
Copyright 2006, Society of Petroleum Engineers

This paper was prepared for presentation at the 2006 SPE Intelligent Energy Conference and
Exhibition held in Amsterdam, The Netherlands, 11–13 April 2006.

This paper was selected for presentation by an SPE Program Committee following review of
information contained in an abstract submitted by the author(s). Contents of the paper, as
presented, have not been reviewed by the Society of Petroleum Engineers and are subject to
correction by the author(s). The material, as presented, does not necessarily reflect any
position of the Society of Petroleum Engineers, its officers, or members. Papers presented at
SPE meetings are subject to publication review by Editorial Committees of the Society of
Petroleum Engineers. Electronic reproduction, distribution, or storage of any part of this paper
for commercial purposes without the written consent of the Society of Petroleum Engineers is
prohibited. Permission to reproduce in print is restricted to an abstract of not more than
300 words; illustrations may not be copied. The abstract must contain conspicuous
acknowledgment of where and by whom the paper was presented. Write Librarian, SPE, P.O.
Box 833836, Richardson, TX 75083-3836, U.S.A., fax 01-972-952-9435.

Abstract
This paper describes the design and implementation of a
prototype toolkit that demonstrates Integrated Asset
Management (IAM) functionality through an integrated
production and forecasting workflow. A graphical modeling
environment specially configured for this domain is used to
instantiate the asset model. Automatic conversion of legacy
data into structured model representations is facilitated
through a model synthesis tool. The actual optimization is
performed using a commercially available solver. For an
oilfield with about 75 wells, the tool requires only a few
seconds to read the model information and produce the
forecast. The time required to generate the forecast output in
the desired format depends on the duration of forecasting, the
size of the field, and whether the output is to be produced as a
text file or a Microsoft Excel spreadsheet.

1. Introduction

The push towards “digital oilfields” has highlighted the need
for efficient decision support systems that enable the
integration of myriad software tools for modeling, simulation,
and prediction of reservoir performance. Integrated asset
management (IAM) frameworks promise to enable systematic
management of oil field assets in order to facilitate high-level
optimization and decision support.

IAM presents an intensive operational environment involving
continuous series of decisions based on multiple criteria
including safety, environmental policy, component reliability,
efficient capital, operating expenditures, and revenue. Asset
management decisions require interactions among multiple
domain experts, each capable of running detailed technical
analysis on highly specialized and often compute-intensive

applications. Technical analysis executed in parallel domains
over extended periods can result in divergence of assumptions
regarding boundary conditions between domains. A good
example of this is pre-development facilities design while
reservoir modeling and performance forecasting evaluations
progress. Alternatively, many established proxy (or reduced
form engineering) models are incorporated to meet demands
of rapid decision making in an operational environment or
when data is limited or unavailable.

The delivery of enriched information from technical analysis
into real time operational domains is another challenge
addressed by IAM. An IAM system should ensure proper
coordination between data collection sources and data
processing destinations. Ultimately, meeting these conditions
increases the demand for rapid delivery of relevant data to
applications at the desired frequency and/or density, and
synchronized in time over multiple sources. Large volumes of
data from multiple sources result from progressively
improving new capabilities for well measurement, seismic
data acquisition, and continuous data collection.

We advocate a model-based approach for designing IAM
frameworks, based on a modeling paradigm that is
representative of the generic oilfield domain. Some of the key
objectives of our design approach are:

• Generic and reusable architecture: The IAM framework
should be configurable for the needs of different types of
asset and for a variety of workflows without the need for
extensive redesign or reimplementation. For instance,
moving from a small to a big asset, or moving from an
onshore to an offshore asset should require only minimal
changes that are performed through a well-defined
procedure.

• Single version of the “truth”: Information about the asset
is stored in a structured, canonical form in a common
model database that can be accessed by any tool in the
framework. The access mechanism is location-
transparent. The model database acts as a single version
of the truth and avoids the myriad problems that are
caused by multiple inconsistent copies of the same dataset
distributed across the organization.

• Single view of information: The asset model forms the
conceptual basis for the end user to navigate through the

SPE 99979

Model-Based Framework for Oil Production Forecasting and Optimization:
A Case Study in Integrated Asset Management
C. Zhang, A. Orangi, and A. Bakshi, U. of Southern California; W. Da Sie, Chevron Corp.; and V.K. Prasanna,
U. of Southern California

2 SPE 99979

wide variety of information relevant to that asset. The
framework hides the disparity in data formats, distribution
of asset data among various databases, etc., and provides
a single logic space for retrieving the desired data.

