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Abstract 
In this paper, we present an algorithm for optimizing reservoir production using smart well technology. The term smart well is 
used to indicate an unconventional well equipped with down hole inflow control valves (ICVs) and instrumentation. This 
additional instrumentation extends the degree of freedom in the field production planning, since production can be efficiently 
distributed on the different well segments available. By proper utilization of the ICVs through optimal production planning, an 
increased oil recovery for the reservoir can be expected. 

We propose a method for optimal closed-loop production known from control theory as model predictive control (MPC). A 
commercial reservoir simulator, ECLIPSE, is used for modeling and predictions. MPC is chosen for its ability to provide an 
optimal solution for the constrained multivariable control problem. To compute the optimal ICV settings, we propose using a 
nonlinear MPC (NMPC) application, which can handle the severe nonlinearities found in reservoir models. The NMPC uses a 
single shooting multi-step quasi-Newton (SSMQN) method to solve the optimization problem. As the term multistep suggests, 
this is an iterative method which solves a sequence of quadratic problems (QPs) in each time step. 

We apply our method to a benchmark reservoir model with multiple geostatistical realizations. This model has already 
proven potential for increased oil recovery by using optimization techniques. We show an even additional increase over the 
former approach in production totals, using the SSMQN method, with as much as 68% increase in one case, and 30% on 
average compared to a reference case. 

 
Introduction 
Reservoir management has traditionally been performed on the basis of long and short term plans made by production 
engineers in a manual, ad hoc fashion. The overall goal is obviously to maximize the total hydrocarbon production and 
recovery factor while minimizing total cost and staying within operational constraints. But reservoir models have generally 
been viewed as too large and computer resources too scarce to apply full scale production optimization. Meanwhile, on the 
downstream end of the production line and in process industry in general, advanced control techniques have been gradually 
developing and implemented with prosperous results. 

Recent technological advances have opened for new possibilities within reservoir production. New reservoir mapping 
techniques offer more accurate reservoir models and the computational cost of simulating the models has decreased 
significantly. Well completions are more sophisticated than ever and supply new dimensions of flexibility to the day to day 
field operation. This new well generation is better known as smart wells. A smart well is a unconventional well equipped down 
hole with ICVs. Smart wells offer control of the total flow through individual segments and branches, as well as temperature 
and pressure measurements. The potential benefits from proper use of ICVs in a real-time control application are substantial. 
This is because continuous redistribution of the production from the available branches can delay or avoid break through of 
gas and/or water for as long as possible.  

These advances combined with a growing motivation from the oil companies’ side to increase the recovery factor of each 
production field, have spawned a high level of attention to the reservoir optimization problem. Reservoir optimization is today 
an active field of research, and has already been investigated by a number of authors since the turn of the millennium. 
Although, some early attempts were made by Asheim [1] and Virnovsky [2], most acknowledge Sudaryanto and Yortsos [3] to 
be the first to systematically address the flooding problem. They used optimal control theory to maximize the sweep efficiency 
for a multiple source (injector), single sink (producer) system. By optimally allocating the injection rate for each injector they 
showed a “bang-bang” strategy to maximize the displacement efficiency, as this caused a simultaneous breakthrough from 
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both sources at the producing end. Brouwer et al. [4] made a study from a less theoretical point of view, focusing on 
production potential available through smart well control. Using a heuristic algorithm for static optimization, they developed a 
production strategy for simple reservoir models. This work was extended by Dolle et al. [5] who developed an algorithm for 
dynamic optimization, using gradient-based optimization. In addition to improving the results from the static approach, they 
also addressed reservoirs with heterogeneous permeability fields. 

The above mentioned work was made with an assumption of constant production rates. Brouwer and Jansen [6] recognized 
that this was hardly common in practice, and therefore investigated the problem further, as they compared the constant 
production rate case with the constant bottom hole pressure (BHP) case. These cases were argued to illustrate the two extremes 
of well-operating conditions, as practical production planning need to take them both into consideration. Yeten et al. [7] 
combined optimization, using a conjugate gradient method, with features available in a commercial reservoir simulator. The 
simulator is used for numerical gradients, as well as for efficient modeling of ICVs. Though costly in terms of computation 
time, their algorithm produced promising results. Sarma et al. [8] used an approximate feasible direction algorithm, in 
combination with a general purpose simulator. Exchanging exact gradient information directly with the simulator, and from 
the efficiency of the approximate feasible direction algorithm, they proved to match results by Yeten [9] using only a fraction 
of the CPU time. 

