
Copyright 2006, Society of Petroleum Engineers

This paper was prepared for presentation at the 2006 SPE Intelligent Energy Conference and
Exhibition held in Amsterdam, The Netherlands, 11–13 April 2006.

This paper was selected for presentation by an SPE Program Committee following review of
information contained in an abstract submitted by the author(s). Contents of the paper, as
presented, have not been reviewed by the Society of Petroleum Engineers and are subject to
correction by the author(s). The material, as presented, does not necessarily reflect any
position of the Society of Petroleum Engineers, its officers, or members. Papers presented at
SPE meetings are subject to publication review by Editorial Committees of the Society of
Petroleum Engineers. Electronic reproduction, distribution, or storage of any part of this paper
for commercial purposes without the written consent of the Society of Petroleum Engineers is
prohibited. Permission to reproduce in print is restricted to an abstract of not more than
300 words; illustrations may not be copied. The abstract must contain conspicuous
acknowledgment of where and by whom the paper was presented. Write Librarian, SPE, P.O.
Box 833836, Richardson, TX 75083-3836, U.S.A., fax 01-972-952-9435.

1. Introduction

The goal of an Integrated Asset Management (IAM)
framework for the oil and gas industry is twofold. From the
end users’ perspective, it should offer a single, easy-to-use
user interface for specifying and executing a variety of
workflows from reservoir simulations to economic evaluation.
The framework should not require the user to be an expert in
any of the underlying software applications; in fact, the details
of selecting, configuring, and invoking the underlying
software modules should be hidden from the end user. From
the software development perspective, the IAM framework
should facilitate seamless interaction of diverse and
independently developed applications that accomplish various
sub-tasks in the overall workflow. For instance, it should be
possible to pipe the output of a reservoir simulator running on
one machine to a forecasting and optimization toolkit running
on another and in turn piping its output to a third piece of
software that can convert the information into a set of reports
in a specified format.

Model-based design. The design of our prototype IAM
framework is based on the concept of model-integrated system
design. The central idea is to define a domain-specific
modeling language for structured specification of all relevant
information about the particular asset being modeled. The
model captures information about many physical and non-
physical aspects of the asset and stores it in a model database.
The model database is in a canonical format that can be
accessed by any of the tools in the IAM framework through
well-defined application programming interfaces (APIs). In a
model-based IAM framework, the asset model acts as the
central co-ordinator of information access and data
transformation. Instead of coupling the various tools to each
other through “expensive” pair-wise interface adaptors, each
tool is interfaced with the model database. The database
thereby enables indirect coupling of disparate applications by

allowing them to collaboratively work together in the common
context of the asset model. The front-end modeling
environment provided to the end user allows definition and
modification of the asset model, and also contains a
mechanism to allow the invocation of one or more integrated
tools that act on different parts of the asset model. A more
detailed description of this approach appears in [15] and its
application to an integrated forecasting and optimization
workflow is described in [20].

Service-oriented architectures. Service oriented architecture
(SOA) is a style of architecting software systems by packaging
functionalities as services that can be invoked by any service
requester. An SOA typically implies a loose coupling between
modules. Wrapping a well-defined service invocation interface
around a functional module hides the details of the module
implementation from other service requesters. This enables
software reuse and also means that changes to a module’s
implementation are localized and do not affect other modules
as long as the service interface is unchanged.

Web services form an attractive basis for implementing
service-oriented architectures for distributed systems. Web
services rely on open, platform-independent protocols and
standards, and allow software modules to make themselves
accessible over the internet. Web services and service-oriented
architectures are becoming a popular and useful means of
leveraging Internet technologies to improve business
processes in the oil and gas industry [6].

