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Abstract 
The general petroleum production optimization problem falls 
under the category of optimal control problems with nonlinear 
control-state path inequality constraints (i.e. constraints that 
have to be satisfied at every time step), and it is acknowledged 
that such path constraints involving state variables are 
particularly difficult to handle. Currently, one category of 
methods implicitly incorporates the constraints into the 
forward and adjoint equations to tackle this issue. However, 
these are either impractical for the production optimization 
problem, or require complicated modifications to forward 
model equations (simulator). Thus, the usual approach is to 
formulate the above problem as a constrained nonlinear 
programming problem (NLP) where the constraints are 
calculated explicitly after the dynamic system is solved. The 
most popular of this category of methods (for optimal control 
problems) has been the penalty function method and its 
variants, which are, however, extremely inefficient. All other 
constrained NLP algorithms require the gradient of each 
constraint, which is impractical for an optimal control problem 
with path constraints, as one adjoint has to be solved for each 
constraint at each time step at every iteration. 

We propose an approximate feasible direction NLP 
algorithm based on the objective function gradient and a 
combined gradient of the active constraints.  This approximate 
feasible direction is then converted into a true feasible 
direction by projecting it onto the active constraints by solving 
the constraints during the forward model evaluation itself. The 
approach has various advantages. Firstly, only two adjoint 
evaluations are required at each iteration. Secondly, all iterates 
obtained are always feasible, as feasibility is maintained by 
the forward model itself, implying that any iterate can be 
considered a useful solution. Thirdly, large step sizes are 
possible during the line search, which can lead to significant 
reductions in forward and adjoint model evaluations and large 

reductions in the objective function. Through two examples, 
we demonstrate that the algorithm provides a practical and 
efficient strategy for production optimization with nonlinear 
path constraints. 
 
Introduction 
One of the primary goals of the reservoir modeling and 
management process is to enable decisions that maximize the 
production potential of the reservoir. Among the various 
existing approaches to accomplish this, real-time model-based 
reservoir management, also known as the “closed-loop” 
approach, has recently generated significant interest. This 
methodology entails model-based optimization of reservoir 
performance under geological uncertainty, while also 
incorporating dynamic information in real-time, which acts to 
reduce model uncertainty (see Figure 1). For such schemes to 
be practically applicable, a number of algorithmic advances 
are required. Some of our earlier papers [1,2], and also papers 
by other authors such as Brouwer et al. [3] have discussed 
efficient algorithms for such closed-loop production 
optimization.   

This paper, however, is only focused on the optimization 
component of the closed-loop process, which is essentially a 
large-scale optimal control problem.  A large variety of 
methods for solving discrete-time optimal control problems 
now exist in control theory literature, including dynamic 
programming, neighboring extremal methods, gradient-based 
nonlinear programming methods (NLP), etc. These are 
discussed in detail in Stengel [4] and Bryson and Ho [5]. Of 
these approaches, the NLP method combined with the 
Maximum Principle [5] (adjoint models) generates a class of 
NLP methods in which only the control variables are the 
decision variables and the state variables are obtained from the 
dynamic equations. These algorithms are generally considered 
more efficient compared to the other methods. Further, within 
this class of NLP methods, there are many existing techniques 
available for handling nonlinear control-state path inequality 
constraints [5,6,7,8]. However, as will be discussed later, these 
are either not practical for the production optimization 
problem or are difficult to implement with existing reservoir 
simulator codes. 

In petroleum engineering literature, papers by various 
authors such as Asheim [9], Vironovsky [10], Brouwer and 
Jansen [11], etc. have discussed the application of adjoint 
models and gradient techniques for the production 
optimization problem in significant detail. However, an 

 

SPE 99959 

Production Optimization With Adjoint Models Under Nonlinear 
Control-State Path Inequality Constraints
P. Sarma, Stanford U.; W.H. Chen, Chevron ETC; and L.J. Durlofsky and K. Aziz, Stanford U.



2  SPE 99959 

important element that is missing from most of these papers is 
the treatment of nonlinear control-state path inequality 
constraints (for example, a maximum water injection rate 
constraint) effectively. Such constraints are always present in 
practical production optimization problems, and therefore their 
efficient treatment is essential for such algorithms to be useful. 
In one of our earlier papers [12], two methods to handle such 
constraints were discussed; however, they either do not satisfy 
the constraints exactly or are applicable only for small 
problems. In petroleum engineering literature, a paper by 
Zakirov et al. [13] discusses an approach to implement path 
constraints; however, there are certain theoretical issues with 
the approach, as discussed in a later section. 

In this paper, we propose an approximate feasible direction 
optimization algorithm suitable for large-scale optimal control 
problems that is able to handle nonlinear inequality path 
constraints effectively while always maintaining feasibility. 
Other advantages are that only two adjoint simulations are 
required at each iteration and large step sizes are possible 
during the line search at each iteration, leading possibly to 
large reductions in the objective function. This method 
belongs to the class of NLP methods combined with the 
Maximum Principle (adjoint models) discussed above. 

This paper proceeds with a brief description of the 
mathematical formulation of the problem and the application 
of adjoint models for efficient calculation of gradients of the 
objective function with respect to the controls. This is 
followed by a discussion of the existing methods for handling 
nonlinear path constraints for optimal control problems, with a 
critical comparison of their advantages and disadvantages. The 
next section discusses the traditional feasible direction 
optimization algorithm in some detail, as it is the basis of the 
proposed algorithm. This is followed by detailed discussions 
of the proposed approximate feasible direction and feasible 
line search algorithms. The validity and effectiveness of the 
proposed algorithm for handling nonlinear path inequality 
constraints is demonstrated through two examples, one with a 
maximum water injection constraint, and the other with a 
maximum liquid production constraint, both of which are 
nonlinear with respect to the controls (BHPs in this case). 
 
