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Abstract 
The application of subsea technology to reservoir development has been accepted as a valid production solution despite the 
known effects on facility availability and on ultimate recovery.  The primary causes of the reduced availability for subsea 
tree-based solutions are directly related to the differences between the facility designs.  A topsides drilling unit provides 
simple and direct access to the well for purposes of well logging and other data acquisition, and well interventions to replace 
equipment. 
 
Other benefits of surface tree solutions are related to ease of well testing and chemical treatments. These in turn simplify the 
hardware maintenance because the facilities can be inexpensively directly accessed. In essence, the surface access solution 
gives increased well recovery because maintenance and diagnostic investigations are based on existing infrastructure (a 
permanently mounted drilling rig).   
 
The subsea industry shares a common feature with other, more traditional, industries like Energy and Rail: the occurrence of 
unplanned outages results in increased costs and reduced revenues in each of these industries; a condition-based planning 
approach is the more desirable solution. Rail and Energy industries have successfully evolved to solutions based on the use of 
contractual frameworks aimed at guaranteeing equipment availability and efficiency. 
 
This paper will examine the applicability of condition-monitoring technologies to subsea infrastructure in the oil production 
industry.  The paper will present relevant case studies from the Energy and Rail transport industries. It will describe data and 
information handling which are required to enable the full development of a qualified predictive maintenance tool for the oil 
industry, with the view of taking the oilfield towards a paradigm of a contractually managed asset with the goals of 
improving service life and availability. 

 
Introduction 
The Subsea Domain 

From a modern process control viewpoint, the subsea production system has typically consisted of a relatively simple 
network of piping and instrumentation designed to gather information from individual wells.  Over time, this has expanded in 
complexity as systems began to be more complex.  This can be seen in the comparison between Figures 1 and 2.  Figure 1 
represents a typical subsea manifold as constructed in the early nineties.  These often involved relatively simple trees 
configured with one or two pressure and temperature sensors intended for but useless ass reservoir condition monitoring 
devices. 

  
These early subsea facilities were typical of the period.  Surface facilities were constructed for subsurface monitoring via 
direct intervention.  At the time, typical topsides facilities have 

• Drilling rigs for wireline logging and downhole sampling 
• Test separators for rate determination, sampling and well diagnostics 
• Convenient process access for observing process behavior and diagnostics 

 
The control and monitoring of a topside system was therefore heavily dependent upon direct human access using relatively 
simple observation means.  This became a problem as subsea systems became more complex.  Access for legally mandated 
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reservoir surveillance became difficult and a challenge arose.  Ultimate recoveries for subsea field developments were found 
to be significantly lower; not because the production system was in anyway inefficient, but because the topsides based 
surveillance methods were, themselves, outdated.   

  

     
 
Figure 1:  Early, simple subsea manifold.           Figure 2: Typical subsea tree instrumentation of a modern subsea field 
 
A simple comparison between figures 1 and 2 shows the level of instrumentation being utilized for condition monitoring of 
the field itself.  Unfortunately the equipment itself needs equipment monitoring.  The type of information being collected is 
illustrated in Table 1, which also includes an indication of the suitability of the information gathering technique for 
automation (0 being unsuitable for automation and 3 being already partially automated).  One outstanding issue is the fact 
that systems for collating and interpreting all of these data are not well defined despite the fact that they can be quite time 
consuming to execute. 
 
Table 1:  Overview of traditional well-related condition monitoring activities. 

Condition Monitoring Need  Suitability for 
Automation 

Condition Monitoring 
Need 

Template/Manifolds Erosion / Corrosion 3 Template/Manifolds 
 Gas Lift Control 2.5  
Well Flow Behavior Test Separator 1 Well Flow Behavior 
 Multiphase Flowmeter 2  
 Virtual Flowmeter 3  
Choke Behavior Test Separator Interpretation 0 Choke Behavior 
 Flowmeter Interpretation 2  
 Virtual Flowmeter 1  
Tubing Behavior Wireline/Coiled Tubing/Tractor Surveys 0 Tubing Behavior 
 SCRAMS Monitoring 2  
 Virtual Flowmeter 2  

  
Current market challenges 
   The installation of subsea processing stations poses a significant challenge for reservoir monitoring and control.  In essence 
the facility functions as a data filter. Data acquisition will have to include facilities for online and real-time remote 
monitoring.  The exact same phenomenon is experienced with the installation of downhole pumps and even subsea pumps. 