When the service-oriented approach is adopted for designing
an IAM framework, every component, regardless of its
functionality, resource requirements, language of
implementation, etc., provides a well-defined service interface
that can be used by any other component in the framework.
The service abstraction provides a uniform way to mask a
variety of underlying data sources (real-time production data,
historical data, model parameters, reports, etc.) and
functionalities (simulators, optimizers, sensors, actuators,
etc.). Workflows can be composed by coupling service
interfaces in the desired order. The workflow specification can
be through a graphical or textual front end and the actual
service calls can be generated automatically. Many service
composition tools provide such functionality (e.g., [9]).

Data composition. A typical IAM framework will incorporate
a number of information consumers such as simulation tools,
optimizers, databases, real-time control systems for in situ

SPE 99983

A Service-Oriented Data-Composition Architecture for Integrated Asset Management
R. Soma, A. Bakshi, A. Orangi, and V.K. Prasanna, U. of Southern California, and W. Da Sie, Chevron Corp.

2 SPE 99983

sensing and actuation, and also human engineers and analysts.
The data sources in the system are equally diverse, ranging
from real-time measurements from temperature, flow,
pressure, and vibration sensors on physical assets such as oil
pipelines to more abstract data such as simulation results,
maintenance schedules of oilfield equipment, market prices,
etc. One of the key components of an IAM framework is an
efficient, scalable, and flexible mechanism for collection,
aggregation, and delivery of data in the right format to the
right consumer at the right time. Automating data flow
between multiple information consumers will greatly expedite
many workflows by eliminating the typically laborious tasks
involved in manual preparation of data for input to various
tools.

If the service interfaces of different applications are
compatible, i.e, if the output of one service can be provided
unchanged to another, such coupling is relatively easy. In
many workflows, however, intermediate processing is
required for the data produced by one tool (service) before
providing it to another tool (service). This conversion could be
a simple reformatting of data or more complex
transformations including unit conversions (e.g., barrels to
cubic meters), aggregation (well production to block
production), etc. Specific interpolation policies could be
required to fill in a data set with missing values. We use data
composition to refer to this general process of applying a
variety of intermediate transformations to data as it flows from
one service to another as part of a larger workflow.

In this paper, we present a service-oriented software
architecture for data composition in a model-based IAM
framework. We discuss the graphical modeling front-end, the
data composition language, and the functionality of the IAM
compiler that orchestrates the underlying workflow execution
based on the users’ specification. The design of the software
architecture is influenced by the learnings from applying the
model-based design methodology to the oil production
forecasting use case [20]. A prototype of the data composition
framework has been implemented, and the design and
evaluation of this data composition framework for a real world
use case is planned.

Section 2 presents our domain-specific workflow modeling
language with a simple illustrative example. Section 3
discusses the architecture of the data composition framework.
Section 4 is an overview of related work, and we conclude in
Section 5.

2. Visual modeling of data composition

This section uses a highly simplified real-time reservoir
management workflow to illustrate the use of our visual
modeling language. In this workflow, a catalog of type curves
is available from a series of a priori reservoir simulation runs.
The curves in the catalog correspond to a set of differing
models of the reservoir. As real world production data from
the reservoir becomes available, it is to be periodically
compared to the type curves in the catalog to estimate the best
fit. The type curve(s) that best matches the production data at

a given time could then be used as input to other disjoing
workflows such as oil production forecasting.

We now analyze this workflow from a data composition
perspective and identify the following components:
— Data sources. The production data and the recovery curve

catalog are the sources of ‘raw’ data that could be stored
in a standard database. Access to tbe database could be
through a web service that provides a query interface for
data retrieval and update.

— Aggregation service. A software module aggregages time-
based raw data (from production as well as simulation),
and generates type curves along the desired dimensions -
e.g., cumulative oil production vs. reservoir pressure.

— Pattern matching service. This software module accepts a
set of reference curves from the catalog and a type curve
derived from the production data, and performs pattern
matching to estimate the best fit.

We now discuss the prototype domain-specific visual

modeling language for data composition in the IAM
workflow. We used the GME graphical modeling toolsuite
[17] to automatically generate a graphical modeling
environment from our modeling language specification.
Details of the GME tool are omitted here.