Production Optimization with Adjoint Models 
The production optimization problem under uncertainty 
requires finding a sequence of control vectors nu  for 

0,1,..., 1n N= − , where n is the control step index and N is the 
total number of control steps (here, for the purpose of clarity, 
time steps and control steps are considered equivalent), to 
maximize (or minimize) a performance measure 
( )0 1,..., NJ u u − . Our procedure for this optimization is 

discussed in detail in [1,12] so our description here will be 
brief.  The problem definition is given by Equation (1). 

Here, nx  refers to the dynamic states of the system, such 
as pressures, saturations, compositions etc. The cost function 
J consists of two terms. The first term φ  is a function only of 
the dynamic states of the last control step (e.g., abandonment 
cost). The second term is a summation over all control steps 
and consists of the kernel nL , which is known as the 
Lagrangian in control literature. Here it will involve the oil 

and water rates at each time step. Since nL  usually consists of 
well parameters or quantities that are functions of well 
parameters, it is written here in a fully implicit form. 
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The set of equations ng  together with the initial condition 
define the dynamic system. In the current application, ng is 
the fully implicit reservoir simulation equations written for 
each grid block at each time step. The last three equations of 
Equation (1) define additional constraints for the controls – 
nonlinear inequality path constraints that are functions of both 
states and controls, nonlinear inequality path constraints that 
are functions of states only, and bounds on the controls. These 
equations constrain the controls directly, as opposed to the 
simulation equations that constrain only the dynamic states. 
Note that these are called path constraints because they have 
to be satisfied at every time step. Further, only inequality 
constraints are considered, because, almost all constraints in 
practical problems are inequality constraints. Examples of 
such constraints are maximum injection rate constraint, 
maximum water-cut constraint, maximum liquid production 
rate constraint, etc. Note that whether a constraint is linear or 
nonlinear also depends on the choice of control variables. For 
example, well rates are nonlinear functions of the BHPs of  
wells, and hence any rate constraint will be a nonlinear path 
constraint if BHPs are controlled; but may become a linear 
constraint if well rates are controlled directly. The control-
state constraints and state only constraints are written 
separately because in general, state only constraints are more 
difficult to handle, and some existing algorithms treat them in 
different ways. In our proposed method, however, both of 
them will be treated with one unified approach. 

In order to perform the optimization component of the 
closed loop (marked in blue in Figure 1) with gradient-based 
methods, an efficient approach to calculate the gradients of the 
cost function ( )0 1,..., NJ u u −  with respect to the controls nu  is 
required. The most efficient method to calculate these 
gradients is through the use of the adjoint equations. The 
adjoint equations are obtained from the necessary conditions 
of optimality of the problem defined by Equation (1). The 
essence of the theory is that the cost function of Equation (1) 
along with all the constraints can be written equivalently in the 
form of an augmented cost function AJ : 
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For the moment, only the dynamic equations are 
considered. Treatment of the other constraints is discussed 
later. The vectors nλ  are known as Lagrange multipliers and 
one Lagrange multiplier is required for each constraint with 
which the cost function is augmented. Using Calculus of 
Variations [5], the first variation of the above equation must 
be zero for optimality, which gives the final form of the 
adjoint equations as follows: 
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Because the nλ  depend on 1nλ + , the adjoint model is 
solved backwards in time, with the second equation above 
providing λ at the last time step (i.e., the initial condition for 
the backward integration). After solving for the Lagrange 
multipliers, the gradients of the cost function with respect to 
the controls can be calculated as: 
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These gradients can be used with any gradient-based 
algorithm to determine the new search direction and step 
length and thereby the new nu . The process is repeated until 
the gradients are close to zero, implying that the optimum 
solution has been found. This is a very efficient procedure, as 
the time required to solve the adjoint model (and to calculate 
all of the required gradients) is about the same as that needed 
for the forward simulation (see [1,12] for full details). Note 
that the above derivation does not incorporate the nonlinear 
path constraints or the bounds on the controls. In the absence 
of such additional constraints, the above gradients can be used 
directly with any optimization algorithm. However, if 
additional constraints are present, their effect on the 
optimization has to be taken into account. The treatment of 
these constraints is discussed in the following sections. 

 
Existing Methods for Nonlinear Path Constraints 
It is acknowledged in control theory literature [5] that 
nonlinear control-state path inequality constraints involving 
state variables are the most difficult to incorporate effectively 
into optimal control algorithms. Even the Maximum Principle 
as given by Pontryagin does not apply directly to such 
problems [5].  As discussed earlier, among the various classes 
of algorithms available for optimal control problems, gradient-
based NLP algorithms combined with adjoint models are 
generally considered the most efficient, and there are a 

number of existing NLP algorithms designed for path 
constrained optimal control problems. This class of NLP 
algorithms can be further divided into two categories: (1) 
algorithms that solve the path constraints implicitly together 
with the dynamic system or convert them to simple bounds 
constraints, implying that the NLP becomes an unconstrained 
NLP, thus constraint gradients are not required (2) algorithms 
that calculate the path constraints explicitly after the dynamic 
system has been solved, implying that the NLP becomes a 
constrained NLP, thus constrained NLP algorithms are 
required. The first four algorithms discussed next belong to 
the first category, and the last two belong to the second 
category.  

One of the early methods given by Bryson et al. [5,14,15] 
incorporates the path constraints into the forward and adjoint 
equations in a manner similar to the dynamic system 
equations. In other words, the cost function is not only 
augmented with the dynamic system equations (see Equation 
(2)), but also with the path constraints, using an additional set 
of Lagrange multipliers. For example, if only control-state 
constraints are present, the augmented cost function is given 
by the following equation, where nμ  are the additional 
Lagrange multipliers.  
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There is, however, an additional requirement on the 
Lagrange multipliers nμ ; see Bryson and Ho [5] for details. 
The numerical algorithm essentially involves joining together 
the constrained and unconstrained parts of the trajectories 
using the necessary conditions of optimality. This method is 
capable of finding the exact optimum quite efficiently and 
solves the path constraints implicitly together with the 
dynamic system, implying that solutions obtained at any 
iteration are always feasible. However, a major drawback of 
this technique is that the sequence of constrained and 
unconstrained parts of the trajectories at the optimum must be 
known apriori, and this information is not available for 
production optimization problems. Further, control-state and 
state only path constraints are not treated in the same manner, 
and state only constraints are generally quite difficult to 
implement with this approach [5].  