Figure 3:  Subsea processing station 
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In the case of a separation facility like the one illustrated in figure 3, the complexity of the installation poses an issue in that 
the reliability of the installation is dependent upon the interplay of: 

• Well-to-well fluid variations and potential effects on separation and other fluid chemistry related phenomena 
• Methodologies for interpreting injector to producer interplay and communication 
• Well-to-well sand production affecting chokes, flowmeters, and pumps 
• Rate stability influencing the separator level control 
• Separator efficiency causing pump and riser flow instabilities 
• Pump design and robustness 

All of this cause a challenge for interpretation when the interpretation must be made at a system level and effects must be 
inferred from available data.  The challenge is to identify technologies to ensure the income from the customer’s investment. 

 
How and where can condition-monitoring technologies help?  
   The day-to-day job of the reservoir production engineer is, in fact, condition monitoring applied in a remote monitoring 
environment.  Because of the limitations in the available data acquisition technologies, the application of model-based 
interpretation techniques is predominant.  This works quite well for the simpler activities such as: 

• In-flow diagnostics (water, gas breakthrough, loss of productivity, pressure decline, etc) 
• Equipment monitoring (change in choke capacity, sensor failures, etc) 
• Flow instability 
• Other behaviors with known cause-effect relationships 

 
This provides a basis for the application of simple principles of condition monitoring.  But this would ignore the additional 
potential within condition monitoring technologies.  The tools employ statistical analysis methods, which enable the 
observation of indirect causes-effect relationships such as: 

• Producer-injector relationships by statistical analysis and artificial intelligence 
• Failure identification and cause interpretation by reviewing historical data and comparison 
• Maintenance identification and prediction based on failure data sets 
 

In other words, condition monitoring serves as means to the ultimate end of improving system-level metrics like reduced 
costs, increased availability, improved recovery, planned maintenance, better efficiency and others. A broader framework is 
necessary that will synthesize information produced using condition-monitoring to further enable optimal decision-making 
across the lifecycle and management of the entire system, including operations and maintenance. The suite of technologies 
that fall under this framework are commonly recognized as Prognostics and Health Management or PHM. We identify the 
primary elements of this suite in the next section and present two case studies of real-world applications of PHM with the 
goal of improving system-level metrics. 

 
Prognostics and Health Management 
    The Subsea industry shares a common feature with other, more traditional, industries like Energy and Rail: the occurrence 
of unplanned outages results in increased costs and reduced revenues in each of these industries. Also, factors like shift and 
variability in operating condition, operational modes and infrastructure-aging lead to newer modes of failure, thereby 
contributing to increased variability in how assets fail, or how long they last. Maintaining high reliability amidst such 
challenges often requires very conservative maintenance and operational policies, which come at a high cost and support 
burden. Condition-based strategies for maintenance and operations attempt to address and manage this burden by driving 
policies based on accurate and personalized assessment of equipment health. 
 
Successful execution of condition-based strategies requires a careful tradeoff between proactive and reactive actions. 
Reactive strategies apply when there is confidence that a failure has occurred, but often at a cost of operational disruption, 
secondary damage costs and potential safety incidents. Proactive strategies can avoid unanticipated downtimes, but with the 
potential of unneeded and premature actions in maintenance and operations. We propose that the accurate and timely 
information about the health of the asset components is the best foundation for informed and condition-based decision-
making. 
 
Generally speaking, PHM technologies also comprise of hardware solutions, including various kinds of sensors to capture 
state information of the various components, communication devices that allow these sensors to transmit the state 
information to condition-monitoring stations as well as basic IT-infrastructure consisting of computing, control and 
visualization consoles. However, the primary focus of our paper will be software PHM techniques that enable intelligent 
reasoning by analyses of operating data.  
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PHM is primarily composed of two suites of technologies: health assessment and health management.  These two suites and 
the manner in which they interact are illustrated more clearly in Figure 4. The modules within health assessment are shown in 
the left dotted box in Figure 4 while those within health management are enclosed in the right dotted box. 
 
