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Abstract 
 
The challenges to achieve real-time production optimization (RTPO) of oil and gas fields lie in the integration of asset-wide 
operations at multiple time scales, knowledge of reservoir phenomena, and efficient data management. Traditional 
approaches to production optimization workflows often make simplifying assumptions and work within artificial boundaries, 
to lower the complexity of an all-encompassing optimization problem. While this decomposition creates manageable 
workflows, it does not adequately support the integration of production optimization at multiple levels. 

 
We propose a methodology to achieve hierarchical decomposition of the overall production optimization problem at 

different time scales, where real-time data are consistently used to identify reservoir performance and optimize production. 
The optimization tasks at each of these levels are organized through automated transactions of targets, constraints, and 
aggregate measurements. For example, strategic decisions such as long-term (e.g., yearly, monthly) injection targets, 
production plans etc. calculated using a full-physics reservoir model are resolved into tactical decisions for short-term (e.g., 
weekly, daily) production planning. 

 
A moving-horizon based parametric model is proposed to provide fast predictions for production optimization in the 

short-term framework. Since the model structure is based on the decomposition of a full-physics reservoir model, it is 
reasonable to expect that the parametric model will be robust enough to be used for extrapolation outside the range of history 
data, a property needed for optimization purposes. In this paper, we present an analysis of the structure of the physics-
compliant empirical model, the model’s range of applicability, techniques that can be used for parameter identification, and 
use of the model for short-term production optimization. The paper presents a number of case studies to illustrate the benefits 
of the proposed methodology and its application in typical workflows for closed-loop reservoir management. 
 
Introduction 
 
The oil and gas industry is facing remarkable challenges to maximize profitability in a dynamic and uncertain environment 
while satisfying a variety of constraints. In response to such challenges, efforts have been made to improve oilfield operations 
by using better technology and appropriate business processes, among other things. A recent approach has been to adopt 
proven and successful technology from downstream (oil refining) and other related industries to solve related problems in 
upstream processes. While this approach is promising technologies and the processes have to be adapted to suit the needs of 
the oil and gas industry. 

 
Current practices of production optimization often involve combining mathematical models, field data and experience to 

make decisions about optimal production scenarios. Often, mid-term decisions are made by performing multiple future 
production scenario forecasts and selecting the best scenario. However, the selected scenario may not be followed in practice 
due to various inevitable practical difficulties. As a result, it is required to feedback the deviations from the plan and 
dynamically reoptimize under the most current production conditions. But updating the numerical reservoir model with new 
field data through history matching is a laborious task exacerbated by the increasing number of real time measurements 

 
A Parametric Model-Based Approach
Meeting the Challenges of Real-Time Production Optimization— 



2  SPE 111853 

available today that increase the frequency at which field data can be collected. In addition, production optimization is 
limited by the discrepancy between the models used by reservoir and production engineers to address the holistic production 
optimization of the entire field at all time scales. With increasing emphasis on risk analysis that requires several runs of large 
numerical models, it is imperative to use alternative methods. 

 
In recent literature, a number of proxy modeling techniques [1-10] have been proposed where the output variables (oil 

recovery factor, multiphase flow rates etc.) are modeled as a function of the input variables. However, most of these methods 
focus on data-driven approaches such as response surface techniques based on regression, interpolation, neural network etc. 
These methods are relatively easy to setup and capture the nonlinear effects in the training data set. However, reservoir 
phenomena unseen in the past (e.g., water breakthrough) or operating regimes that lie outside the range of training data set 
are not adequately predicted by such models. Further, most proxy modeling approaches used in production optimization 
actually model the reservoir simulator outputs and are seldom validated against real field data. 

 
Brouwer et al [11] presented a vector-matrix representation of the reservoir model to employ optimal control and 

continuous model updating. The authors of this paper adopted this representation of the model to develop a parametric 
modeling methodology for Real-Time Production Optimization (RTPO) strategy [12, 13]. Since the parametric model 
structure is derived from reservoir physics, it is expected that the model will be suitable to extrapolate outside the training 
data set. A feasible approach to continuous model updating and short-term forecasting using this approach was presented in 
[14]. 