Our modeling language consists of three different
modeling paradigms. The first (DataElement) defines the basic
data types that are exchanged between services, the second
(Composition) specifies the transformations to be applied to
the data, and the third (Domain Model) links the data
composition model to the asset model.

Data schema

The data schema defines the entities and relationships to
capture the data types and the methods/transformations on
them. Thus the main elements of the data schema are
DataElement and Transformation. A DataElement is either a
DataObject, which is an abstraction of a domain specific
object or a DataPrimitive. DataPrimitives are primitive data
types like integer, Boolean, etc.

The other important kind in the data schema, Transformation
is used to define transformations on DataElements. A
Transformation can either be an ObjectTransformation which
is a predefined transformation on the DataObject entities or
CustomTransformation which refers to user-defined
transformations. Each Transformation has an associated
attribute called Formula which specifies the data processing
that needs to be done in the transformation. Currently, the
formula is a block of text that specifies a sub-routine in a
standard programming language such as C.

The first step in using our framework is to construct a library
of the identified DataObject types and Transformations (or
methods in object-oriented terminology). These objects are
then instantiated by the user while composing a specific
workflow.

SPE 99983 3

Data composition schema

This schema (Figure 2) defines the entities that are required to
compose workflows using the elements from the data schema.
The main kind in this schema is Composition. A Composition
contains DataElements and Transformations. The type of the
DataElements used in the compositions is obtained from the
library of DataObjects described above.

While specifying data composition, it is not sufficient to
indicate the types of data to be transformed. In addition, it is
necessary to specify which instances of that type of data are to
be ‘composed’. For example, a composition might only use
data related to a particular reservoir volume element (block).
We accomplish by allowing the user to define the range of the
data to be used, in terms of elements from the particular asset
model. This specification is done in a separate aspect of the
model, called the Properties aspect, where the user provides a
declarative expression to define the conditions that the data he
requires needs to satisfy.

Although there is an overlap between the elements in the data
schema and the composition schema, the reason for separating
them is to clearly distinguish the data definition aspect from
the data composition aspect. The data definition stage, where
the domain objects are identified and defined (ideally) occurs
just once. These objects are then used many times just as a
library is used in a programming language in the composition
stage.

Constants to be used in the data composition can be declared
by setting the isConstant property of the DataItem to true.
Finally, to make a composition reuseable, we have provided
each composition with input and output “ports”. Thus, a user-
defined composition model can be reused in other workflows
in the same way as the built-in Transformation object. A
Mapping connection exposes the data produced by a
composition as ports so that the composition can be reused.

It is important to note that our modeling language is totally
independent of notions of web services, etc., although the
concepts of web services and SOA are the key enablers of our
frameworks. Instead, the focus of the modeling language is on
specifying the data objects and transformations, without
worrying about how the data is sourced and where the
transformations are carried out.

Domain model schema

A domain modeling paradigm is used to specify the asset.
Each element in the model (representing a physical or non-
physical aspect of the asset) has data associated with it, which
represents some relevant information like the current
state/configuration of the asset. The main goal of the domain
model schema is provide mechanisms to keep this information
updated, by using the results from a data composition
workflow to update the suitable section of the asset model.
The domain model schema lets the user specify the elements
of the model database to be updated by the results of the
composition.

Figure 3: The domain model schema

Figure 1: The data schema

Figure 2: The data composition schema

4 SPE 99983

The domain model schema presented in Figure 3 is a small
and highly simplified schema for modeling a reservoir. In this
model, Reservoirs, Blocks and Wells can be represented. The
update element allows the user to specify that the results of the
composition can be used to update the model database. A
more comprehensive model is described in [20].

Illustrative example.

To illustrate how the language is used, we will use the
problem of the type curve matching described previously.

First the data objects are defined in a type library as shown in
Figure 4. The figure shows a simple data type library that
contains a few data-types including OilTypeCurve. This type
curve object is an abstraction used to represent a schema that
includes cumulative oil production, cumulative water
production etc. It also encapsulates a transformation called
matchPattern which compares two oil type curves and returns
a similarity index.