There are many ways to distinguish between these two sets of modules: for example, health assessment modules perform 
analysis at a much smaller, unit level (subsystems, components), while health management modules consider information 
across a fleet of assets or collection of components seen as an integrated, interacting system of systems. Health assessment 
involves classical bottom-up analysis of a device whereby it is assumed that the state of the device can be explained or 
inferred in terms of the states of its components. Health management, on the other hand, is more top-down synthesis of the 
information produced by the health assessment pieces to come up with strategic policies by means of which the entire 
logistics of sustaining the system can be managed optimally. A health assessment module could indicate the remaining useful 
life for a certain system component while a health management module takes a input the RUL estimates of many components 
of the system and recommends strategies by which the overall system performance in terms of operational yield, efficiency, 
repair scheduling, spare planning, revenues and costs can be optimized. Such strategies involve taking appropriate actions 
and making decisions in the domains of operations, maintenance, supply-chain etc. in the presence of constraints acting from 
outside the system. Thus, typical capabilities in health assessment library include diagnostics, prognostics, and anomaly 
detection while those in health management include decision-making, multi-objective optimization and scheduling. The 
circular arrows in the middle of the figure indicate the dependence between the two: information produced by the health 
assessment modules is used by the health management modules for synthesis; conversely, actions prescribed by the health 
management modules will impact health assessment and is information that the modules must use. 
 
Looking into the boxes in Figure 4, health assessment proceeds by analysis of operational data collected for the system by 
multiple sensors monitoring various state variables of the system. Using field-deployed, remote sensors, the operational data 
is collected and preprocessed (segmented, filtered, validated, etc.). Then it is summarized by a set of significant features that 
provide a more compact, yet informative representation of the data. Anomaly-detection modules further analyze the features 
to identify presence of operational anomalies. If any anomaly is detected, the module additionally determines the time when 
the anomaly is first noticed and the possible source of anomaly (usually a coarse identification at the systems/subsystem 
level). This information allows a diagnostic module to focus on a given subsystem, analyze key variables associated with 
such subsystem, and look for the presence of a failure, possibly by using a pre-existing library of signatures associated with 
failure modes. The result of diagnosis is a ranked list of possible failure modes present in the system at the time of 
examination. A prognostics module will update a deterioration index for the platform (sub-) system, and compute the 
expected Remaining Useful Life (RUL) using an appropriate wear trajectory. The failure time and mode determine the 
inflection point in such curve and the steepness in deterioration, respectively. A prerequisite to leverage this RUL estimation 
is to have a tight confidence interval, such that this information is actionable and can be used for health management.  
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Figure 4: PHM as composed of health assessment (“P) and health management (“HM”) 
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Health Management involves synthesis of the information created by the health assessment modules to explore, evaluate and 
propose appropriate responsive and strategic actions and decisions along operational, maintenance, supply-chain and other 
such logistics related areas. For example, information about remaining useful life for various operation-critical components 
along with knowledge regarding current operational requirements and constraints on the maintenance and supply-chain 
results in a plan optimization problem, where appropriate actions in operations, maintenance and supply-chain have to 
explored to find the best plan that optimizes overall system performance and meets requirements and constraints. Other 
logistics problems like repair scheduling, operational reconfiguration, spare allocation, customer notification also come under 
the umbrella of health management. 
 
In summary, health assessment provides the key knowledge required to improve system performance and metrics that are 
typically crucial from the customer’s perspective. However, once such knowledge has been generated, the problem of 
applying this knowledge to the devising of appropriate system-level strategies is a non-trivial one and requires the application 
of health management technologies like optimization, scheduling and decision support.  
 
Case Studies from Rail and Energy Industries 
     The subsea industry shares a common feature with other, more traditional, industries like Energy and Rail: the occurrence 
of unplanned outages results in increased costs and reduced revenues in each of these industries; a condition-based planning 
approach is the more desirable solution. Rail and Energy industries have successfully have successfully made use of PHM 
technologies and evolved to solutions based on the use of contractual frameworks aimed at guaranteeing equipment 
availability and efficiency. In this section, we briefly describe successful case studies demonstrating the application PHM 
technologies to the Rail industry and the Energy industry with the overall goal of improving customer-centric metrics like 
increased availability and efficiency. For Rail locomotives, we describe a deployed PHM system Expert-On-Alert™ (EOA™) 
that is used to provide customer-centric services for management of a fleet of locomotives; EOA™ currently monitors over 
8000 locomotives. From the energy domain, we present a successful case study of a real-world deployed product, KN3, that 
demonstrates the use of health management techniques to optimize the operation of a coal-fired boiler so as to simultaneously 
minimize emissions and maximize efficiency for a given load demand. 