 
In this paper, we focus on the application of this modeling paradigm towards real-time production optimization of oil and 

gas fields. This provides the integrated model combining the reservoir and production engineering domains. The 
methodology used for production optimization is based on a multi-scale resolution of the problem – namely long-term, mid-
term and short-term optimization. The long-term optimization is typically performed over the life of the field considering 
uncertainties and various field exploitation scenarios. The mid-term optimization focuses on maximizing the profitability 
following the optimal exploitation plan (in the order of weeks to months); whereas the short-term optimization computes the 
optimal daily production plan subject to constraints and targets passed down from the mid term optimization results. 

 
In the rest of the paper, an overview of the multi-time scale RTPO approach is presented followed by a discussion of 

modeling issues related to real-time decision making. The formulation of the parametric model is presented thereafter 
followed by the methodology for continuous model updating using field data. The next section describes the formulation of 
the multi-time scale optimization problem and the results of the proposed approach on case studies. 

 
Multivariable Optimization and Control in the Oil Industry. Historically, multivariate optimization combined with 
modeling techniques such as neural networks, genetic algorithm and fuzzy logic, etc., have been used in different ways in the 
oil industry to solve problems related to resource scheduling, reservoir history matching, production parameter settings [15], 
optimum well placement, and optimization of the recovery factor or displacement efficiency [11, 15, 16]. Such an 
optimization uses models generated either using basic first principles or data-driven models. With recent technological 
advancements, the industry has started to deploy downhole and surface measurement and control to measure key system 
parameters and to automate many of those tasks.  

 
Figure 1 [12, 17-19], shows the different layers of the industrial automation hierarchy as applied to the oil industry. While 

the lower levels of the hierarchy compute the manipulated variables and feedback deviations from targets to the upper layers, 
the results of the upper layers act as corrective set-points to the lower ones, working as a closed-loop system. Several authors 
[15, 16, 20, 21] have proposed some optimum control theory strategies for enhancing oil recovery in steam, CO2, gas and 
water injection projects. In most of these strategies, a control variable is manipulated while an objective function is optimized 
subject to a number of constraints. The implicit assumption in the above decomposition of the hierarchy into different time 
scales is that the aggregate of the individual optimum decisions at each level will be close to the overall optimal decision at 
each point in time. This assumption can be argued based on the fact that decisions made at a certain level pass corresponding 
targets downwards to the underlying level, which in turn attains such targets almost instantly with respect to the time-scale of 
the decision-making level. Even though the multi-level decomposition cannot guarantee a global optimum, it nevertheless 
makes an otherwise unsolvable problem feasible. In the next section, we outline the model reduction approach that allows 
consistent models to be used to make mid-term and short-term decisions. 

 
Short-term Parametric Reservoir Model: Background 
 
In practice, reservoir simulation is the de facto industry standard for reservoir management. However, the increasing 
industrial attention to RTPO requires tools capable of responding immediately based on real-time field information. The 
development of advanced reservoir simulation technology leads to large, complex reservoir models. Although larger complex 
models result in better long-term predictions and overall field management, they often require high computational time. Also, 
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the reservoir model needs to be constantly updated through history matching (adjusting the model parameters to match 
production history). History matching is often a lengthy task and may sometimes take a year or so to complete. By such time, 
additional discrepancies arise between the data used to update the model and the actual production. It is for this reason that, 
often in practice, proxy models are used for short-term decisions that are necessary for optimization of daily production. 
 
Model Formulation. Here, we build upon our previous work on building short-term parametric models [14]. The 
formulation of the structure of the parametric model is done starting from first principles - conservation of mass and 
constitutive equations (Darcy’s law, compressibility equations and capillary pressure equations). After discretization with 
respect to the spatial coordinates, the parametric model can be represented in a vector-matrix form as follows: 
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containing values of block oil pressure, water saturation and gas saturation, sufficient to complete the reservoir description at 
all discretization points (grid blocks) indexed by [ , . The vector  defined as: , ]i j k q̂
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contains all external fluid flows. The convention is that these external fluid flows are negative at production points, positive 

at injection points and zero at all other points. The matrices  and  are associated with formation volume factors and 