In this paper we will extend this line of work by using a well known technique from the field of advanced process control 
known as NMPC to optimize reservoir production through closed-loop control. First we will describe the general principles of 
NMPC before outlining an NMPC algorithm specially designed to interface a black-box simulator which is to perform the 
reservoir modeling. We then apply our developed algorithm to a set of reservoir models, previously used in Yeten et al. [7] and 
Yeten [9]. The models are multiple geostatistical realizations of a fluvial reservoir with a horizontal multilateral well. All 
models are applied to the optimization routine, and results are compared both to base case numbers, and the results from 
previously published optimizations. We will show that our NMPC algorithm, by dynamic optimization and reducing the 
sample time, further increases production potentials over the previously used methods. 

 
Model Predictive Control 
MPC is one of today’s most commonly used techniques within advanced process control (APC). It is the largest sub group of a 
general class of methods known as predictive control, which is claimed to be the only class of APC to have significant impact 
in industrial control engineering (Maciejowski, 2002) [10]. The main reason for the widespread acceptance is because MPC 
combines the principle of optimality with the robustness of closed-loop control, while efficiently handling constraints on 
system inputs and outputs at the same time. Mayne et al. [11] define MPC as “a form of control in which the current control 
action is obtained by solving on-line, at each sampling instant, a finite horizon open-loop optimal control problem”. The 
controller’s closed-loop property, which is an important feature on the issue of controller stability, is inherited from the 
repeated solving for optimality of the finite horizon open-loop problem for every subsequent time step starting from the 
observed process state. The control law is calculated for a given control horizon, Tc, and the dynamic behavior of the system is 
calculated over the prediction horizon, Tp, where Tc ≤ Tp. The basic idea is illustrated in Fig. 1. A system is sought to be 
controlled to a set point, r(t). The controller calculates an optimal input sequence, parameterized as a piecewise constant 
function of time, for the control horizon. At the next sampling interval all horizons are moved one step forward. 

Consider a general class of continuous time systems described by the differential equation 
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The inputs are given in the vector mtu R∈)( and ntx R∈)(  denote the state vector. U is a set of input constraints assumed 
to be compact and X is a set of state constraints assumed to be connected [12]. These are the model equations. They play an 
important role in the controller, as it uses the model for system predictions to calculate the optimal inputs. The optimal open-
loop control is given by solving at every time instant: 
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where Tp and Tc refer to the control horizons for predictions and control, respectively. The u denotes the internal controller 
variables and x refers to the system response to the input vector u , i.e. the solution to the defined problem. Controller 
variables are also called manipulated variables (MVs) and the controlled variables (CVs) are the significant process 
measurements available. The cost functional J is the sum of the performance costs, F, at each time step. F is often found in a 
quadratic form displaying some economical consideration for the underlying system: 

).()()()(),( opopopop uuRuuxxQxxuxF −−+−−=  
In this case the cost is given as a result of deviations from an operational set point, specified by positive definite weighting 
matrices Q and R. 

The complexity of an MPC application depends heavily on the complexity of the model. For a simple linear case with a 
quadratic cost function, linear model and linear constraints, the control problem is reduced to a standard quadratic program 
(QP), solvable by standard QP solver. This is a common class of controllers called linear MPC. Note that this does not imply a 
linear controller, as the linear MPC will show nonlinear closed loop dynamics in the presence of constraints [12]. Considering 
the severe nonlinearities in a reservoir model, a linear MPC will not at all be able to provide an optimal solution to the 
reservoir management problem. Such a problem calls for a nonlinear MPC scheme. Nonlinear MPC must solve a nonlinear 
program (NLP) at each time step. Solving an NLP is much more an area of research than solving a QP. In the next section we 
will present a scheme for solving the NLP using a single shooting multi-step quasi-Newton method (SSMQN), specially 
designed to solve this class of constrained nonlinear control problems. 
 
A multistep quasi-Newton method 
Reservoir models are fairly complex and highly nonlinear. This makes analytical model representations from first principles 
costly to develop. This paper will bypass this modeling exercise, and use the commercial simulator, ECLIPSE for predictions. 
As the simulator is a dedicated reservoir model it captures the first principle properties, while we are able to treat it as if it was 
a black-box. Also, large resources have been spent already to develop accurate ECLIPSE models of many reservoirs currently 
in production. This further motivates the choice of the simulator interface in the control application, as it opens up possibilities 
to optimize the production of mid-life reservoirs. 

