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Abstract 
This paper describes the design and implementation of a 
prototype toolkit that demonstrates Integrated Asset 
Management (IAM) functionality through an integrated 
production and forecasting workflow. A graphical modeling 
environment specially configured for this domain is used to 
instantiate the asset model. Automatic conversion of legacy 
data into structured model representations is facilitated 
through a model synthesis tool. The actual optimization is 
performed using a commercially available solver. For an 
oilfield with about 75 wells, the tool requires only a few 
seconds to read the model information and produce the 
forecast. The time required to generate the forecast output in 
the desired format depends on the duration of forecasting, the 
size of the field, and whether the output is to be produced as a 
text file or a Microsoft Excel spreadsheet. 

 
1. Introduction 
 
The push towards “digital oilfields” has highlighted the need 
for efficient decision support systems that enable the 
integration of myriad software tools for modeling, simulation, 
and prediction of reservoir performance. Integrated asset 
management (IAM) frameworks promise to enable systematic 
management of oil field assets in order to facilitate high-level 
optimization and decision support.  
 
IAM presents an intensive operational environment involving 
continuous series of decisions based on multiple criteria 
including safety, environmental policy, component reliability, 
efficient capital, operating expenditures, and revenue. Asset 
management decisions require interactions among multiple 
domain experts, each capable of running detailed technical 
analysis on highly specialized and often compute-intensive 

applications.  Technical analysis executed in parallel domains 
over extended periods can result in divergence of assumptions 
regarding boundary conditions between domains. A good 
example of this is pre-development facilities design while 
reservoir modeling and performance forecasting evaluations 
progress. Alternatively, many established proxy (or reduced 
form engineering) models are incorporated to meet demands 
of rapid decision making in an operational environment or 
when data is limited or unavailable.  
 
The delivery of enriched information from technical analysis 
into real time operational domains is another challenge 
addressed by IAM. An IAM system should ensure proper 
coordination between data collection sources and data 
processing destinations. Ultimately, meeting these conditions 
increases the demand for rapid delivery of relevant data to 
applications at the desired frequency and/or density, and 
synchronized in time over multiple sources. Large volumes of 
data from multiple sources result from progressively 
improving new capabilities for well measurement, seismic 
data acquisition, and continuous data collection.  
 
We advocate a model-based approach for designing IAM 
frameworks, based on a modeling paradigm that is 
representative of the generic oilfield domain. Some of the key 
objectives of our design approach are: 

• Generic and reusable architecture: The IAM framework 
should be configurable for the needs of different types of 
asset and for a variety of workflows without the need for 
extensive redesign or reimplementation. For instance, 
moving from a small to a big asset, or moving from an 
onshore to an offshore asset should require only minimal 
changes that are performed through a well-defined 
procedure. 

• Single version of the “truth”: Information about the asset 
is stored in a structured, canonical form in a common 
model database that can be accessed by any tool in the 
framework. The access mechanism is location-
transparent. The model database acts as a single version 
of the truth and avoids the myriad problems that are 
caused by multiple inconsistent copies of the same dataset 
distributed across the organization. 

• Single view of information: The asset model forms the 
conceptual basis for the end user to navigate through the 
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wide variety of information relevant to that asset. The 
framework hides the disparity in data formats, distribution 
of asset data among various databases, etc., and provides 
a single logic space for retrieving the desired data. 

• Tool integration through loose coupling: The model 
database also enables a loosely coupled tool integration 
architecture because all the tools (simulators, optimizers, 
real-time data collectors, etc.) now read from and write to 
this common database. Indirect coupling of disparate 
applications through the model database leads to a 
modular and highly extensible framework. 

• Standards-based implementation: The design and 
implementation of the framework will be heavily based 
on open, platform-independent standards and protocols 
such as XML for data storage, HTTP and SOAP (web 
services) for remote application access, etc. This allows 
us to leverage the data schemas, APIs, etc., being defined 
by standards bodies such as the Petrotechnical Open 
Standards Consortium (POSC). 

 
We implemented a prototype IAM framework for an 
integrated forecasting workflow to demonstrate the feasibility 
and usefulness of a model-based approach for IAM.  
 