mobilities, while the matrix  contains terms due to gravity forces and are functions of time.  
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As discussed in [14], for short-periods of time, the time-dependence of the matrices ,  and  in Eq. (1) is 
relatively weak. Therefore, these matrices can be considered to be approximately constant. Using this simplifying 
assumption, one can formulate a simplified input-output model of the reservoir described in Eq. (1) in the standard state-
space form [22-24] as follows: 
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where the vector x  comprises the states of the system, namely the values of  at all discretization points in 

the reservoir (indexed by [ ,  in Eq. (2) - (3)); the vector y  captures the measured outputs (i.e., the production rates of 
oil, water and gas) in Eq. (3); the vector u  captures the effect of inputs (i.e., bottomhole pressures (BHP’s) and injection 
flow rates.  The matrix  captures the internal dynamics of the reservoir; matrix  shows the effect of inputs on the states 
and matrix C  generates measurable outputs from system states . While the streamlining of Eq. (4) from Eq. (1) has been 
extensively discussed [13, 14], we will briefly outline them here: 
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• Although Eq. (1) describes the time evolution of  at all grid blocks inside the reservoir, these values 

are not always measured (even at grid blocks associated with producers and injectors). But the external flow rates at 
the injector or producer grid blocks can be either measured using a multiphase meter or estimated through back 
allocation. While the output vector  contains values of  at grid blocks with injectors and producers, it can be 
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related to the state vector  and the input u  via equations of the form  (Eq. (B.20) in  [20]) p̂
ˆˆ ˆ ˆ ˆ( )wf pc= − +q W p p w  (5) 

    where,  is the well bottomhole pressure (BHP); and  captures the capillary pressure effects. Substitution of 

 from Eq. (5) into Eq. (1) results in a manipulated input u  for the entire system which consists of the bottomhole 
pressures of producers or injectors. 

ˆ wfp ˆ pcw
q̂

 
• Although, the state vector  of the system in Eq. (1) has physical significance, the natural order of the system 

dynamics is very high corresponding to the number of grid blocks considered in the discretization of the reservoir. 
However, the input-output model behavior of the system i.e., the effect of bottomhole pressures and injection rates on 
the production rates at producer grid blocks is expected to be represented by a reduced-order model. Therefore, the 
state vector  in Eq. (4) does not need to have physical significance in the same way as  but will assist in capturing 
the input-output behavior of the reservoir.  

p̂

x p̂

 
• As mentioned, the matrices  can be considered approximately constant for short-term predictions i.e., 

days to weeks. However, they will require an evaluation scheme to maintain the accuracy of the estimated model for 
short-term prediction purposes as new measurements are available from the field. 
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• The model matrices  are estimated from the available measurements and reported field outputs over a 

period of time reported in the past using system identification concepts, while continuously updating the model to 
maintain the accuracy for short-term predictions. Because there are multiple inputs and outputs involved in any 
reservoir, subspace identification method [25-27] is used because of its relative simplicity, generality, numerical 
robustness and particularly suited for multivariable models. 

   A, B, C, D

 
The model parameters of the identified model are updated continuously when the field data is available (e.g., daily) using 

a moving horizon approach. The updating procedure maintains the accuracy of the model while retaining its inherent 
structure and will be discussed in detail in the next section. 
 
Continuous Model Updating: Moving Horizon Approach. Both in the identification of the parametric model and its use by 
the optimization algorithm, it is required to reduce the uncertainty of the data used and the effect of decisions on outcomes. 
For example, if there were complete information about the behavior of the system into the future, one would not need to 
perform an optimization continuously. However, uncertainty is always present in future predictions, thus making feedback 
based continual decision making necessary. In addition, what is currently uncertain will be less uncertain in the future as new 
measurements are made and additional data become available. Nikolaou et. al [12] discusses the effect of uncertainty on the 
dynamic programming formulation of the optimization problem, which requires evaluating the objective function at distinct 
values of the state vector  with t going to infinity. This uncertainty creates a huge number of paths to consider for 
optimization from time t. To avoid this so-called “curse of dimensionality,” heuristic alternatives such as the concept of 
moving horizon or receding horizon are particularly useful. 

(i t dt+x

 
The following steps outline the method to develop such short-term parametric models, refine them using the moving 

horizon approach and apply them to different production operation workflows. 
 