The system model enters the optimal control problem as a set of nonlinear constraints that must be satisfied in every time 
step. In addition, there are also state-path constraints, from operational considerations, which are possibly nonlinear in terms of 
the manipulated variables (MVs) [8]. In this paper we solve the corresponding NLP through a sequence of quadratic sub 
problems (QSPs), with the SSMQN method. An analogous method was described by Li and Biegler [13], extending a single-
step method by Li et al. [14]. An algorithm very similar to the one used here can be found in Oliveira and Biegler [15], where 
more general objective functions are addressed. 

The method uses an input-output linearization of a black-box model, i.e. the reservoir simulator, around a nominal input 
sequence, the input trajectory. The nominal trajectory can be seen as the solution sequence transferred from the previous 
sample. A quasi-Newton search direction, pk, is found solving a QSP for the linearized model. For algorithm convergence, a 
line search is performed along the search direction pk, ensuring descent in the objective function value. If no algorithm 
convergence is obtained, the procedure is repeated, starting from the input-output linearization. We give the algorithm in five 
steps: 

1. Set the QSP counter to zero. 
2. Compute input sensitivities for the nominal input trajectory (linearization). 
3. Solve the QSP from the linearization for a search direction, pk. 
4. Employ a line search to determine a suitable step size along the search direction.  
5. Set solution as nominal trajectory. Check for convergence. If satisfactory, input the first element of the solution to the 

system, and start over for the next sample. If no convergence is found, increment the QSP counter. Stop if maximum QSP 
iterations are reached, else return to step 2. 

Some of the steps listed in the algorithm deserve a more detailed description. In Step 2 we find the linearized model 
calculating a sensitivity matrix, S, from every input to every output: 
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where k is the current sample, Tp and Tc are the number of prediction samples, xk is the state/output at sample k and uk is the 
input at sample k. An illustration is given in Fig. 2. The elements in S are found from numerical gradients given by the 
ECLIPSE model, by perturbating the input trajectory by small, finite values. 

Step 3 calls for solving a QSP. This is a second order approximation of the NLP, with linearized constraints, similar to the 
QP solved in a conventional SQP algorithm. As our objective function is quadratic in terms of the states, we can guarantee 
positive definiteness of the QSP, since the Hessian becomes an equivalent to the “Gauss-Newton” choice of Hessian. The QSP 
provides the Newton-direction in the QSP, making it a quasi-Newton step for the NLP. We solve our QSP with a dual method 
solver developed by Goldfarb and Idnani [16]. The dual method is preferred because of its lack of demand for a feasible 
starting point.  

The Newton step has a natural step length of one. To ensure objective function value descent, a line search is needed to 
decide on the fraction of the step size pk to choose, as described in Step 4. The line search uses a backtracking approach, found 
in Nocedal and Wright [17]. By decreasing the step length, αk, for every line search iteration with a factor ξ, the objective 
function value descent is secured by terminating the algorithm when fractional step length satisfies a decrease condition. 

In step 5 the algorithm checks for solution convergence using the norm of the input change between the nominal input 
trajectory and the new line searched QSP solution trajectory as proposed in [13]: 

∑ ≤− −k kk uu ε2
1 . 

The value of ε should be chosen small for problems of such a degree of nonlinearity as in this paper to ensure convergence 
sufficiently close to the optimum. 

The algorithm is implemented in SEPTIC (Statoil Estimation and Prediction Tool for Identification and Control) which is 
StatoilHydro’s in-house tool for MPC. SEPTIC is today used in more than 70 installations. SEPTIC is designed to interface 
different models for prediction as black-box models. The link and interface to ECLIPSE were implemented in C++ and 
communication between the two software instances are executed through file I/O. 

 
Applications 
Model description 

Our testing of the NMPC algorithm on a reservoir model is now presented. Although smaller than a typical reservoir 
model, the model is considered to show sufficient complexity while still being suitable for research and development in terms 
of simulation execution time. The model is of a strongly channelized reservoir involving three phase flows, previously used in 
Yeten [7] where it was proven to have a large potential for production optimization. 

Rendering the reservoir description and model data given in [7], this model represents a virtual North Sea type fluvial 
reservoir made from the fluvsim software. Fig. 3 shows a cross sectional area of the 3-D model from top view. The colors 
show the grid permeability according to the specified scale bar on the right, and clearly indicate the reservoir’s channel 
structure.  The model dimensions are 5000×5000×100 ft3, split up into 50×50×6 grid blocks. A detailed list of other parameters 
is given in Table 1. A gas cap is present at the top of field, while water is represented by an aquifer at the bottom, giving 
pressure support. 