Another method known as the Generalized Gradient 
method given by Mehra and Davis [6] shows that the 
difficulties associated with the method given by Bryson et al. 
[5,14,15] can be avoided by choosing different combinations 
of the control and state variables as the independent variables, 
instead of always choosing the control variables as 
independent variables. The different combinations of the 
control and state variables as independent variables are 
dictated by the constraints and could result in different 
combinations along different parts of the trajectory. The 
gradient of the cost function with respect to the independent 
variables, called the generalized gradient, is calculated by 
solving a set of equations similar to the Euler-Lagrange 
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equations [6]. Unfortunately, there are a few disadvantages of 
this method as well. The path constraints are only calculated 
explicitly after the dynamic system has been solved, resulting 
in possible infeasible solutions, in which case one has to start 
from a new guess. More importantly, since this method 
requires the ability to independently control the state variables, 
implementing this method is difficult in conjunction with 
existing simulator codes. For the same reason, standard NLP 
software cannot be easily used with this approach. 

Yet another method known as the slack variable method 
(Jacobson and Lele [16]; Feehery [7]) essentially changes the 
original inequality constraint to an equality constraint by 
means of a slack variable a(t): 

 

( ) ( )21 1,
2

( ) 0          0,.., 1n n n nac x u n N+ =+ ∀ ∈ −  (6) 

The slack variable is squared so that any value of a is 
admissible. The principle of the method is to make one of the 
control variables appearing in the constraint a new state 
variable for the corresponding constraint. Thus, the constraint 
is appended as an equality constraint to the dynamic system, 
the control variable is solved as a state variable during the 
forward solve and the slack variable a(t) becomes the new 
control variable. Although the method is appealing and 
efficient, and like the first method, only generates feasible 
solutions, it again has some drawbacks, the main one being 
that, as the method changes the category of a control variable 
to a state variable, this means that any possible bounds on 
control variables cannot be satisfied. Unfortunately, almost all 
control variables for production optimization problems have 
either physical or economic bounds. Also, if more than one 
control variable is a candidate for conversion to a state 
variable, no suitable selection strategy exists. In practice, since 
a combination of control variables influences the state 
constraint, the method is not able to choose the correct one. 
Further, this method also requires significant modifications to 
existing simulation code. 

In petroleum engineering literature, Zakirov et al. [13] 
have proposed an algorithm for implementing inequality path 
constraints. Their method is similar to that of Bryson et al. 
[5,14,15] in the sense that the active constraints are adjoined 
to the cost function by an additional set of Lagrange 
multipliers. The gradient of the objective function with respect 
to the independent controls is then calculated using the usual 
Euler-Lagrange equations (adjoint system). In order to 
calculate the step size, it is required that none of the 
constraints is violated by taking that step in the search 
direction. To do this, a problem of variations is solved. 
However, in order to do so, it is implied that the constraints 
that are active at a given iteration will also remain active in the 
next and succeeding iterations. There is no reason why this 
should be true, and such a scheme would result in the problem 
becoming overly constrained with succeeding iterations. It is 
also not clear how it is determined which constraints will be 
active at the optimum, and which controls will be kept 
independent. 

The algorithms considered above solve the constraints 
implicitly together with the dynamic system. At the other 

extreme are algorithms that calculate the constraints explicitly 
after the dynamic system (forward model) has been solved, in 
order to determine whether the constraints were violated or 
not. The most popular among this class of algorithms for 
optimal control problems has been the penalty function 
approach and its variants [5, 17]. Penalty function methods 
transform the constrained optimization problem into 
alternative formulations such that the numerical solutions are 
sought by solving a sequence of unconstrained optimization 
problems [17]. For example, the production optimization as 
given by Equation (1) is converted to the following problem: 
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Here, ( )1,n nn uc x +⎡ ⎤
⎣ ⎦ϒ is some function of the constraint 

( )1,n nn uc x +  and kr is a positive constant known as the 

penalty parameter. With respect to 0 1,.., Nu u − , the above 
optimization problem is an unconstrained optimization 
problem (except for the simple bounds which can be satisfied 
easily). If the unconstrained optimization of the function kΦ  
is repeated for a sequence of values of kr , the solution may be 
brought to converge to the solution of the original problem. 
The main reason for the popularity of the penalty function 
method within this class of methods (where constraints are 
calculated explicitly) is because constrained NLP becomes an 
unconstrained NLP, implying that only one gradient (that of 
the kΦ ) is required at each iteration; thus only one adjoint 
system has to be solved at each iteration. All other constrained 
NLP algorithms require the gradient of all active constraints at 
each iteration, and since for a path constrained optimal control 
problem, the number of active constraints and therefore the 
number of adjoint solves could be as large as the number of 
time steps of the forward problem (or more, if more than one 
path constraint is present), these algorithms are not practical 
for the production optimization problem. However, a key 
disadvantage of the penalty function method, which renders it 
impractical for the production optimization problem, is its 
inefficiency. Specifically, a large number of iterations for 
various values of kr  are typically required for significant 
improvement of the objective function. The problem is more 
severe when the initial guess is close to the constraint 
boundaries and one or more constraints are active at the 
optimum, and this is often the case with production 
optimization problems. 