• Data Acquisition: Select the model inputs and outputs relevant to the workflow using the available field measurements 

at the injectors and producers. The bottomhole pressures of the producers, and the injection rates as the manipulated 
inputs , and the multiphase rates at the producers as the measured outputs  are appropriate choices for production 
forecasting and production optimization related workflows. Figure 2 illustrates typical inputs and outputs for the 
parametric reservoir model. 

u y

• Data Validation: Pre-process field data for the selected inputs and outputs by removing outliers, non-zero means and 
non-stationary trends. 

• System Identification: Select system identification parameters such as identification horizon, model order, and identify 
the model with the production data using the moving horizon framework on a periodic (e.g., daily) basis. 

 
The parametric modeling methodology discussed above has been applied to the production forecasting workflow [14]. 

Future predictions were made based on a production and injection plan, assuming all inputs were known (even in the future) 
based on the initial plan. The reasonably accurate short-term (days) and mid-term (weeks) predictions for the different case 
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studies showed that the reservoir behavior can be captured with the proposed approach. In the following section, we will 
discuss how such a parametric model can be used within a production optimization framework. 

 
Simultaneous Control and Optimization 
 

In the context of the hierarchy presented in Figure 1, we will focus on demonstrating how we can use the aforementioned 
parametric model approach in making optimal decisions at different time scales (from days to weeks) corresponding to 
different levels of the hierarchy. The decisions passed down from the higher levels (e.g., monthly production and injection 
rate targets calculated on an annual basis) must be consistently resolved into daily targets, knowing the short-term production 
schedule and field constraints. Current work processes and commercial applications often make simplifying assumptions and 
do not support such integration of production optimization at multiple time scales. Figure 3 shows the structure resulting 
from the interconnection of the various levels similar to the self-learning reservoir management methodology proposed by 
Saputelli et al [28]. The short-term parametric model is used to make forecasts which feed the net present value (NPV) block 
in the upper level. Optimization of the NPV objective function produces multiphase rates as set-points that are then fed to the 
underlying layer, working in a closed-loop. 

 
Mid-Term Optimization – Maximizing NPV. The upper optimization level optimizes an NPV objective function using the 
current parametric reservoir model and subject to bottomhole and surface constraints. Net present value calculations are 
based on the following economic model [28]: 
 

, ,

3651

[( ) ]
max

(1 )
k

N k k k k
o o g g w w w inj w inj k

k T
k

q R q R q C q C T
NPV

d
∆

=

+ − − ∆
=

+
∑  (6) 

         
where, ,  and k

oq k
wq k

gq  are the daily production rates of oil (STB/d), water (STB/d) and gas (SCF/d), at time interval k; 

 is the daily injection rate of water (STB/d); ,
k
w injq oR and gR  are the net selling prices of oil ($/STB) and gas ($/SCF); 

and are the cost of treatment of produced and injected water respectively;  is the annual discount factor and  
is the number of time intervals or the prediction horizon. 

wC ,w injC d N

 
The above equation is subject to the following downhole and surface constraints on the bottomhole pressure (pwf) and the 

tubing head pressure (ptf) respectively: 
 

,min ,maxwf wf wfp p p≤ ≤  (7) 

,min ,maxtf tf tfp p p≤ ≤  (8) 
 

The above optimization exercise is carried on with the information available at each time step assuming the reservoir can 
be described by the parametric model derived in Eq. (4). As time progresses the model is updated, and the NPV will be 
refined continuously. However, due to the linear nature of the parametric state-space model, Eq. (6) results in a linear 
objective function and is solved using a linear-optimization routine to find the optimum solution. 
Eq. (6) can be further simplified in a compact linear form (see Appendix A) as follows: 
 

1 2max{ }T
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+
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f u f

A u b
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Short-Term Optimization. The set-points once passed from the upper layer in the hierarchy are used by the underlying layer 
for feedback control. Consistent with the decision making hierarchy described earlier, the parametric model can be used for 
such short-term optimization or control purposes. Thus, the production optimization problem can be stated as:  

 
“Given the operational availability and targets for all wells, calculate the optimum daily production plan or the well 

flowing pressures (thus, production rates) and injection rates, subject to field constraints.” 
 