• Tool integration through loose coupling: The model
database also enables a loosely coupled tool integration
architecture because all the tools (simulators, optimizers,
real-time data collectors, etc.) now read from and write to
this common database. Indirect coupling of disparate
applications through the model database leads to a
modular and highly extensible framework.

• Standards-based implementation: The design and
implementation of the framework will be heavily based
on open, platform-independent standards and protocols
such as XML for data storage, HTTP and SOAP (web
services) for remote application access, etc. This allows
us to leverage the data schemas, APIs, etc., being defined
by standards bodies such as the Petrotechnical Open
Standards Consortium (POSC).

We implemented a prototype IAM framework for an
integrated forecasting workflow to demonstrate the feasibility
and usefulness of a model-based approach for IAM.

Section 2 provides a brief introduction to the integrated
forecasting use case and summarizes the main inputs, outputs,
and functional requirements from this workflow. In Section 3,
we describe the three main components of our software
architecture: the graphical modeling front end which is the
user interface to the IAM framework, the model database
which is the key to enabling rapid tool integration which
maintaining scalability and extensibility, and the software
tools themselves. Section 4 describes the end-user experience
of using our prototype framework and walks the reader
through a typical workflow for this use case. We conclude in
Section 5 with a discussion of the strengths and weaknesses of
this prototype and future work.

2. The Integrated Forecasting Workflow

Our prototype framework is designed to demonstrate an
integrated production forecasting and optimization workflow
as a proof of concept implementation of IAM functionality. In
this workflow, the end user wishes to analyze future
production of the particular oilfield asset by configuring
various “what-if” scenarios. Each scenario could correspond
to a different decision point related to, say, investment in
surface facilities.

The input data set for this workflow can be divided into two
main categories: model information, and system and
production controls. The model information consists of data
pertaining to the number, names, and properties of reservoir

volume elements, location and capabilities of wells, capability
of surface facilities for gas compression, water handling,
separator system, etc. The data set also includes fine- or
coarse-grained characterization of reservoir behavior in terms
of, say, fractional recovery curves for oil, gas, and water, etc.
Controls that include production targets, well or block events
of significance, etc are passed to an optimization core. The
main (default) objective function is to maximize oil
production. Secondary objectives at the well, block, or
reservoir level could also be specified depending on the
particular workflow requirements and the capabilities of the
optimization engine.

The output of the workflow for a given scenario includes
production data at the desired level of granularity for the
whole field. Graphs are to be plotted based on the output data,
as per the users’ requirements.

For this workflow, our IAM framework is tasked with
automating the routine work involved in setting up the data
that is input to the forecasting tool, configuring various model
parameters, invoking the tool, analyzing the output, and
generating the desired reports and graphs. The architecture of
the framework is also required to fulfill the key design
objectives discussed in the earlier section.

3 Design of the model-based IAM framework

3.1. Overview of the architecture

Our framework is based on the Generic Modeling
Environment [1], a graphical toolsuite developed by the
Institute for Software Integrated Systems (ISIS), Vanderbilt
University. GME provides a visual language for describing the
composition rules for models in a particular domain, and then
automatically generates a visual modeling environment for
that domain. GME supports model-based system design and is
a cornerstone of our prototype implementation. We refer to
our GME-based forecasting toolkit as GIFT (GME-Integrated
Forecasting Toolkit).

The GIFT framework has been designed to seamlessly
transition in the long term into a completely service-oriented
architecture where all components – including the visual
modeling front-end – will interact with other components
through well-defined service interfaces using open, platform-
independent standards and protocols. Implementation of
individual modules will be completely hidden from its service
requestors. This enables an unprecedented level of reuse of
legacy tools and data sources through the use of wrappers that
mediate between incoming service requests and the actual tool
implementation. Web services and service-oriented
architectures are emerging as a widely adopted and useful
means of leveraging Internet technologies for improving
business processes in the oil and gas industry [2].

SPE 99979 3

Model-centric workflow
configuration and synthesis

Network (Common data exchange format)

Simulator

Adapter

Visual modeling
environmentWorkflow

compiler

Glue Code

Sensor
Data

Adapter

Database

Adapter

Meta-model

Model
database

Adapter

Application-
specific
Forms

Other
applications

Domain expertise

Adapter

The GIFT installation (shaded portions of Figure 1) consists of
three distinct components: (i) the GME front-end which works
as the visual modeling environment and the primary user
interface, (ii) the model database that stores the information
about the asset model and enables interoperability between
various tools, and (iii) the forecasting program itself.

The GME front-end consists of the generic GME toolsuite
configured for our specific domain – oilfield asset modeling. It
provides an easy-to-use visual paradigm for specifying and
manipulating information about various entities such as wells,
reservoir volume elements, surface facilities, etc. This front-
end is also the launching point for different programs for
scenario comparison, oil production forecasting, etc.

