training dataset. For this, we used the following metric:  

 

(5) 
 
 

Using the metric in Equation (5) we can now define the significance        of any input parameter over the output using  

 
 
(6) 
 
Finally, we can now sort the significance of each input over output as shown by the example below (where 1Φ  represent 

least significance):  
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The basic idea behind the neural-network-based sensitivity analysis is that each input channel to the network is offset 
slightly and the corresponding change in the output(s) is reported. The input channels that produce low sensitivity values can 
be considered insignificant which in turn represent the injector and producer relationship in the pattern.  We can summarize 
the algorithm as follows: 

  
Step 1: Train the neural network on the original training set  
Step 2: Calculate all input-output sensitivities for each training pair (Eq. 3)  
Step 3: Calculate the sensitivity matrix over entire training dataset (Eq. 5)  
Step 4: Calculate the significance of each input over output(s) (Eq. 6) 
 
 

4. Experimental Results  
We performed numerous experiments in order to evaluate our proposed technique by using an active oil reservoir dataset 

as well as field trials. We observed that neural network based sensitivity analysis correctly ranked the injectors efficiencies 
around a producer.  

 
Oilfield Dataset Experiments  
In the first experiment, we selected a pattern with five injectors and one producer active since 1984. Fig. 4 illustrates the 

producer-centric pattern where “I” and “P” represents surrounding injectors and the producer, respectively.  Consequently, 
we generated an input vector of injection rates from time series data as [ ]521 ...,, IIII =

→  and an output vector of production rates 
for oil, gas and water as [ ]watergasoil PPPP ,,=

→  
For the purpose of this test, we divided the available dataset into training (75%) and test (25%) subsets. We trained a 5-8-

3 (input, hidden, output layers respectively) neural network with learning rate =0.1 and momentum= 0.4. Both the inputs and 
outputs are normalized to range [0, 1]. We trained the network for an average output unit error of 0.005 using sigmoid as the 
activation function for both hidden layers and output layers. Later, we quantified the sensitivity of each injector to the 
producer on the basis of algorithm described in Section-3.      

Fig. 5 is a sketch of the sensitivity profile which illustrates the evaluation of the significance of each injector to the 
producer. In this case, injectors I2, I4 and I1 are the most sensitive injector to the producer where as injector I5 has very low 
relevance to the production. Therefore, we can conclude that small changes on I2, I4 and I1 results in relatively large changes 
on the producers.  

In order to verify the results of the first experiment, we preformed two additional tests. In the second experiment, we 
trained a 4-8-3 neural network by removing the least effective injector (I5). We observed that the output (production rate) of 
the trained neural network is minimally affected. As shown in Fig. 5, neural network trained on pruned training set converges 
to similar production rate. As a third experiment, we trained the same neural network this time removing most effective (I2) 
injector.  Fig. 6 shows that removing most effective injector from the system causes significant drop (28%) in the production 
rate. We can therefore conclude that our algorithm identified the least and most sensitive injectors correctly. 

We conducted similar experiments to evaluate our approach for multiple injectors and producers cases. We inferred that 
our algorithm is extendable to the case of multiple injectors and producers since it works as efficient as multiple injector and 
single producer case.   

 
Field Trials 
We also evaluated our proposed technique in a real field trial. For this evaluation, we used various maintenance 

operations (i.e., injector shutdown) data of the oilfield subsection. In the first field trial experiment, we found the least 
sensitive injectors, using sensitivity analysis as described in Section-3, for 14 patterns in which different injectors were 
shutdown. We expected that shutdown of the least effective injector would cause minimum impact on the oil recovery of that 
particular pattern. As another field trial experiment, we identified the most effective injectors for 18 different patterns. This 
time, we expected the production would significantly drop since the most effective injectors were shutdown in each pattern. 
Based on the analysis of production data for the selected patterns, we observed that we successfully identified the least and 
most effective injectors with the success rate of 86% and 83% respectively as illustrated in Fig. 8. Table 1 represents the 
number of correct and false classifications in determining least and most effective injectors for selected patterns.  
 
5. Conclusion and Future Work  

The main objective of our study was to use sensitivity analysis on a trained neural network to determine the injector and 
producer relationships. In the first phase, we constructed producer-centric patterns based on the real coordinates of injectors 
and producers from an active oilfield. In the second phase, we trained a neural network for a given pattern in the oilfield until 
the training error decreases to an acceptable level. For training, we used time varied injection rates as the input vector and oil, 
gas and water production as the output vector. Finally, in the third phase, we applied sensitivity analysis on the trained 
network as described in Section-4 to determine the injectors that have a significant influence on the producers. We observed 
that our technique yields better results on the old patterns due to abundance of training dataset. In addition, we evaluated our 
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proposed technique by using an active oil reservoir dataset. The experimental results on the real dataset show that our 
sensitivity analysis approach is not only an efficient method for identifying injector-producer relationship but also reveals 
significantly higher correlation accuracy as compared to the correlation estimated by the field engineers.  

This analysis may assist field engineers in making field management decisions to optimize fluid flow, improve ultimate 
recovery, minimize injection costs, and predict water breakthrough more accurately.   

In the future, we like to extend our work in two ways: 1) we like to add other available time varied datasets (i.e.: bottom 
hole pressure, permeability, etc.)   from injectors and producers to train our neural network model more efficiently, and  2) 
we plan to develop algorithms using the fuzzy curves approach to capture the nonlinear injector-producer relationships and 
compare it with neural-network-based sensitivity analysis. Fuzzy curves use fuzzy membership functions to establish the 
relationship between the input variables and output variable.    
 

Nomenclature  
→

x = input layer vector 
→

h = hidden layer vector 
→

y = output layer vector 
 δ  = error rate 

'X = normalized input vector 
μ = mean of the original input vector 
σ = standard deviation  

mnv = weight value between input and hidden layer 

pmw = weight value between hidden and output layer 

py
' = derivative of the output value 

mh
' = hidden layer activation function 
Ф = significance  
S  = sensitivity matrix 
W = output layer weight matrix 
V  = hidden layer weight matrix 
I   = surrounding injector 
P  = producer 
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Figure 1: An example of the three-layer neural network 
 
 
 

 
Figure 2: A producer-centric pattern layout in an  
oilfield 
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Figure 3: A satellite image of a producer-centric  
pattern in an oilfield 
 
 
 

 
Figure 4: A producer-centric pattern with five injectors 
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Figure 5: Sensitivity analysis output for a pattern with five injectors 
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Figure 6: Production rate after pruning least effective injector 
 

0

10

20

30

40

50

60

70

80

90

100

0 500 1000 1500 2000

Epochs

Pr
od

uc
tio

n 
Ra

te
(%

)

Actual 
After Pruning

 
Figure 7: Production rate after pruning most effective injector 
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Table 1: Correct and false classification summary 
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