Section 2 provides a brief introduction to the integrated 
forecasting use case and summarizes the main inputs, outputs, 
and functional requirements from this workflow. In Section 3, 
we describe the three main components of our software 
architecture: the graphical modeling front end which is the 
user interface to the IAM framework, the model database 
which is the key to enabling rapid tool integration which 
maintaining scalability and extensibility, and the software 
tools themselves. Section 4 describes the end-user experience 
of using our prototype framework and walks the reader 
through a typical workflow for this use case. We conclude in 
Section 5 with a discussion of the strengths and weaknesses of 
this prototype and future work. 
 
2. The Integrated Forecasting Workflow 
 
Our prototype framework is designed to demonstrate an 
integrated production forecasting and optimization workflow 
as a proof of concept implementation of IAM functionality. In 
this workflow, the end user wishes to analyze future 
production of the particular oilfield asset by configuring 
various “what-if” scenarios. Each scenario could correspond 
to a different decision point related to, say, investment in 
surface facilities.  
 
The input data set for this workflow can be divided into two 
main categories: model information, and system and 
production controls.  The model information consists of data 
pertaining to the number, names, and properties of reservoir 

volume elements, location and capabilities of wells, capability 
of surface facilities for gas compression, water handling, 
separator system, etc. The data set also includes fine- or 
coarse-grained characterization of reservoir behavior in terms 
of, say, fractional recovery curves for oil, gas, and water, etc. 
Controls that include production targets, well or block events 
of significance, etc are passed to an optimization core.  The 
main (default) objective function is to maximize oil 
production. Secondary objectives at the well, block, or 
reservoir level could also be specified depending on the 
particular workflow requirements and the capabilities of the 
optimization engine. 
 
The output of the workflow for a given scenario includes 
production data at the desired level of granularity for the 
whole field. Graphs are to be plotted based on the output data, 
as per the users’ requirements. 
 
For this workflow, our IAM framework is tasked with 
automating the routine work involved in setting up the data 
that is input to the forecasting tool, configuring various model 
parameters, invoking the tool, analyzing the output, and 
generating the desired reports and graphs. The architecture of 
the framework is also required to fulfill the key design 
objectives discussed in the earlier section. 
 
3 Design of the model-based IAM framework 
 
3.1. Overview of the architecture 
 
Our framework is based on the Generic Modeling 
Environment [1], a graphical toolsuite developed by the 
Institute for Software Integrated Systems (ISIS), Vanderbilt 
University. GME provides a visual language for describing the 
composition rules for models in a particular domain, and then 
automatically generates a visual modeling environment for 
that domain. GME supports model-based system design and is 
a cornerstone of our prototype implementation. We refer to 
our GME-based forecasting toolkit as GIFT (GME-Integrated 
Forecasting Toolkit). 
 
The GIFT framework has been designed to seamlessly 
transition in the long term into a completely service-oriented 
architecture where all components – including the visual 
modeling front-end – will interact with other components 
through well-defined service interfaces using open, platform-
independent standards and protocols. Implementation of 
individual modules will be completely hidden from its service 
requestors. This enables an unprecedented level of reuse of 
legacy tools and data sources through the use of wrappers that 
mediate between incoming service requests and the actual tool 
implementation. Web services and service-oriented 
architectures are emerging as a widely adopted and useful 
means of leveraging Internet technologies for improving 
business processes in the oil and gas industry [2].   
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The GIFT installation (shaded portions of Figure 1) consists of 
three distinct components: (i) the GME front-end which works 
as the visual modeling environment and the primary user 
interface, (ii) the model database that stores the information 
about the asset model and enables interoperability between 
various tools, and (iii) the forecasting program itself. 
 
The GME front-end consists of the generic GME toolsuite 
configured for our specific domain – oilfield asset modeling. It 
provides an easy-to-use visual paradigm for specifying and 
manipulating information about various entities such as wells, 
reservoir volume elements, surface facilities, etc. This front-
end is also the launching point for different programs for 
scenario comparison, oil production forecasting, etc.  
 
The model database consists of a set of files that holds the 
actual information specified by the user through the GME 
front-end. Note that creating the model in the GME toolkit 
does not automatically add or update information in the model 
database. In order to update the model database, the user has 
to explicitly commit the changes to the model database. The 
process of commiting changes from the modeling front-end to 
the database is termed as “exporting” the model. The model 
database can (and typically will) also be modified by the 
integrated tools, and the process of “importing” an updated 
model into the modeling environment could also be required.  
 