The reservoir contains a multilateral horizontal smart well, which is also shown in Fig. 3. The red line show the 
imperforated main bore, while the white lines connected to this are four fully perforated laterals. As can be seen, the laterals 
intersect with both permeable and impermeable zones. The length of the laterals are approximately 2150 ft long, and the well 
is placed 15 ft above the water-oil contact, giving rapid water-breakthrough after production start up. Each lateral is 
controllable through an ICV located at the pipe segment connection between the main bore and the lateral, also shown in Fig. 
3 by the yellow circles. There is also a fifth valve at the start of the main bore, giving control over the total flow rate in the 
well (white circle). 

Reservoir models used in practice are made from geological and seismic data. To reflect the uncertainty in such data this 
model is available in five independent realizations from a geostatistical distribution. In Fig. 4 a histogram with the global 
statistics of the permeabilitiy distribution for all five models is shown, along with other basic statistical properties in Table 2. 
Well properties, like location, architecture and instrumentation are the same in all five models, so all that differs is the 
surrounding permeability fields. The five actual realizations are shown in Fig. 5. We will use these to investigate production 
increase potentials for equally probable models by applying our NMPC application on all models. 

 
 
Base Case Definition 
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We now define a set of operational conditions which will function as the base case production philosophy. The conditions 
are chosen to be exactly the same as proposed in [7] in their base case definition, to maintain a foundation for comparison of 
results. The liquid production rate (LRAT) is specified to 10.0 MSTB/DAY, with a constraint on gas production not to exceed 
a gas/oil ratio (GOR) over 5.0 MSCF/STB. If the constraint on GOR is violated, the LRAT will cut back with 10% every time 
the constraint is reached. Hence, the base case is not an uncontrolled case, as it includes some simple constraint handling 
offered by ECLIPSE to avoid problems such as model unstability. There is however no control on the lateral valves, as they 
are all fully opened during the simulations. A water-cut (WCT) constraint on the LRAT is specified at 80%, causing the well 
to shut in. The minimum bottom hole pressure (BHP) is set to 1500 psi to ensure sufficient lift conditions, although BHP is 
never an issue in this model due to the presence of the strong aquifer and the gas cap. 

 
SPE 79031 case definition 

We also define an alternative case for comparison, which is the method presented in [7]. We will refer to this case as the 
SPE 79031 case. As previously mentioned [7] uses a conjugate gradient method combined with ECLIPSE for numerical 
gradients and ICV modeling. They optimize the field production over a fixed reservoir lifetime of 900 days. By dividing these 
900 days into 180 day time steps, their algorithm performs a static optimization of the ICV settings for the whole 900 days, 
and then a re-optimization at each subsequent time step for the remaining lifetime. The MVs are the settings on the four ICVs 
and the target objective is to maximize the cumulative oil production. SPE 79031 offers no explicit constraint handling in the 
optimization algorithm itself, and so relies on ECLIPSE to provide this feature regarding the maximum GOR allowed.  

 
Simulations 
Implementation 

The five model realizations were each simulated with ECLIPSE interfaced to the NMPC application for a total of 900 
days. All simulations were performed with no modeling errors, i.e. the same model was used as both model and process plant. 
The MVs were chosen as the opening of each of the four ICVs in connection to the laterals, similar to SPE 79031. In addition, 
the LRAT was also chosen as an MV for control. It was recognized that this would be necessary to manage to meet the 
production constraints on GOR in some of the model realizations, as the simple control offered by ECLIPSE should 
preferably be overridden. The ECLIPSE ad hoc solution of cutting back 10% upon an active constraint is obviously 
suboptimal at best, and the better approach would be to produce at optimal LRATs instead. The CVs available are pressures 
and multi phase flow rates in the well and in each lateral respectively. 

The prediction horizon and the control time horizon are fixed at 900 days after production start up. Though some of these 
models would possibly have a lifetime beyond 900 days, this was done to maintain a fair comparison to the SPE 79031 results. 
The application then becomes a batch optimization NMPC. The application is modified not to consider any production beyond 
900 days. The sample time is chosen as 30 days, as an estimate of how often it is realistic to change ICV settings in a real 
reservoir considering valve impact and exhaustion. Notice how this is different from SPE 79031. 