Due to the fact that the constrained NLP methods require 
the gradients of all active constraints, and thus become very 
expensive for path constrained optimal control problems, one 
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approach is to construct a single constraint from all the 
constraints, such that satisfying this single equivalent 
constraint ensures that all constraints will be satisfied. Such an 
approach is called constraint lumping [18]. With this 
approach, only two gradient calculations and therefore only 
two adjoint evaluations will be required at each iteration (one 
for the objective function and one for the equivalent 
constraint), which is a huge improvement compared to 
retaining all constraints. Various lumping schemes are 
available in the literature [18,8], with the following being 
commonly used for optimal control problems: 
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The second approach is an improvement over the first 
because the gradient of the first is discontinuous, although the 
second representation is also more nonlinear. Another 
approach is to create a smooth approximation to the max 
function, as given by Jennings et al. [8]: 
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The advantage of Equation (9) over the second equation of 
Equation (8) is the elimination of squaring, implying small 
deviations are penalized more heavily. In the algorithm 
proposed here, constraint lumping is applied in conjunction 
with the feasible direction algorithm. To our knowledge, this 
combination of algorithms has not been used previously for 
optimal control problems. Also, the lumping scheme used is a 
relatively new procedure [19], is more rigorous compared to 
Equation (9) and has not been used for optimal control 
problems before. The feasible direction algorithm and the 
particular constraint lumping scheme used are discussed in the 
next sections. 

 
Feasible Direction Optimization Algorithm 
The basic idea behind the method of feasible directions is to 
start from a feasible point (a point that satisfies all constraints) 
and move to a better point (with a lower objective function 
value) according to the iterative scheme [17]: 

 
iSβ+ = +i 1 iu u  (10) 

Note that u  here represents the entire set of controls 
0 1,.., Nu u − , and iu is the starting point for the ith iteration, iS  is 

the search direction, β  is the step length, and 1+iu  is the final 

point obtained at the end of the iteration. The search direction 
iS  is found such that the following two properties are satisfied 

(1) a small move in the direction violates no constraint, and 
(2) the value of the objective function is reduced in that 
direction. The iterative process is repeated until no search 
direction can be found satisfying both properties. The final 
iterate represents a constrained local minimum of the problem. 
A direction satisfying both above-mentioned properties is 
called a usable feasible direction [17].  

To exemplify, consider the optimization problem depicted 
by Figure 2. The figure shows the objective function contours 
(orange lines, dot-dash) and three constraints (green lines, 
solid), which are functions of two control variables only. No 
state variables are present for simplicity. The blue dot labeled 
“optimum” depicts the constrained minimum of the problem, 
constrained by 3c . Thus only constraint 3c  is active at the 
optimum. The initial guess or starting point is at the 
intersection of constraints 1c  and 2c , meaning that 1c  and 2c  
are active at the initial guess. The blue arrow (dashed) is the 
negative of the objective function gradient, and the purple 
arrows (dashed) are the negatives of the active constraint 
gradients. The thick orange lines represent the cone of 
feasibility at the initial guess, that is, any search direction 
within this cone will satisfy property 1. The pink arrow (solid) 
is a usable feasible direction, that is, a search direction that 
satisfies both properties 1 and 2. Such a direction at a point iu  
can be determined mathematically by a direction iS  that 
satisfies the following equations [17]: 
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Here, ( )J∇ iu  and ( )nc∇ iu  are the gradients of the 
objective function and the active constraints at point iu . It is 
possible to reduce the objective function J at least by a small 
amount by taking a step length 0β >  along such a direction.  

There are many different ways to determine a usable 
feasible direction, giving rise to different feasible direction 
algorithms. In the current work, the well-known Zoutendijk’s 
method of feasible directions is used [17], and will therefore 
be discussed here. In this method, the usable feasible direction 
at the current iterate is taken as the negative of the objective 
function gradient if the iterate lies in the interior of the feasible 
region. However, if it lies on the constraint boundary (or close 
to the boundary within some pre-set tolerance), a usable 
feasible direction that satisfies Equation (11), is found by 
solving a linear programming problem [17]: 
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Here, ,i ks is the kth component of iS  (recall that i 
designates iteration), and the first p constraints are assumed to 
be active (or almost active) at point iu  (the constraints can 
always be renumbered to satisfy this requirement). Here γ  is 
taken as an additional design variable. Any value of 0γ >  
would provide a usable feasible direction iS . The maximum 
value of γ  gives the best direction iS  that makes the value of 

( )T
iS J∇ iu  maximally negative and the values of ( )T n

iS c∇ iu  
as negative as possible simultaneously. In other words, the 
maximum value of γ  makes the direction iS  steer away from 
the active nonlinear constraints. Different values of nθ  for 
different constraints allow us to give more importance to 
certain constraint boundaries as compared to others. For more 
details, refer to Rao [17]. 

The feasible direction algorithm is useful when the initial 
guess point is at (or close to) constraint boundaries and the 
steepest descent direction (negative objective function 
gradient direction) is pointing away from the feasible region. 
This is usually the case with production optimization 
problems. In such a case, first order algorithms (like the 
steepest descent algorithm) or even quasi-Newton algorithms 
would provide search directions moving along which would 
violate one or more constraints, thereby providing infeasible 
iterates.  

 
Approximate Feasible Direction Algorithm 
Zoutendijk’s method of feasible directions [17], like all other 
constrained NLP algorithms, requires the gradients of all 
active constraints. As seen in Equation (12), these gradients 
are required to calculate the feasible direction. However, as 
mentioned earlier, this is not practical for an optimal control 
problem with path constraints due to the excessive number of 
adjoint evaluations required to calculate these gradients. One 
approach to alleviate this problem is to apply constraint 
lumping to create one equivalent constraint from all active 
constraints, with the benefit that only two adjoint solutions 
will be required at each iteration, one for the objective 
function and one for the equivalent constraint. The particular 
lumping scheme used in this work is given by Liu et al. [19] 
and is a relatively new approach. It is essentially a smooth 
differentiable approximation of the max function, but is more 
rigorous compared to Equation (9). In their work, the lumping 
scheme is used within a penalty function method, whereas in 
this work we apply it in conjunction with the feasible direction 
method, which leads to a different interpretation. 