The forecasting program can be automatically invoked for a 
particular model through GME. Although the program is 
launched by a GME add-on, it is a standalone application that 
reads the required input data from the on-disk model database.  

The application is not coupled with the GME environment. 
The forecasting code also allows the user to inspect the model 
data through a set of custom-designed MS Windows Forms 
and also allows manipulation of data through the forms 
interface. The forms provide the end user with a different 
summarization (visualization) of the same input data that is 
specified through the modeling environment. Similar to the 
process of exporting a GME model to disk, any changes made 
to the model via the Forms interface offered by the forecasting 
tool have to be “imported” back into the modeling 
environment.  
 
3.2.  Asset modeling and scenario modeling 
 
With GME, we develop a domain-specific modeling language 
for describing a generic oilfield asset. The language is based 
on the Unified Modeling Language (UML), provides a 
common vocabulary for domain-experts to define and 
“understand” an asset model, and forms the basis for various 
tools (such as the forecasting tool) to navigate the model 
database and retrieve and update specific model parameters. 
The current version of the modeling language is capable 
enough to describe all the physical and non-physical model 
information that acts as input to the integrated forecasting 
workflow. We expect to continuously refine this modeling 
language based on experience with other workflows and other 
types of assets. 
 
The objects in an oilfield asset model are classified into 
physical and non-physical components. Physical components 
include wells, reservoir volume elements, separators, 

Figure 1: The GIFT framework is designed to be a collection of loosely coupled, integrated tools working on a common, 
structured model database. The visualization of the model data, definition and synthesis of specific workflows, and the 
invocation of integrated tools, is all managed through a domain-specific visual modeling environment. The grammar of the 
visual modeling language is itself specified through a UML-like metamodeling language in the GME toolkit. The metamodel 
is defined in consultation with domain experts. Shaded areas in this figure indicate the modules that have been prototyped in 
the current version of GIFT, and described in this paper. 
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compressors, etc. Non-physical components include 
production controls, field constraints, drilling schedules, 
reliability models, among others. The details of how each 
component is modeled in this language can be found in [5] and 
are omitted here. Instead, we now focus on two concepts – 
inventory and scenarios – that are central to the rapid 
specification and execution of this workflow. 
 
With inventory and scenario concepts, we have separated the 
concerns of asset modeling from scenario definition and 
analysis. An inventory is essentially a library of building 
blocks that are used to compose a particular scenario. The 
purpose of creating an inventory of such “immutable” model 
elements and attributes is to be able to define these elements 
only once and include them by reference in each scenario. 
Once the components of an asset are described or modeled 
within the inventory, the end-user can focus on the analysis of 
different scenarios for the asset.  
 
Inclusion of a component by reference to the inventory entity 
is extremely valuable because any change made to some 
component of the model inventory can be instantly reflected in 
each scenario that contains that component. Suppose a given 
asset has 5 reservoir volume elements (blocks), and 20 wells 
in each block. Now, each scenario might assign a different 
functionality to a different subset of the wells – e.g., a well 
which is configured for water injection in one scenario might 
be modeled as a producer in another. Also, one scenario might 

model only four of the five blocks for forecasting purposes, 
and another might model all five. Regardless of how the 
individual scenario is configured, some basic properties of the 
asset such as the location and name of each well, the well-to-
block association, the fluid region properties of each block, 
etc., remain fundamentally unchanged.  
 
The other alternative that does not include an inventory model 
is to offer a template of possible model elements to the end 
user and require him/her to manually construct each scenario 
by instantiating the desired number and relationship of model 
elements, setting the attributes of each element to reflect the 
reality of the asset, and then running the forecasting toolkit on 
the scenario thus configured. 
 
There are two main advantages of the former (with-inventory) 
approach over the latter (without-inventory). The first is the 
cost of scenario definition. If each scenario has to be 
constructed from scratch, the number of scenarios that can be 
defined and analyzed in a given time becomes significantly 
reduced compared to the former approach where a bulk of the 
definition already exists in the inventory. The second 
advantage is the cost of change propagation. Suppose that a 
hundred scenarios are defined for each approach, and each 
scenario includes a well, say W1, with a production capacity 
of 1000 m3/day. Also assume that this number plays an 
important role in influencing the output of production 
forecasting. Sometime after these hundred scenarios are 

Figure 2: The graphical interface to the forecasting and optimization module. Software components called 
“model interpreters” automatically configure and launch this tool from the GME environment. 
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defined, the capacity of W1 changes to 1500 m3/day. All 
scenarios have now to be rerun and more important, the 
capacity attribute of W1 has to be updated in each scenario.An 
inventory based approach requires  a single update to the W1 
entity in the inventory, and this change is implicitly reflected 
in each scenario that contains a pointer (reference) to W1. In 
the other approach, the W1 entity in each of the hundred 
scenarios has to be updated manually. 
  