We use a model predictive control (MPC) strategy [29-31], a class of control algorithms that explicitly uses a process 

model for predicting plant behavior and computing the optimum control action through online optimization of an objective 
function over a horizon, subject to constraints. The development of MPC is based on the block diagram shown in Figure 4. 
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The main steps here are to measure the plant output , estimate the states , and deliver a control action to the plant 
input  while trying to track the set-points and rejecting plant disturbances. The goal of the state estimator is to determine 
the optimal approximation to the state evolution based on current and past inputs and measurements. 

( )ty ˆ ( )tx
( )tu

 
The optimization problem is set up using the standard MPC formulation with the objective function as follows: 
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1 0
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where  is the prediction horizon, P M  is the control horizon and 

k j

sp
+

y  is the vector of daily output targets received from the 

upper economic optimization layer, and  and k j+u k j+y  are the j-step-ahead vectors of manipulated inputs (e.g., well 

flowing pressure, injection rates) and measured outputs (e.g., production rates),  and yW ∆uW  are the weighting matrices on 
output and input deviations respectively. The field (or the plant) is modeled using the parametric model described in Eq. (4), 
shown in discrete time, as follows: 
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A Kalman filter is used to estimate the model states is given by: 
 
ˆ ˆ ˆ( 1) ( ) ( ) ( ( ) ( ))k k k k+ = + + −x Ax Bu K y Cx  (12) 

 
where,  is the Kalman gain estimated as part of the identification algorithm assuming a Gaussian measurement noise.  K
 
The above objective function is subject to the field constraints as follows: 
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and 
 

1k j k j k j+ + +∆ = −u u u  (14) 
 
Eq. (10) - (14) can be combined to give the following quadratic programming problem (see Appendix B): 
 
min{ }T T+

u
u Hu u f  (15) 

  

c c≤A u b  (16) 
 

The above quadratic problem can be solved efficiently online.  
 
Results 
 
The following example illustrates the closed-loop strategy in context to the multi-scale optimization problem described 
above. The results are compared to conventional practices of no control or reactive control i.e., reactive shut-in of zones with 
high water-cut. Figure 5 shows a two-layered reservoir with a line drive injector/producer also referred as the one-quarter 5-
spot configuration. The reservoir has an upper, low-permeability layer and a lower high-permeability layer separated by an 
impermeable layer. A smart well completion is considered where remotely activated valves are available at each permeable 
layer so that both injection and production can be remotely adjusted. Both wells (injector and producer) are perforated at each 
of the two layers. The main production challenge for this reservoir is caused by the difference in permeability values (e.g., 
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ratio 1:10) between the two layers.  
 
The following production strategies are compared over a period of eight (8) years (summarized in Table 1): 
 
• No control: Water is injected at a constant flow rate target in each layer. 
 
• Reactive control: Water is injected at a constant flow rate target in each layer as in the no control case, but each 

perforated layer that exceeds a water-cut threshold value is shut-in. 
 
• Closed-loop control: The decision variables are the bottomhole pressures of the two production layers and the flow 

rates of the two injection layers, while available measurements are the zonal multiphase rates. Thus for the given 
reservoir configuration in Figure 5, there are four variables to be manipulated. In the upper optimization layer, the 
parametric model is built based on the last 30 days of history to predict the multiphase rates by maximizing the NPV 
over a prediction horizon of next 30 days, subject to bottomhole and injection rate constraints for each production and 
injection layer respectively. As described in Figure 3, the optimum multiphase rates for the next four weeks are then 
passed on to the lower level where the inputs are manipulated to attain the set-points on a daily basis for the next 30 
days (moving horizon). In the process, the 4x4 multivariable input-output model is updated daily, to account for any 
uncertainties and external disturbances. 

 
Figure 6 (a) shows the cumulative oil and water production profiles for the field described in Figure 5. The proposed 

closed-loop control strategy results in a significant increase in the oil production while the production layer is shut-in for the 
reactive control as the water-cut increases above 70%. A significant increase in oil production results in a higher NPV over 
the entire production period. It is also noticeable that water breakthrough is delayed for the closed-loop control case by 210 
days (average).  

 
In Figure 6 (b), the cumulative injection rate (optimal) from the closed-loop control case is compared for both 

permeability layers. As water breaks through from the high-permeability layer, it is detected and controlled while maximizing 
the NPV. As more water is produced and water breaks through both layers (720 days), the model expects more oil to be 
produced from the high permeability layer than the low permeability layer thus injecting water in both layers but in a 
controlled manner. 