Consider the discontinuous unit-step function and its 
approximation, the sigmoid function, given by the following 
equations: 

( )

( ) ( ){ } 1

1        if  0
0        if  0

, 1 exp 0

y
y

y

s y y

σ

α α α
−

>⎧
= ⎨ ≤⎩

= + − ∀ >

 (13) 

The max function is an integral of the unit-step function 
and is given by the following equation: 

 

{ } ( )max ,0
x

x y dyσ
−∞

= ∫  (14) 

Substituting ( ),s y α  for ( )yσ  in the expression above, it 
can be shown that the following equation approximates the 
max function [19]: 

 

( ) ( ) ( ){ }1, , log 1 exp
x

p x s y dy x xα α α
α−∞

= = + + −∫  (15) 

The function ( ),p x α  has infinitely many continuous 

derivatives. Some other properties of the function ( ),p x α  
relevant to its application with the feasible direction algorithm 
are as follows: 
( ) { }

( ) ( ){ }
( ) ( ){ }

| |

, max ,0                 

lim , max ,0 0 0

lim , max ,0 0  
x

p x x x R

p x x

p x x x R
α

α

α α

α
→∞

→∞

> ∀ ∈

− = ∀ >

− = ∀ ∈

 (16) 

Due to the above properties, the function ( ),p x α  can be 
used as an approximation of the max function for constraint 
lumping. This circumvents the main disadvantage of the max 
function, which is its non-differentiability (this makes it 
difficult to implement the max function with gradient-based 
algorithms). However, due to the infinite differentiability 
property mentioned above, ( ){ }1, ,n n np c x u α+  will be as 

many times differentiable as ( )1,n n nc x u+ . Figure 3 shows the 

max function and its approximation with ( ),p x α  for various 
values of α . Therefore, the equivalent constraint replacing 
the max constraint lumping scheme for the path constraints of 
Equation (1) is given as: 

 

( ){ }
1

0

1 log 2log 1 exp   0
N

n n

n
C c cα α

α α

−

=

⎡ ⎤= + + − ≤ ∀ >⎢ ⎥⎣ ⎦
∑ (17) 

The log 2 /α  term appears in the above equation because 

( )0, log 2 /np c α α= =  and ( ),np c α  increases 

monotonically with nc . With this definition, the optimal 
control problem equivalent of Equation (1) is given by 
Equation (18) below. The nonlinear path constraint has been 
replaced by the single integral constraint C. The bounds on the 
controls are still present, but they can be easily satisfied using 
standard techniques like gradient projection. 
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(18) 

From the perspective of the feasible gradient algorithm, 
since the function ( ){ }1, ,n n np c x u α+  is an approximation of 

( ){ }1max , ,0n n nc x u+ , it is clear that the equivalent constraint 

C is essentially a sum of the active constraints, for large 
enough α . Therefore, the gradient of the equivalent constraint 
C is the sum of the gradients of the active constraints. This is 
demonstrated in Figure 4, where the dashed brown arrow is 
the sum of the gradients of the active constraints 1c  and 2c , 
and these gradients themselves are depicted by the dashed 
purple arrows. Therefore, the implication of using this 
particular constraint lumping as opposed to directly solving 
the original problem is that, instead of obtaining the gradients 
of all the active constraints individually, only a single gradient 
direction is obtained, which is the sum of the gradients of all 
active constraints. With only this single direction, the apparent 
feasibility cone is given by the thick gray line. This apparent 
feasibility cone will always be equal to or wider than the true 
feasibility cone (thick orange line). Again, a linear program 
can be solved to determine the feasible direction: 

 

( )
( )
,

   

0

0
1 1

min

subject to:
i

T
i i

T
i i

i k

S C

S J
s

s γ

θγ
γ

−

∇ + ≤

∇ + ≤

− ≤ ≤

u

u

 (19) 

Note that, because the apparent feasibility cone may be 
wider than the true feasibility cone, the feasible direction 
obtained may not be actually feasible. For example, using 
Equation (19), a direction such as the solid pink arrow (Figure 
4) may be obtained as the feasible direction. Although this 
direction is within the apparent feasibility cone, it is outside 
the true feasibility cone, and is therefore not truly a feasible 
direction. Moving in this direction even infinitesimally would 
result in the violation of constraint 2c  (but not 1c ). This 
direction is therefore called an approximate feasible direction. 
However, this direction will usually be better than just the 
steepest descent direction (negative objective function 
gradient). For example, as seen in Figure 4 moving in the 
steepest descent direction violates both active constraints.  

In order to solve the above problem of approximate 
feasibility, a feasible line search algorithm is employed. The 

key idea behind the feasible line search algorithm is to 
implement the path constraints within the forward model and 
modify the search direction within the forward model if the 
path constraints are violated. The approximate feasible 
direction is thus projected onto the infeasible active 
constraints during line-search by solving the constraints during 
the forward simulation. Note that projecting this direction onto 
the infeasible active constraints during line-search is 
equivalent to performing a “curved” line search along the 
infeasible active constraints, as seen in Figure 5. Gradient 
information from previous iterations and our knowledge of the 
dynamic system can be used to determine which controls need 
to be modified to satisfy an infeasible constraint. For example, 
if a path constraint such as a maximum injection rate 
constraint is violated at a given time-step of the forward 
simulation, the controls associated with the injectors at that 
time-step will have the maximum influence on the constraint, 
and should therefore be modified to satisfy the constraint. 
Note that there could be many possible choices of controls or 
combinations thereof that can be modified to satisfy a 
constraint, and it is not clear at the moment if a particular 
“best” strategy exists that could be employed to choose the 
right controls.  

