
Copyright 2006, Society of Petroleum Engineers 
 
This paper was prepared for presentation at the 2006 SPE Intelligent Energy Conference and 
Exhibition held in Amsterdam, The Netherlands, 11–13 April 2006. 
 
This paper was selected for presentation by an SPE Program Committee following review of 
information contained in an abstract submitted by the author(s). Contents of the paper, as 
presented, have not been reviewed by the Society of Petroleum Engineers and are subject to 
correction by the author(s). The material, as presented, does not necessarily reflect any 
position of the Society of Petroleum Engineers, its officers, or members. Papers presented at 
SPE meetings are subject to publication review by Editorial Committees of the Society of 
Petroleum Engineers. Electronic reproduction, distribution, or storage of any part of this paper 
for commercial purposes without the written consent of the Society of Petroleum Engineers is 
prohibited. Permission to reproduce in print is restricted to an abstract of not more than  
300 words; illustrations may not be copied. The abstract must contain conspicuous 
acknowledgment of where and by whom the paper was presented. Write Librarian, SPE, P.O. 
Box 833836, Richardson, TX 75083-3836, U.S.A., fax 01-972-952-9435. 

 
1. Introduction 
 
The goal of an Integrated Asset Management (IAM) 
framework for the oil and gas industry is twofold. From the 
end users’ perspective, it should offer a single, easy-to-use 
user interface for specifying and executing a variety of 
workflows from reservoir simulations to economic evaluation. 
The framework should not require the user to be an expert in 
any of the underlying software applications; in fact, the details 
of selecting, configuring, and invoking the underlying 
software modules should be hidden from the end user. From 
the software development perspective, the IAM framework 
should facilitate seamless interaction of diverse and 
independently developed applications that accomplish various 
sub-tasks in the overall workflow. For instance, it should be 
possible to pipe the output of a reservoir simulator running on 
one machine to a forecasting and optimization toolkit running 
on another and in turn piping its output to a third piece of 
software that can convert the information into a set of reports 
in a specified format. 
 
Model-based design.  The design of our prototype IAM 
framework is based on the concept of model-integrated system 
design. The central idea is to define a domain-specific 
modeling language for structured specification of all relevant 
information about the particular asset being modeled. The 
model captures information about many physical and non-
physical aspects of the asset and stores it in a model database. 
The model database is in a canonical format that can be 
accessed by any of the tools in the IAM framework through 
well-defined application programming interfaces (APIs). In a 
model-based IAM framework, the asset model acts as the 
central co-ordinator of information access and data 
transformation. Instead of coupling the various tools to each 
other through “expensive” pair-wise interface adaptors, each 
tool is interfaced with the model database. The database 
thereby enables indirect coupling of disparate applications by 

allowing them to collaboratively work together in the common 
context of the asset model. The front-end modeling 
environment provided to the end user allows definition and 
modification of the asset model, and also contains a 
mechanism to allow the invocation of one or more integrated 
tools that act on different parts of the asset model. A more 
detailed description of this approach appears in [15] and its 
application to an integrated forecasting and optimization 
workflow is described in [20]. 
 
Service-oriented architectures.  Service oriented architecture 
(SOA) is a style of architecting software systems by packaging 
functionalities as services that can be invoked by any service 
requester. An SOA typically implies a loose coupling between 
modules. Wrapping a well-defined service invocation interface 
around a functional module hides the details of the module 
implementation from other service requesters. This enables 
software reuse and also means that changes to a module’s 
implementation are localized and do not affect other modules 
as long as the service interface is unchanged.  

 
Web services form an attractive basis for implementing 
service-oriented architectures for distributed systems. Web 
services rely on open, platform-independent protocols and 
standards, and allow software modules to make themselves 
accessible over the internet. Web services and service-oriented 
architectures are becoming a popular and useful means of 
leveraging Internet technologies to improve business 
processes in the oil and gas industry [6].  