 
The model parameters used for the closed-loop control case for the both the upper-level linear optimization and the lower-

level quadratic optimization are shown in Table 2. The lower-level, quadratic optimization was performed by predicting a 
week ahead ( ) while manipulating inputs only five days in the future (P M ). However, implementing only the inputs after 
the first day and then moving forward in time. 

 
Figure 7 shows the optimum bottomhole pressure (BHP) profile for both layers compared to their respective average grid 

block pressure (PAVG). It should also be noted that the bottomhole pressures are constantly adjusted (daily), without any 
prior knowledge of the reservoir characterisitcs or the average reservoir pressure. As expected, the drawdown (differential 
pressure driving fluids from the reservoir to the wellbore) in the low permeability layer is higher compared to that for the 
high permeability layer to produce the same target oil rate. 

 
Figure 8 shows the aerial view of the oil saturation distribution for the low permeability layer after 3000 days (end of 

simulation).  For both the reactive control and the closed-loop control case, the fluid distributions are fairly similar except 
that the closed-loop control shows better vertical sweep efficiency. However, the high permeability layer as shown in Figure 
9 shows more uniform oil saturation distribution using closed-loop control resulting in better vertical sweep efficiency.  

 
A summary of the production strategies employed over a period of 8 years along with the NPV values and the oil 

recovery values are shown in Table 2. In the no-control and reactive-control cases, water injection is not guided by any 
economic objective. Rather, both injection layers are open and react to the reservoir pressure decline, driven by production. 
As a comparative result, the closed-loop control case was able to reduce cumulative water production (CWP) by 54% and 
reduce cumulative water injection (CWI) by 41% compared to the uncontrolled case, resulting in a NPV increase of $19 
million. However, a comparison with the reactive control case shows an increase in the cumulative oil production (COP) by 
0.9 MMSTB for original oil in place (OOIP) of 6.8 MMSTB resulting in a NPV increase of almost $12 million. 

 
Model prediction 
 
In previous sections, we discussed the importance of developing model structures as shown in Eq. (4) that do not violate first 
principles yet have parameters that can be identified in real-time from field data. While such a parametric model may not be 
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perfect, it should al teast capture the elements of the reservoir dynamic behavior that are important for continuous 
optimization using feedback. The results of the model prediction of the closed-loop control case are shown in Figure 10 (a) 
and (b) for the low-permeability and high-permeability layer respectively. It can be seen that almost perfect agreement is 
observed between the parametric model and the field measurement, for both the cumulative oil and water production. 
However, it should be noted that a small deviation is observed between the predicted and the measured oil production, after 
water breaks through in the high permeability layer around 650 days. This error can be attributed to the fact that, although the 
model cannot predict the onset of water before water has broken through, it progressively adapts to the new conditions 
keeping this mismatch within reasonable limits. 

 
Figure 11 shows the maximum eigenvalue of the daily updated parametric model. The estimated, maximum eigenvalue at 

each time step is very close to unity, which illustrates the integrating effect of the reservoir model. This result was also 
confirmed by the detailed eigenvalues analysis shown in [14], which outlines the following two scenarios: 

• The matrix , has atleast 2 (and 3 for three-phase flow) eigenvalues exactly equal to zero irrespective of how the 
reservoir is discretized. 

A

• For the special case of zero capillary pressure or zero capillary pressure gradients with respect to the water saturation, 
the matrix  has at least m x n zero eigenvalues (2-D reservoir discretization, (m, n)). A

 
Conclusions 
 
We have established a methodology to develop and continuously update short-term parametric models consistent with the 
full-physics reservoir model using well known methods of system identification for multivariable dynamical systems. These 
models can effectively provide short-term predictions (days to weeks) for the purpose of optimizing production in a multi-
scale framework using a moving horizon formulation. The multi-scale architecture has two levels. The upper level that 
optimizes the NPV function (weeks) subject to physical constraints by calculating the optimum values of the production and 
injection flow settings. The upper level then passes these optimal values as set-points to the lower level, which uses a model-
based predictive (MPC) control strategy to achieve these set-points on a daily basis. 