To describe the composition, we create a project based on the
Composition schema. The type library defined previously is
imported into the project, and provides the building blocks for
the composition model. A new Composition object is
instantiated, and two OilTypeCurve objects are added to it.

Next, the properties of the objects are described, for example,
to specify that the type curve is required for the block named
Block_A. This is done in the Properties aspect as shown in
Figure 5(b). The other properties are also defined declaratively
on the data objects. The property field of the two
OilTypeCurves is shown in in Table 1. Note that the
“Block_A” in the property specification is a reference
(pointer) to the Block_A object in the composition model.
Thus, the context of the specification forms the namespace for
resolving the references in the properties declaration. The
Block_A object in the composition model in turn links to the
corresponding block entity in the asset model.

After this description is presented to the system, it is compiled
and the data satisfying the composition is fetched. The details
of how this is accomplished, is the focus of the next section.

Property a:
src=”simulation” && block= Block_A.blockName && Date > 1/1/2000
&& Date < 12/1/2005

Property b:
src=”production” && block = Block_A.blockName && Date > 1/1/2000
&& Date < 12/1/2005

Table 1: Specifying the source of data in the composition

model

3. System Architecture

The architecture is based on two goals: generality and

reuse. Generality means that our approach is applicable to
many different data composition scenarios. Reuse means that
architecture use as many off the shelf components as possible.

Figure 4: Modeling the data type library
(a)

(b)

Figure 5. Data compostion for pattern matching:
 (a) Properties and (b) Main aspects

SPE 99983 5

A language based approach described in the previous
section, helps us achieve generality because, the range of
applications supported by the framework is dependent on the
expressiveness of the language and is quite large. However, a
big challenge of this approach that is described below is how
the “programs” in the language will be executed.

As mentioned earlier, the main goal of our system is to enable
the decision maker (reservoir engineer) to describe the
workflow that produces the data she requires to make
decisions. Workflows in our systems are defined in terms of
domain objects, a set of pre-determined “methods” of those
objects and a set of workflow primitives, exactly like in a
conventional object oriented language. These descriptions are
then compiled by the IAM-COOL compiler to produce a
workflow consisting of a series of service invocations. The
output of the compiler is a schedule that can be executed by a
workflow engine like MS SSIS [14] or a BPEL [8] engine.
The compiler makes use of a lookup directory, which keeps a
mapping of the service that caters a specific data, much like
the UDDI yellow pages. Additionally, the lookup directory
can keep track of other metrics like data quality to choose the
best data source when multiple data sources serve the same
data. The information required for the lookup directory is
provided by the data-sources themselves. Legacy data sources
are provided with wrappers to enable this. The data sources
(wrappers) provide the required meta-data including the
type(s) of data they provide, data quality indicators etc, which
is indexed by the lookup directory. The compiled workflow is
then given off to a workflow engine for execution. Finally, a
service called the transformation palette provides a set of pre-
defined transformations that can be used in the workflow. The
high-level architecture diagram is shown in Figure 6.

3.1 Lookup component

The lookup component is a key component in our
architecture and is used to translate the high level object
descriptions to corresponding service invocations. To achieve
this, the lookup needs to keep track of the data and
transformations provided by the data or computational source.
It does this by storing meta-data for each service. In particular,
the lookup component keeps the following meta-data for each
data source:
1. Source Metadata: This metadata is used when the

requester knows the source from which the data needs to
be fetched. The source metadata can also provide hints
about the quality of the data supplied by the data source.
Dublin core metadata schema is commonly used to define
the source meta-data [16].

2. Type of objects served by the source: Is the key
information that allows the directory to resolve the
specifications to the data sources.

3. Range of objects served by the source: A data source
may supply only a certain range of the data objects. For
example oil production data for reservoirs in a particular
block of the reservoir. Please note here that we assume
that a data source always serves all the fields of the data
type.