 
When the service-oriented approach is adopted for designing 
an IAM framework, every component, regardless of its 
functionality, resource requirements, language of 
implementation, etc., provides a well-defined service interface 
that can be used by any other component in the framework. 
The service abstraction provides a uniform way to mask a 
variety of underlying data sources (real-time production data, 
historical data, model parameters, reports, etc.) and 
functionalities (simulators, optimizers, sensors, actuators, 
etc.).  Workflows can be composed by coupling service 
interfaces in the desired order. The workflow specification can 
be through a graphical or textual front end and the actual 
service calls can be generated automatically. Many service 
composition tools provide such functionality (e.g., [9]). 
 
Data composition. A typical IAM framework will incorporate 
a number of information consumers such as simulation tools, 
optimizers, databases, real-time control systems for in situ 
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sensing and actuation, and also human engineers and analysts.  
The data sources in the system are equally diverse, ranging 
from real-time measurements from temperature, flow, 
pressure, and vibration sensors on physical assets such as oil 
pipelines to more abstract data such as simulation results, 
maintenance schedules of oilfield equipment, market prices, 
etc.  One of the key components of an IAM framework is an 
efficient, scalable, and flexible mechanism for collection, 
aggregation, and delivery of data in the right format to the 
right consumer at the right time. Automating data flow 
between multiple information consumers will greatly expedite 
many workflows by eliminating the typically laborious tasks 
involved in manual preparation of data for input to various 
tools.  
 
If the service interfaces of different applications are 
compatible, i.e, if the output of one service can be provided 
unchanged to another, such coupling is relatively easy. In 
many workflows, however, intermediate processing is 
required for the data produced by one tool (service) before 
providing it to another tool (service). This conversion could be 
a simple reformatting of data or more complex 
transformations including unit conversions (e.g., barrels to 
cubic meters), aggregation (well production to block 
production), etc. Specific interpolation policies could be 
required to fill in a data set with missing values. We use data 
composition to refer to this general process of applying a 
variety of intermediate transformations to data as it flows from 
one service to another as part of a larger workflow. 
 
In this paper, we present a service-oriented software 
architecture for data composition in a model-based IAM 
framework. We discuss the graphical modeling front-end, the 
data composition language, and the functionality of the IAM 
compiler that orchestrates the underlying workflow execution 
based on the users’ specification. The design of the software 
architecture is influenced by the learnings from applying the 
model-based design methodology to the oil production 
forecasting use case [20].  A prototype of the data composition 
framework has been implemented, and the design and 
evaluation of this data composition framework for a real world 
use case is planned. 
 
Section 2 presents our domain-specific workflow modeling 
language with a simple illustrative example. Section 3 
discusses the architecture of the data composition framework. 
Section 4 is an overview of related work, and we conclude in 
Section 5. 
 
2. Visual modeling of data composition 
 
This section uses a highly simplified real-time reservoir 
management workflow to illustrate the use of our visual 
modeling language. In this workflow, a catalog of type curves 
is available from a series of a priori reservoir simulation runs. 
The curves in the catalog correspond to a set of differing 
models of the reservoir. As real world production data from 
the reservoir becomes available, it is to be periodically 
compared to the type curves in the catalog to estimate the best 
fit. The type curve(s) that best matches the production data at 

a given time could then be used as input to other disjoing 
workflows such as oil production forecasting.  

We now analyze this workflow from a data composition 
perspective and identify the following components: 
— Data sources. The production data and the recovery curve 

catalog are the sources of ‘raw’ data that could be stored 
in a standard database. Access to tbe database could be 
through a web service that provides a query interface for 
data retrieval and update.  

— Aggregation service. A software module aggregages time-
based raw data (from production as well as simulation), 
and generates type curves along the desired dimensions - 
e.g., cumulative oil production vs. reservoir pressure.  

— Pattern matching service. This software module accepts a 
set of reference curves from the catalog and a type curve 
derived from the production data, and performs pattern 
matching to estimate the best fit. 

 
We now discuss the prototype domain-specific visual 

modeling language for data composition in the IAM 
workflow. We used the GME graphical modeling toolsuite 
[17] to automatically generate a graphical modeling 
environment from our modeling language specification. 
Details of the GME tool are omitted here. 

Our modeling language consists of three different 
modeling paradigms. The first (DataElement) defines the basic 
data types that are exchanged between services, the second 
(Composition) specifies the transformations to be applied to 
the data, and the third (Domain Model) links the data 
composition model to the asset model.  
 