 
Expert-On-Alert™: A RM&D system for Rail Locomotives  

GE Transportation, headquartered in Erie, PA initiated a remote monitoring and diagnostics program in 1997 to 
proactively monitor its customers’ locomotives. The service is called EOA (Expert on Alert). Following the general trend in 
the equipment manufacturing industry, GE has been entering long time service contracts with purchasers of rail locomotives 
instead of selling individual spares. Locomotives are complex electromechanical systems equipped with the capability to 
monitor their state and generate fault messages. A typical GE rail locomotive has around 200,000 parts with more than 24 
microprocessor controllers. These locomotives typically operate in extreme environmental conditions, logging over 100000 
miles per year on average. On average, each locomotive has 3-4 scheduled shop-visits per year and about 4-5 un-scheduled 
shop-visits in addition.   Since diagnostics and repairs are time consuming and complex tasks, it is essential that the number 
of shop visits and the time spent on the shop floor by a locomotive is minimized for a long-term service contract to be 
profitable. Therefore, making the service contracts profitable requires that the deployed Remote Monitoring and Diagnostics 
(RM&D) systems identify problems occurring on the equipment while in operation so a) the repair can be scheduled best 
keeping with the severity of the problem and b) the complete set of problems is identified so the time in the repair shop is 
utilized at not merely fixing one problem but releasing an overall healthy machine  

 
These RMD systems are based on the information that is produced from the on-board control systems. The control-system 
generated symptom data is useful for field technicians in order to detect, diagnose, and fix equipment problems. Locomotive 
fault logs are accumulated on-board the locomotive and are periodically uploaded to a database for access in case a diagnostic 
need arises. Highly skilled field engineers at General Electric Transportation Systems have acquired expert knowledge over 
time that enables accurate diagnosis of locomotive problems from an examination of the fault log. While this provides 
positive evidence for the diagnostic significance of fault logs, the volume of logged data makes it impossible to rely on 
human examination alone for reliable and consistent identification of locomotive problems on many hundred locomotives on 
a daily basis.  
 
The aim of the EOA service is to automate a significant portion of the diagnosis process to improve productivity and 
accuracy, and also move the service paradigm from being reactive to being proactive. The complete EOA system consists of 
several components: a RM&D center (which operates out of the company's Erie, Pa., headquarters), a locomotive on-board 
data collection and multi-mode communication module, a network backbone for communication, and the IT infrastructure to 
host different applications.  
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Figure 5: Fault Log Format 
 

Operational data and fault logs are collected while the locomotive is on track in service. Figure 1 shows an example of fault 
log and operational data collected from the locomotive. The operational data contain various sensor readings and states of the 
locomotive. The data are then sent to the RM&D center via satellite or other communication modes depending on the 
coverage. The data are stored in the RM&D database and automatically processed and analyzed in the backend with the 
different application modules in the system. Based on the knowledge learned or encoded in the system, the system 
automatically creates cases when there are some problems with the locomotive based on the learned knowledge. Most of the 
time, the data indicates a healthy locomotive. In this situation, there are no cases created. This process is automatically done 
by the system without the diagnosis engineering involvement in sifting though the huge amount of fault log in order to 
determine whether a locomotive has any problems. When there are issues with a locomotive, alerts and diagnosis outputs are 
generated and presented to the RM&D engineers. The RM&D engineers review these alerts and diagnosis outputs generated 
from the system, and a final notification is sent to the field engineers and customer.  

Description of Application 

   Figure 6 shows an overview of the EOA system. There are several modules in the system. At the top left there is the data 
collection and communication infrastructure. This data is fed to the reasoning engines. The recommendation generated by the 
engines is sent to the case management and presentation interface. The recommendation is delivered to the GE engineers and 
customer. Finally, feedback is collected and knowledge in the reasoning engines is updated. These modules are each 
described in this section. The whole system is a web-based system such that users with the right privilege can log in the 
system from any computer within the firewall.  