3.3. The model database 
 
The GME front end provides a graphical user interface that is 
used to instantiate, inspect, and modify inventory and scenario 
models. GME stores the model information in a proprietary 
format that is programmatically accessible. In the interest of 
standardization and open, platform-independent access to the 
model database, we choose to store the model data outside the 
GME environment as a set of XML-formatted text files. This 
set of files forms the model database.  
 
The tools that are integrated into our framework now read and 
write directly from this model database. Allowing multiple 
tools to work on the same model in a coordinated manner 
eliminates the need to write adapters for tools to communicate 
directly with each other. Also, the GME modeling 
environment itself now becomes yet another tool in the 
framework, at the same level as the forecasting tool. If a 
different model visualization and manipulation interface is 
implemented, it can be plugged into the framework to replace 
or complement GME without requiring any modification to 
the existing infrastructure. 

Our prototype IAM framework uses XML as the data storage 
format for the model database. There are two reasons for 
adopting XML format. First, XML is a structured format and 
is readable by humans. Unlike with a relational database, the 
end user can easily manipulate the data stored in the XML 
files by simply opening the file in a text editor. Second, our 
long term vision is for the framework to be compatible with 
XML-based data storage and transfer standards such as the 
ones being defined by the Petrotechnical Open Standards 
Consortium (POSC) [3]. 
 
Eventually, the model database will be abstracted through a 
web-service interface that returns the desired data set to the 
requesting tool. Whether the actual data is stored as 
unstructured text files, structured XML files, a relational 
database such as Oracle or SQL Server, or even a combination 
of the above, will be hidden from the requester. In fact, data 
could even be stored across multiple databases and aggregated 
on-demand when the request arrives at the service interface. 
By cleanly separating the model database from the modeling 
environment and from the integrated tools, our architecture 
eases such a transition. 
 
4. The User Experience 
 

The use of GIFT for integrated forecasting can be divided 
into the following broad phases: asset modeling, scenario 
modeling, forecasting, and inspection of the output for 
possible scenario refinement and/or decision making. 

 

Figure 3: The graphical interface to the forecasting and optimization module. Software components called “model interpreters” 
automatically configure and launch this tool from the GME environment.
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The asset modeling phase involves instantiation of model 
elements that represent the structure and properties of the 
asset. For small assets – with, say, tens of wells – this model 

instantiation can be performed manually, although the effort 
involved is not insignificant. For larger assets where manual 
modeling is not realistic or desirable, GIFT provides an 
automatic model synthesis mechanism that reads legacy data 
(in a specific format) and automatically creates the suitable 
entities in the modeling environment. Automating this routine 
work of model entry frees up valuable time of the end user 
that can be now spent on scenario planning and analysis. 

Once the inventory model is finished, scenarios are 
defined. Next, the scenarios are commited to disk, and the 
forecasting toolkit is launched. The user interface of the 
forecasting toolkit is shown in Figure 3. 

When the forecasting is finished, the user has the option of 
selecting the format of the output. Currently, the tool can 
output its results as unstructured ASCII text or as a Microsoft 
Excel spreadsheet. Note that the GIFT framework itself does 
not know or care about the output details which are entirely 
within the control of the tool developer. In future, the asset 
model will contain model elements that will capture not just a 
scenario configuration but also contain points to the 
forecasting output. In this enhanced model, the forecasting 
tool will feed the output back into the model database, where 
it can be accessed by any other component of the IAM 
framework. 

The user experience is driven almost entirely through a 
point-and-click graphical interface that guides the user through 
the workflow. The details of how and where the model data is 

stored and how the integrated tools are configured and 
invoked are completely hidden from the user. This 
encapsulation allows us to provide the end user with a 
consistent user experience while the implementation of the 
framework undergoes possibly radical changes as part of its 
evolution and adaptation to the needs of a particular asset and 
a particular workflow. 