Data schema 

 
The data schema defines the entities and relationships to 
capture the data types and the methods/transformations on 
them. Thus the main elements of the data schema are 
DataElement and Transformation. A DataElement is either a 
DataObject, which is an abstraction of a domain specific 
object or a DataPrimitive. DataPrimitives are primitive data 
types like integer, Boolean, etc.  

 
The other important kind in the data schema, Transformation 
is used to define transformations on DataElements. A 
Transformation can either be an ObjectTransformation which 
is a predefined transformation on the DataObject entities or 
CustomTransformation which refers to user-defined 
transformations. Each Transformation has an associated 
attribute called Formula which specifies the data processing 
that needs to be done in the transformation. Currently, the 
formula is a block of text that specifies a sub-routine in a 
standard programming language such as C. 

 
The first step in using our framework is to construct a library 
of the identified DataObject types and Transformations (or 
methods in object-oriented terminology). These objects are 
then instantiated by the user while composing a specific 
workflow. 
 



SPE 99983  3 

Data composition schema 
 
This schema (Figure 2) defines the entities that are required to 
compose workflows using the elements from the data schema. 
The main kind in this schema is Composition. A Composition 
contains DataElements and Transformations. The type of the 
DataElements used in the compositions is obtained from the 
library of DataObjects described above.  
 
While specifying data composition, it is not sufficient to 
indicate the types of data to be transformed. In addition, it is 
necessary to specify which instances of that type of data are to 
be ‘composed’. For example, a composition might only use 
data related to a particular reservoir volume element (block). 
We accomplish by allowing the user to define the range of the 
data to be used, in terms of elements from the particular asset 
model. This specification is done in a separate aspect of the 
model, called the Properties aspect, where the user provides a 
declarative expression to define the conditions that the data he 
requires needs to satisfy.  
 
Although there is an overlap between the elements in the data 
schema and the composition schema, the reason for separating 
them is to clearly distinguish the data definition aspect from 
the data composition aspect. The data definition stage, where 
the domain objects are identified and defined (ideally) occurs 
just once. These objects are then used many times just as a 
library is used in a programming language in the composition 
stage.  
 
Constants to be used in the data composition can be declared 
by setting the isConstant property of the DataItem to true. 
Finally, to make a composition reuseable, we have provided 
each composition with input and output “ports”.  Thus, a user-
defined composition model can be reused in other workflows 
in the same way as the built-in Transformation object. A 
Mapping connection exposes the data produced by a 
composition as ports so that the composition can be reused.  
 

 
It is important to note that our modeling language is totally 
independent of notions of web services, etc., although the 
concepts of web services and SOA are the key enablers of our 
frameworks. Instead, the focus of the modeling language is on 
specifying the data objects and transformations, without 
worrying about how the data is sourced and where the 
transformations are carried out. 

 
Domain model schema 
 
A domain modeling paradigm is used to specify the asset. 
Each element in the model (representing a physical or non-
physical aspect of the asset) has data associated with it, which 
represents some relevant information like the current 
state/configuration of the asset. The main goal of the domain 
model schema is provide mechanisms to keep this information 
updated, by using the results from a data composition 
workflow to update the suitable section of the asset model.  
The domain model schema lets the user specify the elements 
of the model database to be updated by the results of the 
composition.  
 

 
Figure 3: The domain model schema 

Figure 1: The data schema 

Figure 2: The data composition schema 
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The domain model schema presented in Figure 3 is a small 
and highly simplified schema for modeling a reservoir. In this 
model, Reservoirs, Blocks and Wells can be represented. The 
update element allows the user to specify that the results of the 
composition can be used to update the model database.  A 
more comprehensive model is described in [20]. 
 
Illustrative example. 
 
To illustrate how the language is used, we will use the 
problem of the type curve matching described previously.  
 
First the data objects are defined in a type library as shown in 
Figure 4. The figure shows a simple data type library that 
contains a few data-types including OilTypeCurve. This type 
curve object is an abstraction used to represent a schema that 
includes cumulative oil production, cumulative water 
production etc. It also encapsulates a transformation called 
matchPattern which compares two oil type curves and returns 
a similarity index. 
 