The control problem is formulated to maximize cumulative oil production, while satisfying the constraints on GOR and 
WCT. There is no explicit cost connected to the production of gas or water, other than reducing the oil production total. 

 
Results 

We compare our simulations to the base case performance. Fig. 6 shows a plot typical of optimal valve settings over the 
time horizon for the models. Even though the different models all have different optimal valve settings, there are some 
common characteristics they all share. In all cases except for model 2 (SP2), the valve at the branch closest to the well heel 
(Valve1) is choked down the most. In three of the cases the second most chocked down valve is Valve2, at the second closest 
branch. This is explained by the fact that the pressure in the reservoir causes much more flow in the branches closest to the 
heel than the outer ones, when the valves are fully opened. A large difference in flow gives a more rapid breakthrough of water 
and gas for the high flowing branches, deteriorating the production performance. The solution is to distribute more equal rates 
on all the branches. Fig. 7 shows that this is exactly the solution found by the SSMQN algorithm for SP1. Observe how the 
optimized case, the plot to the right, produces at more equal branch rates than the base case in the left plot, and therefore 
manages to be productive for a longer time. The other model simulations show the same tendencies. 

Fig. 8 shows the optimal LRATs versus time for the models. Recalling the base case specified production rate at 10000 
STB/DAY, the figure shows that for models model 1 (SP1), model 3 (SP3) and model 4 (SP4) this is close to the computed 
optimal LRATs. However, in models SP2 and model 5 (SP5) the controller uses this MV to a great extent. A natural question 
arises on how such severe decrease in liquid production is optimal to maximize the oil recovery. The answer is given in the 
well GOR plot of SP2 and SP5, Fig. 9 left and right plots respectively. The decreased LRAT prevents the GOR from hitting 
the constraint at 5.0 MSCF/STB. The SSMQN case performs far better (i.e. has the lower GOR) than the base case 10% cut-
back strategy. The three other cases also reduce the GOR to a substantial degree, using only the choke settings. This indicates 
that in cases where the presence of gas is not so extreme, valve control can be sufficient, but in the extreme case LRAT control 
will add an important contribution to increased production. 

It is important to handle the gas production constraint efficiently, since minimizing the GOR will yield a higher OPR. Also, 
too high GOR can cause well instability. Equally important in this case is that the WCT constraint is satisfied to the longest 
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extent possible, because of the specification of well shut-in when the constraint is reached. Fig. 10 shows a typical time plot of 
the WCT behaviour for the different models. The optimized case outperforms the base case as the water breakthrough is either 
delayed or the time of WCT reaching the constraint of 0.8 is postponed, or in some cases – both. Also, we recognize how the 
WCT in Fig. 10 meets the constraint at approximately 900 days. This is a direct result of the fixed prediction horizon, as the 
NMPC will not see any profit in holding the WCT back any longer beyond the horizon end. Some of the cases could therefore 
possibly gain from using a standard receding horizon NMPC instead. 

The optimization problem was formulated to maximize the oil production total (OPT) for the models, see Table 3. This 
shows how the NMPC application manages to increase the production in all models, varying from substantial to minor 
increases. The table lists the production for every model realization on separate lines. The columns consist of the total oil 
production after 900 days for three cases, the base case, the optimized case and also the results found in SPE 79031. The gain 
columns show production increase found for the two optimization methods relative to the base case. The results from the 
SSMQN show large improvements over the base case production. The relative gains span from 5.4% to 67.6%, with an 
average of 29.9%.  

A similar table was given in SPE 79031, without the SSMQN results, where [7] commented on the large variations in 
production gains for the five cases. Although able to show significant increase in some cases, SP2 only produced an extra 
1.8% when using optimization and instrumentation. On this basis [7] suggested that with the geological uncertainty 
represented by the different models, optimizations did not give a consistent answer on whether or not instrumentation is 
economically justifiable. In some models, the gain found was fairly small; on the other hand, they stated that “significant 
resources might be lost by not deploying the control devices”. 

 
Discussion 
Comparing the results from the SSMQN to the results from SPE 79031, the former comes out on top for all the model 
realizations. On average, the SSMQN gives an additional 3% increase, relative to the base case, over the SPE 79031. The three 
main explanations behind this are: 

• Decreased sample time – the NMPC used time steps of 30 days, whereas the SPE 79031 optimized with 180 day 
intervals. 