The model database consists of a set of files that holds the
actual information specified by the user through the GME
front-end. Note that creating the model in the GME toolkit
does not automatically add or update information in the model
database. In order to update the model database, the user has
to explicitly commit the changes to the model database. The
process of commiting changes from the modeling front-end to
the database is termed as “exporting” the model. The model
database can (and typically will) also be modified by the
integrated tools, and the process of “importing” an updated
model into the modeling environment could also be required.

The forecasting program can be automatically invoked for a
particular model through GME. Although the program is
launched by a GME add-on, it is a standalone application that
reads the required input data from the on-disk model database.

The application is not coupled with the GME environment.
The forecasting code also allows the user to inspect the model
data through a set of custom-designed MS Windows Forms
and also allows manipulation of data through the forms
interface. The forms provide the end user with a different
summarization (visualization) of the same input data that is
specified through the modeling environment. Similar to the
process of exporting a GME model to disk, any changes made
to the model via the Forms interface offered by the forecasting
tool have to be “imported” back into the modeling
environment.

3.2. Asset modeling and scenario modeling

With GME, we develop a domain-specific modeling language
for describing a generic oilfield asset. The language is based
on the Unified Modeling Language (UML), provides a
common vocabulary for domain-experts to define and
“understand” an asset model, and forms the basis for various
tools (such as the forecasting tool) to navigate the model
database and retrieve and update specific model parameters.
The current version of the modeling language is capable
enough to describe all the physical and non-physical model
information that acts as input to the integrated forecasting
workflow. We expect to continuously refine this modeling
language based on experience with other workflows and other
types of assets.

The objects in an oilfield asset model are classified into
physical and non-physical components. Physical components
include wells, reservoir volume elements, separators,

Figure 1: The GIFT framework is designed to be a collection of loosely coupled, integrated tools working on a common,
structured model database. The visualization of the model data, definition and synthesis of specific workflows, and the
invocation of integrated tools, is all managed through a domain-specific visual modeling environment. The grammar of the
visual modeling language is itself specified through a UML-like metamodeling language in the GME toolkit. The metamodel
is defined in consultation with domain experts. Shaded areas in this figure indicate the modules that have been prototyped in
the current version of GIFT, and described in this paper.

4 SPE 99979

compressors, etc. Non-physical components include
production controls, field constraints, drilling schedules,
reliability models, among others. The details of how each
component is modeled in this language can be found in [5] and
are omitted here. Instead, we now focus on two concepts –
inventory and scenarios – that are central to the rapid
specification and execution of this workflow.

With inventory and scenario concepts, we have separated the
concerns of asset modeling from scenario definition and
analysis. An inventory is essentially a library of building
blocks that are used to compose a particular scenario. The
purpose of creating an inventory of such “immutable” model
elements and attributes is to be able to define these elements
only once and include them by reference in each scenario.
Once the components of an asset are described or modeled
within the inventory, the end-user can focus on the analysis of
different scenarios for the asset.

Inclusion of a component by reference to the inventory entity
is extremely valuable because any change made to some
component of the model inventory can be instantly reflected in
each scenario that contains that component. Suppose a given
asset has 5 reservoir volume elements (blocks), and 20 wells
in each block. Now, each scenario might assign a different
functionality to a different subset of the wells – e.g., a well
which is configured for water injection in one scenario might
be modeled as a producer in another. Also, one scenario might

model only four of the five blocks for forecasting purposes,
and another might model all five. Regardless of how the
individual scenario is configured, some basic properties of the
asset such as the location and name of each well, the well-to-
block association, the fluid region properties of each block,
etc., remain fundamentally unchanged.

The other alternative that does not include an inventory model
is to offer a template of possible model elements to the end
user and require him/her to manually construct each scenario
by instantiating the desired number and relationship of model
elements, setting the attributes of each element to reflect the
reality of the asset, and then running the forecasting toolkit on
the scenario thus configured.

There are two main advantages of the former (with-inventory)
approach over the latter (without-inventory). The first is the
cost of scenario definition. If each scenario has to be
constructed from scratch, the number of scenarios that can be
defined and analyzed in a given time becomes significantly
reduced compared to the former approach where a bulk of the
definition already exists in the inventory. The second
advantage is the cost of change propagation. Suppose that a
hundred scenarios are defined for each approach, and each
scenario includes a well, say W1, with a production capacity
of 1000 m3/day. Also assume that this number plays an
important role in influencing the output of production
forecasting. Sometime after these hundred scenarios are

Figure 2: The graphical interface to the forecasting and optimization module. Software components called
“model interpreters” automatically configure and launch this tool from the GME environment.