To describe the composition, we create a project based on the 
Composition schema. The type library defined previously is 
imported into the project, and provides the building blocks for 
the composition model. A new Composition object is 
instantiated, and two OilTypeCurve objects are added to it.  
 
Next, the properties of the objects are described, for example, 
to specify that the type curve is required for the block named 
Block_A. This is done in the Properties aspect as shown in 
Figure 5(b). The other properties are also defined declaratively 
on the data objects. The property field of the two 
OilTypeCurves is shown in in Table 1. Note that the 
“Block_A” in the property specification is a reference 
(pointer) to the Block_A object in the composition model. 
Thus, the context of the specification forms the namespace for 
resolving the references in the properties declaration.  The 
Block_A object in the composition model in turn links to the 
corresponding block entity in the asset model. 

 
After this description is presented to the system, it is compiled 
and the data satisfying the composition is fetched. The details 
of how this is accomplished, is the focus of the next section.   
 

Property a:  
src=”simulation” && block= Block_A.blockName && Date > 1/1/2000 
&& Date < 12/1/2005 
 
Property b:  
src=”production” && block = Block_A.blockName && Date > 1/1/2000 
&& Date < 12/1/2005 

 
Table 1: Specifying the source of data in the composition 

model 
 
3. System Architecture  

 
The architecture is based on two goals: generality and 

reuse. Generality means that our approach is applicable to 
many different data composition scenarios. Reuse means that 
architecture use as many off the shelf components as possible.  

 

Figure 4: Modeling the data type library 
(a) 

(b) 

Figure 5. Data compostion for pattern matching:  
               (a) Properties and (b) Main  aspects 
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A language based approach described in the previous 
section, helps us achieve generality because, the range of 
applications supported by the framework is dependent on the 
expressiveness of the language and is quite large. However, a 
big challenge of this approach that is described below is how 
the “programs” in the language will be executed.  

 
As mentioned earlier, the main goal of our system is to enable 
the decision maker (reservoir engineer) to describe the 
workflow that produces the data she requires to make 
decisions. Workflows in our systems are defined in terms of 
domain objects, a set of pre-determined “methods” of those 
objects and a set of workflow primitives, exactly like in a 
conventional object oriented language. These descriptions are 
then compiled by the IAM-COOL compiler to produce a 
workflow consisting of a series of service invocations. The 
output of the compiler is a schedule that can be executed by a 
workflow engine like MS SSIS [14] or a BPEL [8] engine. 
The compiler makes use of a lookup directory, which keeps a 
mapping of the service that caters a specific data, much like 
the UDDI yellow pages. Additionally, the lookup directory 
can keep track of other metrics like data quality to choose the 
best data source when multiple data sources serve the same 
data. The information required for the lookup directory is 
provided by the data-sources themselves. Legacy data sources 
are provided with wrappers to enable this. The data sources 
(wrappers) provide the required meta-data including the 
type(s) of data they provide, data quality indicators etc, which 
is indexed by the lookup directory. The compiled workflow is 
then given off to a workflow engine for execution. Finally, a 
service called the transformation palette provides a set of pre-
defined transformations that can be used in the workflow. The 
high-level architecture diagram is shown in Figure 6. 

3.1 Lookup component 
 

The  lookup component is a key component in our 
architecture and is used to translate the high level object 
descriptions to corresponding service invocations. To achieve 
this, the lookup needs to keep track of the data and 
transformations provided by the data or computational source. 
It does this by storing meta-data for each service. In particular, 
the lookup component keeps the following meta-data for each 
data source: 
1. Source Metadata: This metadata is used when the 

requester knows the source from which the data needs to 
be fetched. The source metadata can also provide hints 
about the quality of the data supplied by the data source. 
Dublin core metadata schema is commonly used to define 
the source meta-data [16]. 

2. Type of objects served by the source: Is the key 
information that allows the directory to resolve the 
specifications to the data sources. 

3. Range of objects served by the source: A data source 
may supply only a certain range of the data objects. For 
example oil production data for reservoirs in a particular 
block of the reservoir. Please note here that we assume 
that a data source always serves all the fields of the data 
type. 

4. Transformations on data objects performed by the 
service. This meta-data contains a mapping of the object 
method to the corresponding port of the service providing 
that method. 