In the current work, a maximum total water injection 
constraint and a maximum total liquid production constraint 
have been implemented. For the maximum total water 
injection rate constraint, if the constraint is violated at a given 
time-step, controls associated with all the injectors (BHPs) at 
that time-step are modified to satisfy the constraint. Similarly, 
for the maximum total liquid production constraint, the 
producer BHPs are modified to satisfy the constraint. In the 
current implementation, a simple, easy to implement iterative 
approach is used to determine the modified controls if the path 
constraints are violated at a given time-step. The approach 
assumes that a linear relationship exits between the injection 
rate of an injector (or liquid production rate of producer) and 
the pressure difference between its BHP and well block 
pressure, as depicted by the following equation: 

 

( )1 1
tgt

tgt n n cur
w b b wcur

qp p p p
q

ω+ += − −  (20) 

To clarify, after solving the forward model at a given time-
step with the values of the controls as provided by the 
optimization algorithm (approximate feasible direction 
algorithm in this case), if a constraint is violated (i.e., 

tgt curq q< ), new values of the controls to be modified ( tgt
wp ) 

are obtained with the above equation using the current values 
of the controls ( cur

wp ), and the forward model is solved again 
at the same time-step with the new control values. The process 
is repeated until the constraint is satisfied. ω  is a relaxation 
factor used to accelerate convergence. This approach is 
certainly not the most efficient, and the best approach would 
be to solve the violated constraints together with the dynamic 
system.  

The main benefits of the feasible line search algorithm are 
that all iterates obtained are always feasible, implying that any 
iterate can be considered a useful solution, and large step sizes 
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are possible during the feasible line search, leading to 
significant reductions in forward model evaluations and 
possibly also the objective function. 

In order to account for the bounds on the controls, a 
projected gradient algorithm (with the approximate feasible 
direction as the search direction) is used. Refer to Kelley [20] 
for more details about gradient projection. The simulator used 
in this work is the General Purpose Research Simulator 
(GPRS) developed at Stanford [21], and the adjoint models are 
built directly from the simulator code, as described in [12]. 

 
Example 1 – Horizontal Smart Wells 
The first case is a simple example adapted from Brouwer and 
Jansen [11] that effectively demonstrates the applicability of 
the proposed algorithm to smart well control with nonlinear 
path constraints. The schematic of the reservoir and well 
configuration is shown in Figure 6. The model consists of one 
horizontal “smart” water injector and one horizontal “smart” 
producer, each having 45 controllable segments. The reservoir 
covers an area of 450×450 m2 and has a thickness of 10 m and 
is modeled by a 45×45×1 horizontal 2D grid. The fluid system 
is an essentially incompressible two-phase unit mobility oil-
water system, with zero connate water saturation and zero 
residual oil saturation. The left figure of Figure 7 shows the 
heterogeneous permeability field with two high permeability 
streaks running from the injector (left) to the producer (right). 
The contrast in permeability between the high permeability 
streaks and the rest of the reservoir is around a factor of 20-40.  

For purposes of optimization, the injector and producer 
segments are placed under BHP control. The objective of the 
optimization process is to maximize Net Present Value (NPV) 
of the reservoir (see [12] for definition). The NPV discounting 
factor is set to zero, meaning that the effect of discounting is 
neglected. Thus, maximizing NPV is essentially maximizing 
cumulative oil production and minimizing cumulative water 
production. To allow comparison with Brouwer and Jansen 
[11] and our earlier work [12], the oil price is conservatively 
set at $80/m3, water injection costs at $0/m3, and water 
production costs at $20/m3 [11]. There is a maximum total 
water injection constraint of 2710 STBD, which is a nonlinear 
path constraint in this case, because the controls are the BHPs 
of segments. Further, there are bounds on the BHPs of the 
segments, which could for example correspond to bubble point 
pressures or fracture pressures. The model is produced until 
exactly one pore volume of water is injected, which 
corresponds to around 950 days of injection. This time period 
is divided into five control steps of 190 days each. Thus the 
total number of controls is equal to (45 + 45)×5 = 450. In our 
earlier paper [12], the same example was studied with the 
injector segments under rate control, in which case the 
maximum injection rate constraint was a linear constraint. 
Thus, comparing against our earlier results, this case 
demonstrates the validity and effectiveness of the proposed 
approach to handle nonlinear path constraints.  

The base case is a constant injection rate, constant 
producer BHP operation strategy. The injection rate is kept at 
the maximum of 2710 STBD and is distributed among the 45 
injection segments according to their kh, which corresponds to 

an uncontrolled case. The producer BHPs are set in such a 
way that a balanced injection-production is obtained. 

Starting from an initial oil saturation of 100% throughout 
the reservoir, Figure 7 (right) shows the final oil saturations 
for the uncontrolled case obtained after 950 days of 
production. Figure 8 shows the final oil saturations after 950 
days for the optimized cases, the left image with the injector 
segments under rate control (from [12]), and the right image 
with the injector segments under BHP control (performed with 
the proposed algorithm). As discussed above, rate controlled 
injectors correspond to the injection rate constraint being a 
linear path constraint, and for BHP controlled injectors, the 
rate constraint becomes nonlinear. It is clear that the 
optimization leads to a large improvement in the sweep 
efficiency for both cases, and the proposed algorithm with 
BHP controlled injectors performs almost as well as the 
original algorithm [12] with linear constraints only, validating 
the effectiveness of the approach. The optimization leads to an 
increase in NPV of approximately 100%. Figure 9 shows that 
there is a substantial increase in cumulative oil production 
(70%), attributed to the better sweep, and a slight decrease in 
water production (6%) after the optimization process. The 
optimization process required 4 iterations and the total number 
of simulations (including adjoint simulations) required for the 
optimization was around 15. 

Figure 10 shows the injection rates for the reference case 
and the optimized case (with BHP controlled injectors). It is 
clear that the constraint (2710 STBD) is satisfied to within 1% 
tolerance after optimization. Note that even after the 
optimization, the water injection rate remains near the 
maximum for most of the time, thus implying that the 
optimization essentially results in redistribution of the injected 
water among the injection segments. 