4. Transformations on data objects performed by the
service. This meta-data contains a mapping of the object
method to the corresponding port of the service providing
that method.

5. Data quality meta-data: Many indicators of data quality
have been identified in literature including
freshness/receny of the data, completeness of the data,
accuracy of the data etc. This information is used when

Workflow Editor
(GME)

Workflow
Compiler

Core data composition services

Lookup
directory

Workflow
execution engine

Transformation
palette

Pattern
matching

application

Recovery
curve DB

Production
DB

Adapter Adapter Adapter

Simulator

Adapter

Figure 6. Overview of our system architecture.

6 SPE 99983

more than one data source supply the same piece of
information and the system needs to choose the right
piece of data for the decision to be made.

To increase the scalability of the system, the lookup directory
can be implemented in a distributed fashion much like the
DNS [18]. In such a system, the lookup component is not a
single monolithic component but is rather composed of a
multiple components organized hierachically, with each
lookup component in the hierarchy indexing a subset of the
data sources. When the “root” lookup component receives a
request for some dat/transformation, it delegates the request to
the right component in the hierarchy.

3.2. Compiler

The IAM-COOL compiler takes the high-level description
from the user and converts it into an executable workflow like
BPEL. One of the main tasks in this process is to translate the
high-level object references to calls to the actual data-sources
serving that data. The compiler does this by requesting the
lookup directory to provide the best data-source for the
required data type and the quality metrics. The compiler then
uses this to produce a BPEL schedule that contains the
sequence of web-service calls that need to be performed. The
compiler also converts the custom transformations specified in
the description to appropriate calls to the transformation
pallete component.

3.3. Services

Both data and computational resources are abstracted as web
services in our system. This abstraction provides us with
uniform interface and protocols to address each resource,
considerably decreasing the complexity of integration. Apart
from providing the data and computational resources, the web
services in the system provide the meta-data information to the
framework. In general each service has the following
interface:

IAMCOOLService{
Init();
Stop();
XMLDoc getData (String objType, Query spec);

//Set of data transformations it provides.
XMLDoc transformation1();

}
Table 2: The interface of a data-source

Init is the initialization process where the data sources
advertise themselves to the lookup directory and provide it
with the meta-data described above. The stop method is
called when the service needs to be shutdown. This method is
the inverse of the init method where the directory removes the
current service as providing the data and the transformations
that it advertised in the init process. In the getData method
of the interface, the data source finds the data that is of the
same type as the first parameter and matches the data

specification. It returns a XML document containg the
required data. We plan to use Xquery [5] as the language for
specifying the queries. This approach gives us a powerful and
well-defined query language to specify our constraints. Also,
Xquery is XML based, an open standard, well-understood, and
has many supporting tools. The simplest (but inefficient) way
of using Xquery would be to first generate the XML document
and then apply the Xquery constraints on it to obtain the
subset of the data satisfying the requirements. Techniques to
convert Xquery queries to their SQL counterparts have been
discussed in literature [3] and can be used for more efficient
data retrieval for data residing in SQL supported databases.

In building such systems, most of the data sources already
exist (legacy data sources) with their own proprietary
interfaces. A well-accepted technique (design pattern) to
integrate such legacy data/computational sources is to provide
them with wrappers [1]. The wrappers provide a web-service
abstraction to the data source and present the above-mentioned
interface to the system.

3.4. Workflow engine and transformation palette

We plan to use an off-the-shelf workflow execution engine
like MS-SSIS [13], BPEL execution engine, etc. to execute the
schedules produced by the IAMCOOL compiler. An
interesting aspect that has to be considered here is the error
handling - what happens if a service in the schedule is down
for some reason? An elegant way to do this would be to use
the custom extension mechanism of BPEL, to make provision
to list more than one service that can satisfy the data
requirement. This would also entail that the execution engine
be modified to understand these custom extensions and use an
alternative data source in the case of failure.