5. Data quality meta-data: Many indicators of data quality 
have been identified in literature including 
freshness/receny of the data, completeness of the data, 
accuracy of the data etc. This information is used when 

Workflow Editor 
(GME)

Workflow 
Compiler

Core data composition services 

Lookup 
directory 

Workflow 
execution engine

Transformation 
palette 

Pattern 
matching 

application 

Recovery 
curve DB 

Production 
DB

Adapter Adapter Adapter 

Simulator 

Adapter 

Figure 6. Overview of our system architecture. 
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more than one data source supply the same piece of 
information and the system needs to choose the right 
piece of data for the decision to be made. 

 
To increase the scalability of the system, the lookup directory 
can be implemented in a distributed fashion much like the 
DNS [18]. In such a system, the lookup component is not a 
single monolithic component but is rather composed of a 
multiple components organized hierachically, with each 
lookup component in the hierarchy indexing a subset of the 
data sources. When the “root” lookup component receives a 
request for some dat/transformation, it delegates the request to 
the right component in the hierarchy.  
 
3.2. Compiler 
 
The IAM-COOL compiler takes the high-level description 
from the user and converts it into an executable workflow like 
BPEL.  One of the main tasks in this process is to translate the 
high-level object references to calls to the actual data-sources 
serving that data. The compiler does this by requesting the 
lookup directory to provide the best data-source for the 
required data type and the quality metrics. The compiler then 
uses this to produce a BPEL schedule that contains the 
sequence of web-service calls that need to be performed. The 
compiler also converts the custom transformations specified in 
the description to appropriate calls to the transformation 
pallete component.  
 
3.3. Services 
 
Both data and computational resources are abstracted as web 
services in our system. This abstraction provides us with 
uniform interface and protocols to address each resource, 
considerably decreasing the complexity of integration. Apart 
from providing the data and computational resources, the web 
services in the system provide the meta-data information to the 
framework. In general each service has the following 
interface: 
 

IAMCOOLService{ 
Init(); 
Stop(); 
XMLDoc getData (String objType, Query spec); 
 
//Set of data transformations it provides. 
XMLDoc transformation1(); 

} 
Table 2: The interface of a data-source 

 
Init is the initialization process where the data sources 
advertise themselves to the lookup directory and provide it 
with the meta-data described above. The stop method is 
called when the service needs to be shutdown. This method is 
the inverse of the init method where the directory removes the 
current service as providing the data and the transformations 
that it advertised in the init process. In the getData method 
of the interface, the data source finds the data that is of the 
same type as the first parameter and matches the data 

specification. It returns a XML document containg the 
required data. We plan to use Xquery [5] as the language for 
specifying the queries. This approach gives us a powerful and 
well-defined query language to specify our constraints. Also, 
Xquery is XML based, an open standard, well-understood, and 
has many supporting tools. The simplest (but inefficient) way 
of using Xquery would be to first generate the XML document 
and then apply the Xquery constraints on it to obtain the 
subset of the data satisfying the requirements. Techniques to 
convert Xquery queries to their SQL counterparts have been 
discussed in literature [3] and can be used for more efficient 
data retrieval for data residing in SQL supported databases. 
 
In building such systems, most of the data sources already 
exist (legacy data sources) with their own proprietary 
interfaces. A well-accepted technique (design pattern) to 
integrate such legacy data/computational sources is to provide 
them with wrappers [1]. The wrappers provide a web-service 
abstraction to the data source and present the above-mentioned 
interface to the system. 
 
3.4. Workflow engine and transformation palette 
 
We plan to use an off-the-shelf workflow execution engine 
like MS-SSIS [13], BPEL execution engine, etc. to execute the 
schedules produced by the IAMCOOL compiler. An 
interesting aspect that has to be considered here is the error 
handling - what happens if a service in the schedule is down 
for some reason? An elegant way to do this would be to use 
the custom extension mechanism of BPEL, to make provision 
to list more than one service that can satisfy the data 
requirement. This would also entail that the execution engine 
be modified to understand these custom extensions and use an 
alternative data source in the case of failure. 
 