The reasons behind the better sweep in the optimized case 
can be easily explained by analyzing the optimized trajectories 
of the controls, i.e., BHPs of the injectors and producers as 
seen in Figure 11. The y-axis of Figure 11 corresponds to 45 
segments (injectors on the left and producers on the right) and 
the x-axis corresponds to the 5 control steps. The color scale 
corresponds to BHPs of the segments. It is obvious that the 
injector segments completed in or near the high permeability 
streaks are shut-in most of the time, as they would otherwise 
force water to move very quickly toward the producers, 
resulting in early breakthrough and thus poor sweep. For the 
producers, we again observe that the segments completed in or 
near the high permeability streaks are shut most of the time, in 
order to force the injected water into the low permeability 
regions to improve sweep. 

 
Example 2 – Arab-D Formation, Ghawar Reservoir 
The second example studied is a more realistic example 
adapted from Yeten [22] and Sengul et al. [23]. The 
simulation model is a conceptual representation of a small 
portion of the Arab-D formation of the Ghawar reservoir (see 
Figure 12 left). The 3D simulation model, populated with the 
initial oil distribution, is shown in Figure 13 (left). The red 
blocks indicate oil and blue blocks indicate water, while the 
blocks in between indicate the transition zone. The reservoir 
model consists of 25x33x10 cells with grid sizes in the x and y 
directions of 200 feet. The thickness of each layer varies, and 
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properties are provided in [22]. The movable oil originally in 
place is around 18 MMSTB. The model has aquifer support 
along the east flank. The other boundaries were modeled as 
no-flow. 

This field is a naturally fractured carbonate reservoir. 
Fractures act as the fastest fluid flow paths within the 
reservoir. The matrix also has reasonable permeability and 
contributes significantly to fluid flow. Two distinct fracture 
distributions are identified within the field. Here they will be 
referred to as fractures and stratiform “Super - K” layers. The 
fractures are modeled as vertical high permeability zones, 
oriented along the east-west plane, cutting all layers from top 
to bottom. The stratiform Super - K layers are modeled as thin 
layers with high permeability. Figure 12 (right) shows how the 
fractures and the stratiform Super - K layers are oriented. The 
refined grids in the y direction in Figure 13 (left) represent the 
vertical fractures, and the thin layers (5 and 9) represent the 
Super - K layers. Additional properties are provided in [22]. 

Because the field is operated above the bubble point 
pressure, the simulation model only includes oil and water 
phases. A tri-lateral production well is completed in the 
second layer of the simulation model (Figure 13 right). All 
laterals as well as the main-bore are horizontal. The heel of the 
main-bore is highlighted with a full white circle on this plot. 
The branch closest to the heel of the well will be referred to as 
Branch 1, the one just below it will be referred to as Branch 2, 
and the last one will be referred to as Branch 3, as shown in 
Figure 13 (right). Note that Branch 2 intersects a fracture and 
Branch 1 is very close to a fracture. Branches 1 and 2 are 
about 2000 ft long and Branch 3 is about 3000 ft long. The 
branches are spaced approximately 1400 ft apart from each 
other, and all have open-hole completions. The laterals are 
fully perforated (no partial perforation) and the main-bore is 
not perforated. 

The simulation model was run for 1800 days 
(approximately 5 years). Production is subject to a maximum 
liquid production constraint of 6000 STBD, and the controls 
are the BHPs of each lateral, thereby making the liquid 
production constraint a non-linear path constraint. The 
minimum allowable BHP at the heel of the well was set at 
2600 psi (equivalent approximately to a WHP of 250 psi, as in 
[22]). The objective is to maximize the cumulative oil 
production of the reservoir. The base case is an uncontrolled 
case producing at the maximum liquid rate (6000 STBD). 
Uncontrolled implies that the BHPs of the laterals are not 
controlled directly, and they adjust themselves according to 
the production rate and the BHP at the heel of the well. 
Because the GPRS version used in this work did not have 
down-hole choke models implemented, the tri-lateral well was 
actually modeled as three separate horizontal wells. To 
maintain approximate consistency with Yeten’s  model [22], 
for the uncontrolled case the BHPs at the junctions of the 
laterals and the main-bore were specified based on the 
ECLIPSE [24] simulation results generated in [22]. This 
entailed specification of time-varying BHP for each lateral. 
The resulting oil rates and water cuts generated by GPRS are 
close to the original ECLIPSE results of Yeten [22], indicating 
that our base case is consistent with the earlier model. 

Figure 14 shows the oil production profiles for individual 
branches. As explained in [22], the resulting production is 

unbalanced. In the uncontrolled (reference) case, Branch 1, 
which is closest to the heel of the well, produces more oil than 
the other two branches. Branch 2 produces significantly more 
than Branch 3, especially for the early times before the water 
breaks through, due to its intersection with a fracture. Figure 
15 presents the water cut for each branch. The water cut of 
Branch 3 (reference) is much less compared to the others, 
likely due to the proximity of Branches 1 and 2 to the fractures 
and Super – K layers, which act as fast conduits to the aquifer. 
This results in unbalanced production and unbalanced sweep 
(Figure 16 left) which are detrimental to overall recovery. 

Figure 14 also shows the oil production profiles after 
optimization with the proposed algorithm. The 1800 days of 
production was divided into 18 controls steps of 100 days 
each, resulting in a total of 18x3 = 54 controls. As would be 
expected, the algorithm allocates more production to Branch 3 
than the other branches. It can also be seen that Branch 2 has 
been allocated the least amount of production due to its direct 
connection to a fracture. Figure 15 also shows the water cut 
profiles of the branches after optimization. The water breaks 
through in Branch 3 earlier. This water comes from the matrix 
and its water cut does not increase as rapidly as in the other 
branches. Therefore the breakthrough in Branch 3 does not 
affect the overall performance as much as the breakthrough in 
other branches. Figure 16 (right) also shows that the final 
sweep pattern obtained after optimization is more balanced, 
resulting in more oil being produced.  