The last component in our architecture is the transformation
palette. The transformation palette provides the workflow
designer with a set of transformations that can be applied to
the data from the services. A simple set of primitives including
the relational operators like project, select, join etc.,
mathematical and aggregation/statistical operators like add,
multiply etc. make the framework more powerful.

4. Related work

Our work is related to and draws from many areas of research.
One key goal of our work is to propose a Domain Specific
Visual Language (DSVL) for the system. Although much
work has been done in the area of DSVL [5], we are not aware
of a language that addresses the needs for data acquisition for
the petroleum industry. One design choice we could have
made was to use an existing workflow language like BPEL [8]
or visual workflow languages like JOpera [9], instead of our
own DSVL. However, this choice was not pursued because
most workflow languages are designed with
computer/software engineers in mind and work at very low
level of abstractions.

SPE 99983 7

Our architecture has been inspired by many systems. The idea
of writing “intentional” programs has been drawn from the
notion of intentional naming [10] where entities are addressed
by the service they provide rather than their physical address.
The idea of using a lookup directory to map names to the
physical locations is pervasive in all kinds of middleware
systems like RPC [11], CORBA [12] etc.

In [2], the authors describe an architectural style and a
architecture for a similar “data-intensive” application.
Consequently, their architecture resembles ours in many ways.
The profile server of their architecture is very similar to the
lookup directory in our system and the resource server is
similar to a service/ wrapper of our system. However, in our
system we incorporate the notion of data quality and
transformations, not addressed in theirs. We also provide a
visual language “front end” that allows the domain engineer to
fetch and compose data, which is not present in their system.

Cohen et al. [4], describe an architecture for data composition
in a system with a huge number of data sources and rapidly
changing data (called iQueue). Like our system, the goal of
the system is to allow the users to write applications by
“focusing on the semantics by facilitating the mechanics” of
compositions. Like our system, they also consider data quality
metrics while choosing the data source. Their systems includes
a component called “data resolver” similar to our lookup
directory and composer manager similar to our “compiler”.
However our system has a scope narrower that iQueue in
terms of the kinds of data that it deals with; we only consider
data relevant to petroleum industry. Consequentlu, we have
made use of this fact to propose the notions of a set of data
objects and fixed set of operations on them as the basis of
describing compositions and a visual specification language.
Unlike iQueue, we do not address issues like security and the
use of multiple protocols because we assume the presence of a
SOA. Finally, unlike in iQueue, one of the important goals of
our system has been to incorporate off the shelf components
whereever applicable.

Much work in recent times has been done in the area of
effective discovery of webservices. Apart from the data that
the webservices are mandated to publish as part of WSDL and
UDDI standards, various kinds of meta-data have been
proposed to help in the discovery process [16]. In [13], the
authors describe how ontologies and semantic markup can be
used for effective service discovery. Here, the services add
semantic information using DAML-S to indicate the semantics
of the services they provide. This information is held within
the WSDL descriptions and special UDDI structures and is
used for reasoning about and choosing the appropriate
services. It is possible to use meta-data as ontological
descriptions in our system and we plan to use them in our
future versions of our framework. The system we have
described has a larger scope than these systems and service
discovery is only a part of our system. Another difference is
that our system is deployed in a “closed” environment of an
organization as opposed to “open” environments of the
internet, and thus our problem is simplified to a large extent.

5. Discussion

One of the main problems that our system addresses is non-
standard data formats i.e. each data source of the system could
provide the data in its own format/schema. Efforts such as the
POSC [7] projects, have been initiated in the community today
to address this problem. The goal of these efforts is to define a
schema or a common vocabulary for transparent data
exchange between various tools and systems. XML-based
open standards such as the WITSML data schema and API are
under active development. Our proposed framework benefits
from such standards mainly because in the absence of such
industry-wide standards, data exchange without loss of
information between different tools becomes difficult. Also,
our framework requires the end user to have some familiarity
with data schemas and composition templates. By using data
schema(s) developed by standards bodies such as POSC,
acceptance and eventual deployment of the framework is
facilitated.