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6: System Overview 
 

Data collection and communication: This is application is hosted in the LOCOCOMMTM, GE’s integrated on-board 
computer and communication management system that serves as the basis for GE’s current information-based services and 
systems. LOCOCOMMTM has extensive data acquisition capability and hosts a variety of different GE  or third-party 
applications on its industrial standard Wintel platform. The data collection and communication module for RM&D is also 
hosted here along with other applications for asset tracking (PinPointTM), fuel management (Smart FuelingTM), video and 
audio recording (LocoCAMTM).  
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Reasoning engine: Figure 7 shows the functional modules of the main engine, which comprises data filtering, Case-Based 
Reasoning (CBR) engine, and Java Data Pack Anomaly Detection (JDPAD) rule engine. Once the data is collected to the 
RM&D data repository, a rule based filtering process is applied to filter out some nuisance faults that have no failure and 
diagnosis information. The filtered data are passed to two reasoners: the rule engine and the CBR engine. Both reasoners 
produce recommendations (Rx) independently. The system also tracks the performance the reasoners and outputs their prior 
performance for the reference of the remote diagnosis engineers. As we have discussed, the operational data stream flows to 
RM&D in real time, the reasoners are triggered periodically unless critical faults are found in the data log. 

 
 
 
 
 

 
 
 

Figure 7: Functional Flow 
 
Case management and presentation: The cases are automatically created from the reasoners along with an Rx. The new 

cases are entered into a workflow and are presented to the RM&D diagnosis engineers. Diagnosis engineers who logged into 
the system can pick a case from the workflow and work on the case. Priorities are assigned to each case based on urgency so 
that the urgent ones are competed first. Once an engineer starts to work on a case, the locomotive’s basic information is 
presented, such as customer, model, configuration, recent history, and so on. The engineer can go deeper into the data and 
recommendations with the screen shown in figure 8.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8: Data and recommendation screen for diagnosis engineers 
 

Recommendation delivery and feedback: The engineers review the cases with Rx automatically generated from the system. 
A prior history of accuracy is checked to make a final decision. Other conditions are taken into consideration, such as 
weather and location, in order to come to a very accurate diagnosis. Once the diagnosis engineers confirm that there are 
problems with the locomotive, recommendations are sent to both railroad customers and service shops. In this way, the 
customers may act upon the recommendations based on their criticality to determine when to pull the locomotive off track to 
a shop or perform a run-through maintenance if the shop visit is not necessary. This information is also critical for the 
customers to proactively adjust their planning and optimize asset utilization. On the other hand, the shop also knows what are 
the problems for an incoming locomotive, which can greatly reduce time to repair, parts availability and work order planning.  

 
Knowledge update: A key component for an intelligent system is continuous learning. In EOA, the system knowledge is 

continually updated based on feedback. The CBR engine is updated automatically with new golden cases (Cases with verified 
feedback) are put into the case base. When feedback is received from customer and service shop, high quality cases are 
marked and save into the case base. The JDPAD rule engine is updated periodically through a rigorous process and tracking 
of performance metrics. Within the ICARUS system, there is a web-based rule management and editing module that helps 
knowledge engineers to easily perform any update of the rules. 

 
EOA’s success really highlights the fact that intelligent use of analytics and data can reveal a significant amount of 
information about the condition of a complex system, without the upfront need to put dedicated PHM sensors in place. 
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KN3: A System for Operational Optimization of Coal-fired Boilers  

Problem Description and Solution Architecture 
Kn3 is a recently unveiled software platform that exemplifies GE's Ecomagination efforts.  With this platform we can 

predict the performance of a power plant, which can be used to simultaneously reduce emissions, improve efficiency and 
increase availability.  We approach plant power management as a Multi-Criteria Decision Making problem.   
 