• Dynamic optimization – in SPE 79031 the optimization problem parameters were kept to a minimum as each step 
found the optimal set of static inputs for the rest of the reservoir lifetime. The SSMQN opened for computation of 
dynamically changing inputs by increasing the number optimization parameters. Where SPE 79031 solved for one 
parameter per input, the SSMQN solved for 4, giving a total of 20. 

• Optimal LRAT – the SSMQN included the LRAT as an optimization parameter. This way the constraint handling 
could be taken care of by the NMPC method, instead of by the heuristic method offered by ECLIPSE. Since the 
models are carrying information about the constrained rates, the GORs and WCTs, the natural thing is to include all 
the available MVs for controlling these in the optimization problem.  

The listed reasons imply a higher computational cost for the SSMQN than for the SPE 79031. A larger number of 
optimization problems are solved, the problems are harder to solve and the application requires more ECLIPSE simulations. 
Still the SSMQN performs well within real-time demands, as the 900 days optimal control simulation took about 3 days each 
on a single desktop computer. Also, the results suggest that the extra computations are compensated for, as they give 
additional increase in all cases. It should be mentioned that very little effort was put in to decrease the simulation time. 
Implementing the sensitivity calculations on a parallel CPU architecture could easily reduce this time by a major fraction. For 
a full scale real life reservoir such solutions should be taken into consideration. 

An interesting thing is to notice the SSMQN performance compared to the SPE79031 for SP2 and SP5. These where the 
two cases where the LRAT control was heavily used, recalling Fig. 7. Table 3 shows that these are the two cases providing the 
most increase over SPE 79031, indicating the NMPC being most valuable for models with the toughest operational conditions. 
Significant improvements are also shown for SP2 and SP4, representing the most profitable cases in both this paper and in 
SPE 79031. 
 
Summary 
In this paper we have described an implemented NMPC application in StatoilHydro’s in-house tool for advanced process 
control, SEPTIC, using a single shooting multi-step quasi-Newton approach. The NMPC was interfaced to a reservoir 
simulator, used as a simulation and prediction model, to solve the optimal reservoir control problem. The application has been 
successfully tested against multiple realizations of a complex reservoir model, showing satisfactory control performance. The 
simulation results suggest that reservoir recovery can be increased by considerable amounts by using an NMPC controller 
compared to reference cases produced using simple constant rate strategies. For one case an increase with up to 68% was 
found. 

The developed algorithm was applied to a benchmark reservoir model to validate the quality of the NMPC results. The 
application managed to show an increase in production over the previously published results on the model. Hence, the quality 
of the method was proven. 
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We have also compared our results to a previous publication using the same reservoir models. These confirm and further 
strengthen the results from [7] – valuable resources will potentially be lost if a reservoir like this is not equipped with smart 
wells. In addition to improving the most promising results in [7], our simulations improve the “worst case” scenario as well, 
by recovering 5.4% more oil in one of the models, compared with the 1.8% found in [7]. Proper decision making methods 
should still be considered before investing the extra costs of smart well optimization for a reservoir. However, these results can 
be view as an additional argument to the discussion on applying reservoir optimization for complicated reservoir structures. 
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Nomenclature 
 f = general nonlinear function 
 F = time step performance cost 
 J = cost function 
 k = time, discrete 
 p = search direction 
 Q = state weighting matrix 
 R = control weighting matrix 
 S = sensitivity matrix 
 t = time, continous 
 Tc = control horizon 
 Tp = prediction horizon 
 u = control vector 
 U = set of control variable constraints 
 x = dynamic state vector 
 X = set of dynamic state constraints 
 α = backtracking fraction 
 ε = convergenve criteria 
 τ = time variable 
 
Subscripts 
 i, j = matrix indices 
 k = time step 
 op = operational set point 
 0 = initial condition 
 
Superscripts 
 ⎯ = (bar sign) optimal solution  
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Table 1: Model properties [7] 
 

 
 
 
 

Table 2: Permeability Statistics [7] 
 

 
 
 
 

Table 3: Comparison of oil production totals 
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Fig. 1: Principle of MPC 

 

 
Fig. 2: Calculation of sensitivities 

 

 
Fig. 3: Fluvial reservoir model [7] 
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Fig. 4: Permeability distribution for the 5 model realizations [7] 

 

 
Fig. 5: The five geostatistical realizations [7] 

 

 
Fig. 6: Optimal valve settings typical 
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Fig. 7: Lateral oil production rates 

 

 
Fig. 8: Optimal liquid production rates 

 

 
Fig. 9: Base case vs. optimal GOR 

 

 
Fig. 10: Base case vs. optimal WCT 
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