 
An example demonstrated the possibility of using such a real-time closed-loop control strategy when applied to 

production or reservoir management projects, as compared with reacting to well performance. Further, the methodology 
considers the typical field production operations work processes to suit the data needs for the proposed approach. The 
strategy presented here can be refined in a number of ways, such as by fine-tuning various parameters, i.e., horizon lengths 
and weighting on the optimum values; analyzing the model to understand the phenomena of water breakthough and whether 
the model can be refined to predict it. 
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Nomenclature 
 
Boldface uppercase: Matrix 
Boldface lowercase: Vector 
 
q : Flow rate 
S : Saturation 
β : Terms with formation volume factor 
N : Prediction horizon, NPV optimization 
M : Model horizon, MPC 
P : Prediction horizon, MPC 

wfp : Bottomhole flowing pressure 

tfp : Tubinghead pressure 

oR : Net selling revenues of oil, US, $/STB 

gR : Net selling revenues of gas, US, $/STB 

wC : Water operating expense, US, $/STB 
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,w injC : Water injection expense, US, $/STB 

d : Discount rate (%)  
u : Input vector 
y : Output vector 
x : State vector 
x̂ : Estimated state 

minu : Minimum value of input vector ay any given time 

maxu : Maximum value of input vector ay any given time 

A : Matrix determining system dynamics 
B : Matrix determining input effects 
C : Matrix determining system outputs 
K : Kalman filter 

yW : Penalizing the error between the output and the set-point 

u∆W : Penalizing changes in inputs 

ˆ
mT : Transmissibility matrix 

ˆ
hT : Transmissibility matrix for gravity driven flow 

B̂ : Storage matrix 
Â : System matrix 

 
Abbreviations 
BHP:  Bottomhole pressure 
NPV: Net present value 
MPC: Model Predictive Control 
COP: Cumulative oil production 
CWP: Cumulative water production 
CWI: Cumulative water injection 
 
Subscripts 
o : Oil 
w: Water 
g:  Gas 
inj: Injection 
k: Current time 
m: Mobility term 
h: Gravity term 
 
Superscript 
k: Predicted 
sp: set-point (targets) 
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Figure 1: A multi-level hierarchy of oil-field decision making tasks at different time scales. Data movement is bi-directional and is 
passed from a lower level to an overlying level through the feedback loops while passing the decision as objectives and constraints 
to underlying level 

 

 
Oil Rate: qoProducer Flowing 

Pressure: 

Inputs (U) 
q inj qo, w, g

Outputs (Y)

u 1 

u 2 

y1
y2

 y3

Water Injection  
Rate: qinj 

Gas Rate: qg

Water Rate: qwpwf 

 
Figure 2: Injector producer example for a single layer reservoir showing all the inputs and outputs 
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                      Figure 3: Multi-time scale production optimization framework 
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Figure 4: MPC block diagram 
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Figure 5: Reservoir and well configuration for a two layered reservoir, with one injector and one producer 

 

(a)  (b)  
Figure 6: Cumulative production (MSTB) from the field (described in Figure 5) comparing reactive control and the closed-loop 
control (optimum) strategies (left plot). Cumulative injection (MSTB) profile in the closed-loop control case for both permeability 
layers (right plot) 
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Figure 7: Daily manipulated bottomhole pressure for both permeability layers compared to the average block pressure 
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Injection Injection

 
Figure 8:  Oil saturation distribution (aerial view) of the low permeability layer for the two production scenarios i.e., reactive control 
and closed-loop control after 3000 days 
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Figure 9: Oil saturation distribution (aerial view) of the high permeability layer for the two production scenarios i.e., reactive control 
and closed-loop control after 3000 days 
 

(a) (b)
 

Figure 10: Cumulative oil and water production, comparison between the model prediction and the field measurement (optimum 
control case) for both the layers 
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Figure 11: Maximum eigenvalues of matrix  in Eq. (4) A
Tables 
 
Table 1: Summary of production scenarios 

Mode Production scenario 
 
No control 

 

Constant injection target of 3000 
STB (both layers) 

 
Reactive control 

 

Constant injection target of 3000 
STB (both layers). Shut in 
production with WCUT > 0.7 

 
Closed-loop control 

 