SPE 99979 5

defined, the capacity of W1 changes to 1500 m3/day. All
scenarios have now to be rerun and more important, the
capacity attribute of W1 has to be updated in each scenario.An
inventory based approach requires a single update to the W1
entity in the inventory, and this change is implicitly reflected
in each scenario that contains a pointer (reference) to W1. In
the other approach, the W1 entity in each of the hundred
scenarios has to be updated manually.

3.3. The model database

The GME front end provides a graphical user interface that is
used to instantiate, inspect, and modify inventory and scenario
models. GME stores the model information in a proprietary
format that is programmatically accessible. In the interest of
standardization and open, platform-independent access to the
model database, we choose to store the model data outside the
GME environment as a set of XML-formatted text files. This
set of files forms the model database.

The tools that are integrated into our framework now read and
write directly from this model database. Allowing multiple
tools to work on the same model in a coordinated manner
eliminates the need to write adapters for tools to communicate
directly with each other. Also, the GME modeling
environment itself now becomes yet another tool in the
framework, at the same level as the forecasting tool. If a
different model visualization and manipulation interface is
implemented, it can be plugged into the framework to replace
or complement GME without requiring any modification to
the existing infrastructure.

Our prototype IAM framework uses XML as the data storage
format for the model database. There are two reasons for
adopting XML format. First, XML is a structured format and
is readable by humans. Unlike with a relational database, the
end user can easily manipulate the data stored in the XML
files by simply opening the file in a text editor. Second, our
long term vision is for the framework to be compatible with
XML-based data storage and transfer standards such as the
ones being defined by the Petrotechnical Open Standards
Consortium (POSC) [3].

Eventually, the model database will be abstracted through a
web-service interface that returns the desired data set to the
requesting tool. Whether the actual data is stored as
unstructured text files, structured XML files, a relational
database such as Oracle or SQL Server, or even a combination
of the above, will be hidden from the requester. In fact, data
could even be stored across multiple databases and aggregated
on-demand when the request arrives at the service interface.
By cleanly separating the model database from the modeling
environment and from the integrated tools, our architecture
eases such a transition.

4. The User Experience

The use of GIFT for integrated forecasting can be divided
into the following broad phases: asset modeling, scenario
modeling, forecasting, and inspection of the output for
possible scenario refinement and/or decision making.

Figure 3: The graphical interface to the forecasting and optimization module. Software components called “model interpreters”
automatically configure and launch this tool from the GME environment.

6 SPE 99979

The asset modeling phase involves instantiation of model
elements that represent the structure and properties of the
asset. For small assets – with, say, tens of wells – this model

instantiation can be performed manually, although the effort
involved is not insignificant. For larger assets where manual
modeling is not realistic or desirable, GIFT provides an
automatic model synthesis mechanism that reads legacy data
(in a specific format) and automatically creates the suitable
entities in the modeling environment. Automating this routine
work of model entry frees up valuable time of the end user
that can be now spent on scenario planning and analysis.

Once the inventory model is finished, scenarios are
defined. Next, the scenarios are commited to disk, and the
forecasting toolkit is launched. The user interface of the
forecasting toolkit is shown in Figure 3.

When the forecasting is finished, the user has the option of
selecting the format of the output. Currently, the tool can
output its results as unstructured ASCII text or as a Microsoft
Excel spreadsheet. Note that the GIFT framework itself does
not know or care about the output details which are entirely
within the control of the tool developer. In future, the asset
model will contain model elements that will capture not just a
scenario configuration but also contain points to the
forecasting output. In this enhanced model, the forecasting
tool will feed the output back into the model database, where
it can be accessed by any other component of the IAM
framework.

The user experience is driven almost entirely through a
point-and-click graphical interface that guides the user through
the workflow. The details of how and where the model data is

stored and how the integrated tools are configured and
invoked are completely hidden from the user. This
encapsulation allows us to provide the end user with a
consistent user experience while the implementation of the
framework undergoes possibly radical changes as part of its
evolution and adaptation to the needs of a particular asset and
a particular workflow.

5. Discussion

5.1. Revisiting the design objectives

The key design considerations for an IAM framework, as
outlined in Section 1 are: generic and reusable architecture,
single version of truth, single view of information, tool
integration through loose coupling, and a standards-based
implementation. We now briefly discuss how our prototype
framework accomplishes these objectives in the context of the
integrated forecasting workflow.