We use an ensemble of neural networks (NN) as the predictive model to map a vector of operational set points to their 
expected effects in terms of heat rate – inverse proportional to efficiency – and NOx emissions.  Then, we rely on multi-
objective evolutionary algorithms (MOEA) to generate the Pareto set for the plant at a given load. This set contains all non-
dominated set points in HR.  Finally, we use an automated decision-making that selects the point on the Pareto that best 
represent the desired tradeoff between fuel costs and emission credits (Subbu et al. 2006, Subbu et al. 2007).  The predictive 
models are adaptive, and continually update themselves to reflect with high fidelity the gradually changing underlying system 
dynamics. The integrated approach, embedded in a real-time plant optimization and control software environment has been 
deployed to dynamically optimize emissions and efficiency while simultaneously meeting load demands and other 
operational constraints in a complex real-world power plant.   The architecture for this process is shown in Figure 9.  

 

 
Figure 9:  Architecture of model-predictive multi-objective optimization 
 
Nonlinear neural-networks are used to represent mappings between the inputs space of control variables (X’s) and time 
variable ambient uncontrollable variables and the various outputs (objectives and constraints) of interest. The evolutionary 
multi-objective optimizer generates test inputs and receives as feedback the corresponding output performance metrics after 
transformation by suitable objective (performance) functions. The multi-objective optimizer uses this feedback to generate 
and identify the Pareto-optimal set of input-output vector-tuples that satisfy operational constraints. A decision function is 
superimposed on this Pareto-optimal set of input-output vector-tuples to identify a deployable input-output vector, which is 
then dispatched to the underlying plant control system, or recommended to the operator for execution. 

 
Key challenges  
Beside the obvious problem of dealing with the conflicting goals of reducing emissions while improving efficiency 

(higher temperature combustions are more efficient but generate larger amount of emissions), the most challenging aspect of 
this problem is the management of uncertainty embedded in the data and the models themselves.  
A prerequisite for model-based optimization is to be able to use accurate and reliable models over the operational range of 
interest to evaluate potential solutions. Unfortunately models do not always provide such accurate evaluations.    
 
Uncertainty derived by violating model assumptions. In the case of physics-based models, usually they are built using a set of 
(simplifying) assumptions, such as use of lump, time-invariant parameters, linearization around operational points, etc.  The 
model’s accuracy depends on the degree to which such assumptions are satisfied when the model is used to evaluate a point 
in the solution space. If the transients are too slow, we might need to use more complex models with distributed parameters 
and partial differential equations.  If system degradation and wear are important, then we use parameters that vary over time.  
If the point under evaluation is far from any operational point, then we should employ a more accurate non-linear model 
structure. If all design assumptions are satisfied then the model will provide accurate evaluations (module measurement 
errors and system disturbances).  
 
Uncertainty derived by using functional approximations. In the case of empirical, data-driven models (such as the NN’s), and 
the model’s accuracy depends on how close the point under evaluation is from the training data.  Several researchers have 
studied the error bounds of NN (Barron 1994) and special types NN, such as Radial Basic Functions (Townsend and 
Tarassenko 1997).  To reduce this kind of uncertainty, we use of a committee of predictive models (NN’s) and an intelligent 
fusion of their predictions (Xue et al. 2006), which aggregates the results of multiple predictive models based on local 
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accuracy measures of these models in the neighborhood of the probe point for which we want to make a prediction.  Fusing 
the outputs from an ensemble of models in an effective way can often boost overall model accuracy. This fusion method may 
be applied to develop highly accurate predictive models. The locally weighted fusion method boosts the predictive 
performance by 20~40% over the baseline single model approach for the various prediction targets.  In (Bonissone et al. 
2008) we further refine the performance by using CART algorithms to pre-compile a segmentation of the input space for each 
model.  Using this approach we improve the predictive performance by 34~48% over the same baseline. Relative to these 
approaches, fusion strategies that apply averaging or globally weighting only produce a 2~6% performance boost over the 
baseline. A prerequisite for a successful fusion is to create a strong diversity of the models to be fused (Kuncheva and 
Whitaker 2003).   
  