Qmax<3000 STB 
BHP > 9000 psia (both layers) 

 
Table 2: Model parameters (including economic data) used for closed-loop control 

Variable Value 

Ro: Oil price ($/STB)                                                30 
Cw, Cw,inj: Average water-handling cost ($/STB)     2.5 
d: Discount rate (%)                                                  10 
N: Prediction horizon (days) – NPV                         30 
M: Control horizon (days) – MPC                            5 
P: Prediction horizon (days) – MPC                         7 

 
Table 3: Summary of cumulative production rates, NPV and recovery 

Production mode NPV  
($ MM) 

COP 
(MSTB) 

CWP 
(MSTB) 

CWI 
(MSTB) 

Recovery 
(%) 

No control 47.7 3.6 10.1 14.7 52.9 

Reactive control 54.6 2.4 0.4 5.1 35.3 

Closed-loop control 66.3 3.5 4.6 8.7 51.4 
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Appendix A – NPV Objective Function Formulation 
 
The objective function in Eq. (6), which is expressed as the finite sum of discounted cash flows during a horizon of N days: 
 

, ,

3651

[( ) ]

(1 )
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N k k k k
o o g g w w w inj w inj k

k T
k

q R q R q C q C T
NPV

d
∆

=

+ − − ∆
=

+
∑  (18) 

where definitions are listed in the Nomenclature. The objective function is a simple one, with net selling revenues of oil and 
gas not taking into consideration the associated production costs. 
 

To achieve an optimal solution of Eq. (18), a time model for  is assumed that evaluates the cash 

flow in time for given values of 
,, ,  and k k k k

o g w w injq q q q

,, , ,o g w w injR R C C ,d  and, finally, find a maximum value of Eq. (18) while satisfying 
system constraints. 

 
Assuming the inputs and outputs for the two layered reservoir system in Figure 5: 
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where subscripts 1 and 2 refer to variables in the low and high permeability layers respectively. The parametric model for the 
inputs and outputs in Eq. (19) over a horizon can be represented by the standard state-space form as follows: 
 

1 1k j k j k j

k j k j k j

+ + −

+ + +

= +

= +

x Ax Bu

y Cx Du
 (20) 

 
By combining the production costs (including the discount rate) associated with the outputs y  in a row vector for kth step in 
the future: 
 

1 2 1 2
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[       ]
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100

o o w w
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R R C C
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− −
=

+
C  (21) 

 
It should be noted that even though the costs are represented differently for each layer, they are nevertheless assumed to 

be the same. Similarly, representing the injection costs (including the discount rate) associated with the inputs u : 
 

, 1 , 2

365

[0  0    ]

(1 )
100

w inj w injInj
k k T

C C
d ∆

− −
=

+
C  (22) 

 
The zero values in Eq. (22) correspond to the bottomhole pressures of the input which do not appear in the objective 

function directly. The NPV objective function in Eq. (18) can be combined with Eq. (21) and Eq. (22) and re-written as 
follows: 
 

1 1[( .... ) ( ....... )]Inj Inj
k k k k k N k N k k k j k NNPV + + + + + += + + + + + +C y C y C y C u C u  (23) 

 
Eq. (23), when combined with the parametric model predictions, can be represented by the following matrix form: 
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1 2
T N TNPV = +f u f  (24) 
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The constraints on the inputs u , over the prediction horizon, can be combined in a similar fashion to give: 
 

N
l l≤A u b  (28) 
 
 

Appendix B – Multivariable MPC Formulation 
 
Given the objective function in Eq. (10), minimizing deviation between the output and the set-point over a prediction horizon 
of P: 
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Considering the first part of the objective function: 
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where,  and 
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Using the parametric model in Eq. (4) to predict in the future, it can be shown that  
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Combining Eq. (31) and Eq. (33), gives: 
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Similarly, considering the second part of the objective function: 
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Working on similar lines as before, Eq. (36) can be re-written as: 
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Combining Eq. (35) and Eq. (37): 
 

2 2 2 2 2 1 2 1( ) { }( ) 2( ) { ( )M T T T M M T T sp T
kJ −= + + − +Y ∆u Y ∆uu P W P Q W Q u u P W P x Y Q W Q u 1}k  (39) 
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