 
5. Discussion 
 
5.1. Revisiting the design objectives 
 
The key design considerations for an IAM framework, as 
outlined in Section 1 are: generic and reusable architecture, 
single version of truth, single view of information, tool 
integration through loose coupling, and a standards-based 
implementation. We now briefly discuss how our prototype 
framework accomplishes these objectives in the context of the 
integrated forecasting workflow. 
 
Generic: The GIFT asset modeling language is expressive 
enough to allow for the representation of a variety of assets 
using the same modeling “paradigm”. Tools for importing or 
exporting models from and to the model database, and even 

Figure 4: A typical integrated forecasting workflow using the GIFT framework. The end user creates a scenario model using 
existing components from the inventory. Additional components can also be instantiated directly in the scenario model if desired. 
The scenarios are stored in the model database through the export/import mechanism. Outputs from the forecasting tool for a 
particular scenario can be visualized as text files or as Excel spreadsheet that can be used for graphing.  
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the forecasting tool, can be used unmodified for any other 
asset represented in this paradigm.  
 
Reusable: The forecasting tool is an indepently developed 
executable that is fully capable of running outside the context 
of the GIFT framework. The only configuration information 
that is passed to this standalone software application is the 
name of the particular scenario that is to be forecast. The 
retrieval of the scenario data from the model database is 
performed independently by the tool based on the scenario 
name, without the mediation of the modeling environment. 
Any number of forecasting engines or other applications can 
be plugged into the GIFT framework without the need for 
substantial modification. 
 
Single version of truth: A common copy of the model database 
shared among the GIFT components ensures that updates 
made by one component are immediately visible to throughout 
the framework. Currently, an explicit export/import step is 
required to enforce consistency but the eventual goal is to 
implement a publish/subscribe event-triggered mechanism that 
can be used by components to register their interest in a 
particular subset of the model data and provide callback 
functions that are automatically invoked when some change 
occurs in the data set. 
 
Single view of information: The structure of the model 
database is hidden from the user of GIFT. The generic oilfield 
asset modeling language provides the conceptual framework 
to define a model and navigate through an existing model. 
Reorganization of the database has no effect on this 
conceptual framework, assuming, of course, that information 
is not lost. 
 
Tool integration through loose coupling: This prototype 
workflow required the integration of only one tool and does 
not really demonstrate integration of multiple tools. The 
technique for integrating the sole forecasting tool does 
however illustrate the idea of loose coupling. As mentioned 
above, the forecasting tool is a standalone, independent 
software application and does not require any GIFT-specific 
customization that renders it inoperable outside the framework 
context. 
 
Standards-based implementation: The model database uses the 
XML standard to store the data sets. Data in the XML format 
can be internally translated into different data structures and 
formats depending on the individual tool. However, data 
transfer between tools and from an integrated tool to the 
model database will require XML-formatted data. In future 
work, we plan to define web-service interfaces for the model 
data and for the integrated tools to ensure platform-
independent, universal interoperability between disparate 
applications. 
 
5.2. Future directions 
 
Integrated asset management poses significant challenges 
from the modeling perspective as well as the software 
architecture and deployment perspective. Some of the topics 

of future work for our model-based IAM framework are as 
follows.  
 
Scenario management. GIFT provides the user with a template 
to create a forecasting scenario, and a mechanism to 
automatically configure and invoke the forecasting tool for a 
particular scenario. In future work, we plan to support more 
sophisticated scenario management through mechanisms such 
as versioning, audit trails, checkpointing and rollback, etc.  

 
Uncertainty modeling. The modeling language currently 
allows for single and discrete values for entity attributes. For 
instance, the reliability of a gas compression system has to be 
specified as a precise fraction between zero and one. In future 
work, the modeling language will be extended to capture 
uncertainty about such information. An associated challenge is 
to propagate such uncertainties into all the scenarios where 
such “uncertain” entities are instantiated, and allowing the 
user to analyze the design space that is now represented by 
each scenario.  

 
Finally, we are in the process of implementing a service-

oriented architecture to automatically orchestrate model-
centric data composition workflows in the GIFT framework 
by extending it with additional data and workflow modeling 
paradigms. The current status of that work is summarized in 
[4]. 
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