The last component in our architecture is the transformation 
palette. The transformation palette provides the workflow 
designer with a set of transformations that can be applied to 
the data from the services. A simple set of primitives including 
the relational operators like project, select, join etc., 
mathematical and aggregation/statistical operators like add, 
multiply etc. make the framework more powerful. 
 
4. Related work  
 
Our work is related to and draws from many areas of research. 
One key goal of our work is to propose a Domain Specific 
Visual Language (DSVL) for the system. Although much 
work has been done in the area of DSVL [5], we are not aware 
of a language that addresses the needs for data acquisition for 
the petroleum industry.  One design choice we could have 
made was to use an existing workflow language like BPEL [8]  
or visual workflow languages like JOpera [9], instead of our 
own DSVL. However, this choice was not pursued because 
most workflow languages are designed with 
computer/software engineers in mind and work at very low 
level of abstractions.  
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Our architecture has been inspired by many systems. The idea 
of writing “intentional” programs has been drawn from the 
notion of intentional naming [10] where entities are addressed 
by the service they provide rather than their physical address. 
The idea of using a lookup directory to map names to the 
physical locations is pervasive in all kinds of middleware 
systems like RPC [11], CORBA [12] etc.  
 
In [2], the authors describe an architectural style and a 
architecture for a similar “data-intensive” application. 
Consequently, their architecture resembles ours in many ways. 
The profile server of their architecture is very similar to the 
lookup directory in our system and the resource server is 
similar to a service/ wrapper of our system. However, in our 
system we incorporate the notion of data quality and 
transformations, not addressed in theirs. We also provide a 
visual language “front end” that allows the domain engineer to 
fetch and compose data, which is not present in their system. 
 
Cohen et al. [4], describe an architecture for data composition 
in a system with a huge number of data sources and rapidly 
changing data (called iQueue). Like our system, the goal of 
the system is to allow the users to write applications by 
“focusing on the semantics by facilitating the mechanics” of 
compositions. Like our system, they also consider data quality 
metrics while choosing the data source. Their systems includes 
a component called “data resolver” similar to our lookup 
directory and composer manager similar to our “compiler”. 
However our system has a scope narrower that iQueue in 
terms of the kinds of data that it deals with; we only consider 
data relevant to petroleum industry. Consequentlu, we have 
made use of this fact to propose the notions of a set of data 
objects and fixed set of operations on them as the basis of 
describing compositions and a visual specification language. 
Unlike iQueue, we do not address issues like security and the 
use of multiple protocols because we assume the presence of a 
SOA. Finally, unlike in iQueue, one of the important goals of 
our system has been to incorporate off the shelf components 
whereever applicable. 
 
Much work in recent times has been done in the area of 
effective discovery of webservices. Apart from the data that 
the webservices are mandated to publish as part of WSDL and 
UDDI standards, various kinds of meta-data have been 
proposed to help in the discovery process [16]. In [13], the 
authors describe how ontologies and semantic markup can be 
used for effective service discovery. Here, the services add 
semantic information using DAML-S to indicate the semantics 
of the services they provide. This information is held within 
the WSDL descriptions and special UDDI structures and is 
used for reasoning about and choosing the appropriate 
services. It is possible to use meta-data as ontological 
descriptions in our system and we plan to use them in our 
future versions of our framework. The system we have 
described has a larger scope than these systems and service 
discovery is only a part of our system. Another difference is 
that our system is deployed in a “closed” environment of an 
organization as opposed to “open” environments of the 
internet, and thus our problem is simplified to a large extent. 
 

5. Discussion 
 
One of the main problems that our system addresses is non-
standard data formats i.e. each data source of the system could 
provide the data in its own format/schema. Efforts such as the 
POSC [7] projects, have been initiated in the community today 
to address this problem. The goal of these efforts is to define a 
schema or a common vocabulary for transparent data 
exchange between various tools and systems. XML-based 
open standards such as the WITSML data schema and API are 
under active development. Our proposed framework benefits 
from such standards mainly because in the absence of such 
industry-wide standards, data exchange without loss of 
information between different tools becomes difficult. Also, 
our framework requires the end user to have some familiarity 
with data schemas and composition templates. By using data 
schema(s) developed by standards bodies such as POSC, 
acceptance and eventual deployment of the framework is 
facilitated.  
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