Uncertainty derived by model extrapolation errors. Such predictive models can tolerate moderate extrapolations, i.e. they can 
stretch to make predictions in inputs spaces that are proximal to regions of training data. However, their extrapolative 
prediction becomes inaccurate as this extrapolation is extended to spaces that are far from the training data. A solution to this 
problem is to restrict the search to areas close to the regions of the available historical data. Over time, deploying new set 
points that are close to the available historical data will push the envelope of the historical data, and lead to improved, model-
based prediction capabilities. An efficient method to enable such a restricted search is to scan the historical data for operating 
points that were deployed when the ambient conditions were “close” to the current operating conditions. For instance, if the 
current load demand is 350MW and the ambient temperature is 70° F, then it would be appropriate to scan the historical 
database for set points that were deployed when operating conditions were close (within specifiable bounds of the current 
load demand and current ambient temperature), and use these set points as seed points to initiate a restricted search. 

 
A Pareto-optimal front that jointly minimizes NOx and Heat Rate (inversely related to efficiency) for a 400MW target load 
demand in a 400MW power plant is shown in Figure 6. In this figure, the circles show the range of historical operating points 
from a NOx—Heat Rate perspective. The stars and inter-connecting line show the optimized Pareto frontier in the NOx—
Heat Rate space. Each point not on this frontier is a sub-optimal operating point—the goal being the operation of the plant or 
process at a Pareto optimal point at all times. The act of moving the system operation from the interior of the decision space 
to the Pareto frontier results in a large operational savings opportunity. 

 
Experimental Results  
The multi-objective optimizer in conjunction with the predictive models and the decision function solve a decision 

problem as a function of time. Control of the transition of the plant or process state to achieve the recommendation is 
delegated to the underlying plant control system. In a supervisory mode of deployment, a recommendation is transmitted to 
an expert human operator who then programs the recommendations in the plant control system, while in an automated mode 
of deployment; the recommendations are directly transmitted to the plant control system. Such use cases necessitate the use 
of automated down-selection to a solution from the Pareto frontier, for execution. This down- selection is part of the multi-
objective decision-making step. The Pareto frontier in NOx—Heat Rate space identified from the multi-objective search is 
clipped by the systematic application of profit-based and operational-need constraints for each of NOx and Heat Rate. Next, a 
solution from this reduced frontier that is closest in inputs space to the current plant state is selected and transmitted to the 
plant control system. Such an approach minimizes the state deviations while achieving Pareto-optimal operation. 
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Figure 10 Plant operation represented in HR and NOx space.   Figure 11 Tradeoffs in  NOx and Heat Rate and NOx only optimization. 
 
Figure 11 shows the performance gains achieved in NOx emissions using this decision-making approach. When a decision-
making function is used which simultaneously considers a tradeoff Pareto point at each instant, roughly 18% improvement in 
NOx emissions may be achieved (upper figure half). However, if the optimization favors a NOx minimization that satisfies a 
given Heat Rate constraint, more significant NOx emissions improvement is possible (lower figure half). Similarly, 1-2% 
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improvements in Heat Rate are possible. In a typical power plant setting, such savings in NOx and Heat Rate are very 
significant and could lead to operational savings of hundreds of thousands to millions of dollars per year. The decision-
making approach further highlights the inherent flexibility of Pareto frontier techniques whereby the entire efficient set of 
solutions is first identified without regard to situation specific down-selection, and later a flexible decision function is 
superimposed to identify a deployable input set (or set point). 
 
This software platform has already been installed in five coal-fired power plants, resulting in significant operational and 
environmental savings.  KN3 exemplifies is an example of evolutionary based optimization for power plants.  For a more 
comprehensive description of industrial applications of evolutionary algorithms, the interested reader is referred to 
(Bonissone et al. 2006). 
 
Generalizing lessons learned 

Prognostics and Health Management requires both state awareness and the ability to adjust operations based on 
prognostic and diagnostic input. Expert on Alert has shown that a tight coupling between sensing degradation and proactive 
maintenance has increased utilization and decreased downtime. Road failure rates (unexpected downtime) have been reduced 
by over 50% and utilization of the fleet has increased by 2%. Both metrics have had tremendous financial impact in the 
operation of a rail fleet and network. Similarly, with the KN3 example, using plant data to optimize operations impacts 
utilization and minimizes emissions shows significant potential for efficiency of plant operation. 

The key lessons from these case studies can be summarized as 
a) New sensors are not always necessary for PHM. Significant impact can be achieved from existing data and a tight 

integration between sensing and health management. 
b) Data-driven approaches can have an impact on complex domains since they can produce ‘reduced order’ causal 

models that are sufficient for making PHM decisions. 
c) The investment into a remote monitoring and diagnostic solution and infrastructure creates the foundation for 

extensive data monitoring and collection. This usually has value and application far beyond the originally intended 
scope. 

d) Learning and adapting the PHM logic with minimal human effort is an important capability for keeping the reasoning 
vital over long periods of time.  