Acknowledgments
This research was funded by CiSoft (http://cisoft.usc.edu) – a
joint USC-Chevron Center of Excellence for Research and
Academic Training on Interactive Smart Oilfield
Technologies.

References
[1] Don't Scrap It, Wrap It! A Wrapper Architecture for

Legacy Data Sources, VLDB 1997
[2] C. Mattmann, D. Crichton, J.S. Hughes, S. Kelly and P.

Ramirez. Software Architecture for Large-scale,
Distributed, Data-Intensive Systems. In Proceedings of
the 4th IEEE/IFIP Working Conference on Software
Architecture (WICSA-4). pp. 255-264. Oslo, Norway,
June 2004.

[3] Ioana Manolescu, Daniela Florescu and Donald
Kossmann: "Answering XML Queries over
Heterogeneous Data Sources", Proc. of the Int'l. Conf. on
Very Large Databases (VLDB) 2001, Roma, Italy

[4] Norman Cohen, Apratim Purkayastha, Luke Wong,
Danny L. Yeh, iQueue: A Pervasive Data Composition
Framework, Proc of the Third International conference on
Mobile Data Management

[5] David S. Wile, Lessons Learned from Real DSL
Experiments. In Proceedings of the 36th Hawaii
International Conference on System Sciences. Kona. Jan
2003.

[6] R. Gregovic, R. Foreman, D. Forrester, and J. Carroll. A
common approach to accessing real-time operations data
- Introducing service-oriented architecture to E&P, SPE
ATCE 2005.

[7] Petrotechnical Open Standards Consortium,
 http://www.posc.org
[8] T. Andrews et al., Business Process Execution Language

for Web Service v1. 1
http://www.ibm.com/developerworks/library/wsbpel

[9] Cesare Pautasso, Gustavo Alonso The JOpera Visual
Composition Language Journal of Visual Languages and
Computing (JVLC), 16(1-2):119-152, 2005

8 SPE 99983

[10] William Adjie-Winoto, Elliot Schwartz, Hari
Balakrishnan, and Jeremy Lilley. The Design and
Implementation of an Intentional Naming System. In
Proceedings of the ACM Symposium on Operating
Systems Principles

[11] Andrew D. Birrel and Bruce Jay Nelson. Implementing
remote procedure calls. ACM Transactions on Computer
Systems, 2(1):39-59, February 1984.

[12] CORBA, http://www.corba.org
[13] K. Sivashanmugam, K. Verma, A. Sheth, J. Miller,

"Adding Semantics to Web Services Standards," The
2003 International Conference on Web Services
(ICWS'03), Las Vegas, NV, June 2003, pp. 395-401.

[14] SQL Server Integration Services (SSIS),
http://msdn.microsoft.com/SQL/bi/integration/default.asp
x

[15] Cong Zhang, Viktor Prasanna, Abdollah Orangi, Will Da
Sie, Aditya Kwatra, Modeling methodology for
application development in petroleum industry, IEEE
International Conference on Information Reuse and
Integration, Las Vegas, 2005.

[16] DCMI, Dublin Core Metadata Element Set, Version 1.1:
Reference Description, Dublin Core Metadata Initiative,
1999.

[17] The Generic Modeling Environment (GME),
http://www.isis.vanderbilt.edu/projects/gme/

[18] Berkeley Internet Name Domain (BIND).
 http://www.isc.org/bind.html, 2004.
[19] David Trastour, Claudio Bartolini, and Javier Gonzalez-

Castillo. A semantic web approach to service description
for matchmaking services. In Proc. International Semantic
Web Working Symposium (SWWS), 2001.

[20] Cong Zhang, Abdollah Orangi, Amol Bakshi, Will Da
Sie, and Viktor K. Prasanna. Model-based framework for
oil production forecasting and optimization: A case study
in integrated asset management, SPE Intelligent Energy
Conference and Exhibition (IECE), April 2006.

	MAIN MENU
	PREVIOUS MENU

	Search
	Search Results
	Print