Generic: The GIFT asset modeling language is expressive
enough to allow for the representation of a variety of assets
using the same modeling “paradigm”. Tools for importing or
exporting models from and to the model database, and even

Figure 4: A typical integrated forecasting workflow using the GIFT framework. The end user creates a scenario model using
existing components from the inventory. Additional components can also be instantiated directly in the scenario model if desired.
The scenarios are stored in the model database through the export/import mechanism. Outputs from the forecasting tool for a
particular scenario can be visualized as text files or as Excel spreadsheet that can be used for graphing.

SPE 99979 7

the forecasting tool, can be used unmodified for any other
asset represented in this paradigm.

Reusable: The forecasting tool is an indepently developed
executable that is fully capable of running outside the context
of the GIFT framework. The only configuration information
that is passed to this standalone software application is the
name of the particular scenario that is to be forecast. The
retrieval of the scenario data from the model database is
performed independently by the tool based on the scenario
name, without the mediation of the modeling environment.
Any number of forecasting engines or other applications can
be plugged into the GIFT framework without the need for
substantial modification.

Single version of truth: A common copy of the model database
shared among the GIFT components ensures that updates
made by one component are immediately visible to throughout
the framework. Currently, an explicit export/import step is
required to enforce consistency but the eventual goal is to
implement a publish/subscribe event-triggered mechanism that
can be used by components to register their interest in a
particular subset of the model data and provide callback
functions that are automatically invoked when some change
occurs in the data set.

Single view of information: The structure of the model
database is hidden from the user of GIFT. The generic oilfield
asset modeling language provides the conceptual framework
to define a model and navigate through an existing model.
Reorganization of the database has no effect on this
conceptual framework, assuming, of course, that information
is not lost.

Tool integration through loose coupling: This prototype
workflow required the integration of only one tool and does
not really demonstrate integration of multiple tools. The
technique for integrating the sole forecasting tool does
however illustrate the idea of loose coupling. As mentioned
above, the forecasting tool is a standalone, independent
software application and does not require any GIFT-specific
customization that renders it inoperable outside the framework
context.

Standards-based implementation: The model database uses the
XML standard to store the data sets. Data in the XML format
can be internally translated into different data structures and
formats depending on the individual tool. However, data
transfer between tools and from an integrated tool to the
model database will require XML-formatted data. In future
work, we plan to define web-service interfaces for the model
data and for the integrated tools to ensure platform-
independent, universal interoperability between disparate
applications.

5.2. Future directions

Integrated asset management poses significant challenges
from the modeling perspective as well as the software
architecture and deployment perspective. Some of the topics

of future work for our model-based IAM framework are as
follows.

Scenario management. GIFT provides the user with a template
to create a forecasting scenario, and a mechanism to
automatically configure and invoke the forecasting tool for a
particular scenario. In future work, we plan to support more
sophisticated scenario management through mechanisms such
as versioning, audit trails, checkpointing and rollback, etc.

Uncertainty modeling. The modeling language currently
allows for single and discrete values for entity attributes. For
instance, the reliability of a gas compression system has to be
specified as a precise fraction between zero and one. In future
work, the modeling language will be extended to capture
uncertainty about such information. An associated challenge is
to propagate such uncertainties into all the scenarios where
such “uncertain” entities are instantiated, and allowing the
user to analyze the design space that is now represented by
each scenario.

Finally, we are in the process of implementing a service-

oriented architecture to automatically orchestrate model-
centric data composition workflows in the GIFT framework
by extending it with additional data and workflow modeling
paradigms. The current status of that work is summarized in
[4].

Acknowledgments
This research was partly funded by CiSoft – a joint USC-
Chevron Center of Excellence for Research and Academic
Training on Interactive Smart Oilfield Technologies.

References
[1] Generic Modeling Environment (GME),

http://www.isis.vanderbilt.edu/projects/gme/
[2] R. Gregovic, R. Foreman, D. Forrester, and J. Carroll. A

common approach to accessing real-time operations data -
Introducing service-oriented architecture to E&P, SPE
ATCE 2005.

[3] Petrotechnical Open Standards Consortium,
 http://www.posc.org
[4] Cong Zhang, Abdollah Orangi, Amol Bakshi, Will Da

Sie, and Viktor K. Prasanna. A service-oriented data
composition architecture for integrated asset management,
SPE Intelligent Energy Conference and Exhibition
(IECE), April 2006.

[5] Cong Zhang, Viktor Prasanna, Abdollah Orangi, Will Da
Sie, Aditya Kwatra, Modeling methodology for
application development in petroleum industry, IEEE
International Conference on Information Reuse and
Integration, Las Vegas, 2005.

	MAIN MENU
	PREVIOUS MENU

	Search
	Search Results
	Print