 
Instantiating the PHM Framework for Subsea 

In deploying PHM solutions to take the entire subsea system towards a path of increased availability and recovery, one 
can view the oilfield as composed of multiple subsystems as shown in Figure 8. The multiple subsystems in this 
decomposition (Downhole, Subsea, Surface, and Field) imply varying requirements on the individual subsystems to improve 
overall system performance. For example, one path to improving recovery of the entire system can be tied to better data 
collection downhole, erosion detection at the subsea level, improved debottlenecking at surface level and computing 
optimized recovery strategies at the level of the field. Such a hierarchical view of the field also permits a gradual deployment 
and maturation of tactical capabilities at the subsystem level (“P”), while creating the information needed to eventually 
evolve towards providing strategic solutions that optimize metrics at the system-level (“HM”). 

Subsea
Planned Maintenance 
Fault Detection
Hydrate Prevention
Wax & Corrosion 
Control
Erosion Detection

Surface
Quality Control
Planned Maintenance
Fault Detection
Debottlenecking
Emission Control
Demanning

Field
Max Production
Max Recovery
Optimal Quality
Minimum Energy
Minimum Impact

Downhole
Data Collection
Data Interpretation
Simplified Operation
Planned Maintenance
Fault Detection  

Figure 8: Elements of Integrated Subsea Production 
 
Summary 
The Subsea industry shares a common feature with other, more traditional, industries like Energy and Rail: the occurrence of 
unplanned outages results in increased costs and reduced revenues in each of these industries.  From a modern process 
control viewpoint, the subsea production system has typically consisted of a relatively simple network of piping and 
instrumentation designed to gather information from individual wells.  Over time, this has expanded in complexity as systems 
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began to be more complex.  In addition, factors like limited access to legally mandated reservoir surveillance, outdated 
surveillance methods pose significant challenges for interpretation when the interpretation must be made at a system level 
and effects must be inferred from available data.  Also, factors like shift and variability in operating condition, operational 
modes and infrastructure-aging lead to newer modes of failure, thereby contributing to increased variability in how assets 
fail, or how long they last. Maintaining high reliability amidst such challenges often requires very conservative maintenance 
and operational policies, which come at a high cost and support burden. Condition-based strategies for maintenance and 
operations attempt to address and manage this burden by driving policies based on accurate and personalized assessment of 
equipment health. Condition-monitoring technologies generate information that can be synthesized using PHM technologies 
that further enable the generation, evaluation and optimization of condition-based strategies. The full development of such a 
capability for the oil industry will allow taking the oilfield towards a paradigm of a contractually managed asset with the 
goals of improving service life, availability and other system-level metrics.  
 
We described two case-studies as examples of real-world deployed systems showing the application of PHM technologies for 
system-level management and optimization. The Expert-On-Alert case-study describes a deployed system that is currently 
used to monitor the condition of over 8000 Rail locomotives to assess the health of their subsystems in trying to alert the 
customer of potential events that can cause downtimes, thereby allowing planning of maintenance activities. The KN3 system 
demonstrates the use of PHM technologies to manage and optimize multiple system-level metrics like efficiency and 
emissions for a coal-fired boiler, while trying to meet the desired operational demand.   
 
We presented a framework for PHM as a suite of technologies that perform two primary functions: health assessment and 
health management. In trying to apply the PHM framework to the oilfield, we presented a view of the oilfield that 
decomposes it into multiple subsystems that have varying requirements from the perspective of improving system-level 
metrics. We tied these requirements to appropriate PHM components from the framework using a matrix. This matrix 
outlines a path to develop and deploy tactical, subsystem-level solutions as well as strategic system-level solutions, either of 
which can be offered using contractual frameworks depending upon the planning horizon of interest to the customer. It also 
illustrates a gradual deployment and maturation of tactical capabilities at the subsystem level, while creating the information 
needed to eventually evolve towards providing strategic solutions that optimize metrics at the system-level. 
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