Figure 17 shows the field water cuts for the uncontrolled 
and optimized cases. It is clear that because there is a 
maximum liquid production constraint (which is essentially 
active in the uncontrolled case), the only way to increase 
cumulative oil production is to reduce the field water cut. It is 
observed from Figure 17 that the field water cut is higher for 
the optimized case for about 300 days, after which it reduces 
below the base case. The final water cut after 1800 days is 
reduced from 0.66 to 0.54, resulting in an increase in 
cumulative oil production of about 16% over the base case, as 
seen in Figure 18. The liquid production rates for the 
uncontrolled and the optimized cases are plotted in Figure 19. 
The optimization clearly satisfies the maximum constraint of 
6000 STBD at all times, again validating the effectiveness of 
the proposed algorithm. The total number of iterations of the 
optimization algorithm was 11, and the total number of 
simulations required including adjoint simulations was 68. 
Yeten [22] used a conjugate gradient algorithm with numerical 
gradients for the optimization, with ECLIPSE as the simulator, 
and he also found a similar improvement in cumulative oil 
production. However, the number of simulations required with 
his approach will in general be much more due to the use of 
numerical gradients. 

 
Conclusions 
In this paper, an approximate feasible direction algorithm 
combined with a feasible line search was proposed to handle 
production optimization problems with nonlinear path 
inequality constraints, with the following major benefits: 

1. Due to constraint lumping, only two adjoint evaluations 
are required at each iteration of the optimization algorithm, 
which is one of the reasons behind the efficiency of the 
algorithm. 
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2. All iterates obtained are always feasible, implying that 
the optimization may be stopped at any iteration and the final 
iterate can be considered a useful solution. 

3. Large step sizes are possible during the modified line 
search, leading to significant reductions in forward model 
evaluations during the line search, and may also result in 
significant reduction of the objective function. 

4. Problems associated with starting close to the boundary 
of the feasible region, which may limit the effectiveness of 
penalty function methods, are avoided. Such starting points 
often occur in production optimization problems. 

The effectiveness and applicability of the algorithm was 
demonstrated through two examples: the first was a dynamic 
waterflood optimization problem with a maximum injection 
rate constraint, and the second was a tri-lateral well 
optimization problem with aquifer support and a maximum 
liquid production rate constraint. Both optimizations resulted 
in significant improvement in the objective functions (NPV 
and cumulative oil production), implying that model-based 
optimization has considerable potential for practical reservoir 
management. 
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Nomenclature 
a  Slack variable 
c  Nonlinear constraints 
C  Equivalent constraint 
g  Dynamic system equations  
J  Cost function 

AJ  Augmented cost function of original cost function 
L  Lagrangian 
LB  Lower bounds on controls 
N  Number of control steps 
p  Number of active constraints 

bp  Well block pressue 

wp  Well BHP 
q  Fluid flow rate 

kr  Penalty parameter at kth iteration 
S  Usable feasible direction 
t  Time 
u  Control vector 
u  Comple set of 0 1,.., Nu u −  
UB  Upper bounds on controls 
x  Dynamic states 
α  Tolerance for max function approximation 
β  Line search step length 
ϒ  Function of constraints 
γ  Parameter to maximize 
ε  Tolerance for max function approximation 
φ  Part of cost function 

kΦ  Penalty function at kth iteration 
λ  Lagrange multipliers 
μ  Lagrange multipliers 
θ  Weight on constraints 
ω  Relaxation factor 
 
Subscripts 
i  Iteration index 
k  Vector component index 
 
Superscripts 
n  Time level n  
T  Transpose of vector 
 
Acronyms 
BHP Well bottom hole pressure 
FLPR Field liquid production rate 
FOPT Field oil production total 
FWCT Field water cut 
FWPT Field water production total 
WHP Wel head pressure 
WOPR  Well oil production rate 
WWCT Well water cut 
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Figure 1 Schematic of the Closed Loop Optimal Control approach (from Jansen et al. [25]). 
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Figure 2 Schematic of a simple optimization problem with constraints. 

 
 

 
Figure 3 The max function and its approximations for various values of α . 
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Figure 4 Schematic of a simple optimization problem with constraints, illustrating an approximate feasible direction. 

 
 
 

 
 

Figure 5 Zoomed in version of the above schematic. 
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Figure 6 Schematic of reservoir and smart wells for first example (from Brouwer and Jansen [11]). 
 
 
 
 
 

  
 

Figure 7 Permeability field for first example on left, and final oil saturation for uncontrolled case on right. 
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Figure 8 Final oil saturation for rate controlled case on left, and for BHP controlled case on right. 
 
 
 

 
 

Figure 9 Cumulative water and oil production for uncontrolled reference case and optimized case. 
 

 



16  SPE 99959 

 
Figure 10 Maximum water injection constraint before and after optimization. 
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Figure 11 Control trajectories for injectors and producers after optimization. 
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Figure 12 The Ghawar oil field with small rectangle depicting area under study on the left, orientation of fractures and 

Super – K layers in simulation grid on the right [23]. 
 
 

 

Figure 13 3D simulation model of the Ghawar example on the left, and the tri-lateral well on the right. 
 

 

 
Figure 14 Oil production rates for the three branches for the uncontrolled and optimized cases. 
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Figure 15 Water cuts for the three branches for the uncontrolled and optimized cases. 

 

   
Figure 16 Final oil saturation for layer 2 for the uncontrolled  case (left) and the optimized case (right). 

 
 

 
Figure 17 Field water cut for the uncontrolled and optimized cases. 
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Figure 18 Cumulative oil and water production for the uncontrolled and optimized cases. 

 

 
Figure 19 Maximum liquid production constraint for the uncontrolled and optimized cases. 
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