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Abstract 

The study objective is to investigate the use of Artificial 
Intelligence (AI) methods to accelerate the history matching 
process.  

A new criterion for measuring the deviation of the 
simulation model from measured and /or observed parameters 
has been introduced. Instead of comparing parameter 
deviations in wells to input changes on regional basis, it is 
proposed to calculate a regional RMS (Root Mean Square)-
error, so that the impact of input changes can be directly 
evaluated.  Instead of grouping grid blocks based on geology, 
it is proposed here, to generate regions of similar trends based 
on all available information. Artificial intelligence (AI) is used 
via Self Organizing Maps (SOM) to cluster grid blocks of 
similar behavior. SOMs can process any kind of information; 
in this case these types of parameters have been particularly 
used: 

• geological description: lithofacies type 
• hydraulic flow units (HFU): permeabilities, porosities 
• initialization: water saturations (initial and critical), 

initial pressure 
• discretization: spatial discretization (e.g. DZ), grid 

block pore volumes  
• secondary phase movement: relative permeability 

endpoints 

A three fold approach for improving and/or assisting the 
history matching (AHM) work-flow using Artificial 
Intelligence has been tested: 

1. Use production plots, Neural Networks and “Material 
Balance with Interference (MBI) method for quality 
control and consistency check of time dependent and 
static data. 

2. Use the multi-dimensional cross-plot and SOM to 
evaluate reservoir and well performance. 

3. Use SOMs and the region RMS error to evaluate the 
performance of history matching runs. 

This new approach is simple and leads to a clear 
improvement of the match quality and significantly reduces 
the number of runs needed to achieve the match.  Different 
field models have been used to develop this new AHM 
workflow.  Finally in this paper, two of them are selected to 
demonstrate the improvement of model pressure and watercut 
matches using this new method. 

Introduction 
History matching a numerical simulation model is an 

inverse problem, which cannot be solved directly. An iterative 
procedure has to be applied to reduce the deviation of the 
model calculations and measured values. Assisted history 
matching allows the automation of low level processes, 
without taking over the key decisions from the reservoir 
engineer.  

The workflow can be divided into two categories. The first 
one uses gradient based optimization methods, requiring 
additional programming in the numerical simulation program 
code itself (Ref.1-7). The second category consists of 
algorithms and workflows, which do not require calculations 
inside the simulator (Ref. 8-12). The approach presented in 
this paper does not need the calculation of gradients. However 
gradients and even automated history matching tools can be 
used in combination with this new procedure. The creation of 
clusters (subsequently referred to as regions) represents a 
major step forward for the use of any assisted or automated 
history match process. 

The second part of the paper (weighted RMS factor) 
directly relates to the problem described in Ref. 17. By using 
the weighted RMS-error, the objective function (it quantifies 
the misfit between simulated and observed data) will be 
defined much better, discarding a lot of the otherwise possible 
solutions to the inverse problem. 

A New Approach to Assist History Matching (AHM) 
History matching is defined by finding a set of model 

parameters that minimize the difference between calculated 
and observed measurement values like pressure and fluid 
production rates.  

Investigating a process to leverage Artificial Intelligence to 
improve and speed-up history match simulation models by 
incorporating all reservoir and field data is the main objective 
of this study. A user friendly process where the simulation 
engineer can interact and control the parameter modifications 
on their own (see Figure 1) has been developed. 
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Figure 1: History Matching Cycle  
A sound understanding of all data involved is essential. 

The quality control of production data as well as the 
understanding of the influence of the geology on the 
development of flow units in the reservoir is crucial for the 
engineer to understand the impact of his modifications on 
pressure/saturation changes. 

Visualization of all simulation input data and identifying 
trends and dependencies between parameters enable engineers 
to learn and understand the behavior of reservoir regions and 
individual wells. Furthermore, Artificial Intelligence can assist 
in this effort and perform time-consuming tasks. For example, 
Self Organizing Maps can be used to group wells or 
simulation grid blocks of similar behavior. During the study, 
different simulation models with different heterogeneities 
scales have been used to develop and test the new workflow.  

Description of the Workflow 
The workflow is divided into three different phases. The 

first phase includes data quality control, and the second phase 
investigates reservoir and well performance. The third phase 
covers the actual history matching process and is considered to 
be the main subject of this study.  
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This paper describes only the third phase of the workflow. 
Quality control and performance analysis are too extensive to 
be properly illustrated here. The actual history matching 
workflow (Figure 2) is described in details below:  

• Step 1: use SOMs to create the regions. Depending 
on the input parameters of the regions, the clustering 
process can include geological information (e.g. 
lithofacies type), the definition of hydraulic flow 
units, the special discretization, initial equilibrium 
and dynamic properties. 

• Step 2: the identification of parameter dependencies 
is a very important task during history matching. This 
is the only way to ensure, that the simulation engineer 
is aware of his modifications and the impact on other 
parameters. Without taking these dependencies into 
account, violations of these fundamental relationships 
can easily happen. It is proposed to setup two 
sensitivity runs (plus the original run) using the lower 
and upper limits for the modification of the input 
parameter for each region. The third run has already 
been performed with the initial settings. 

• Step 3: to be able to correlate the impact of input 
parameter changes, the correct RMS-error has to be 
calculated. This approach suggests using regions to 
adjust the simulation input parameter and therefore 
suggest calculating the RMS-error for regions. The 
procedure is described in the chapter ‘Weighted RMS 
Factor’. The three runs are evaluated in a way that the 
RMS-error for each region of all three runs is 
compared. The modification factor of a region, which 
resulted in the highest RMS-error of this region, is 
dismissed. The values of the remaining two modifiers 
are set as new lower and upper bounds.  

• Step 4: from the two modification limits left, a third 
modifier is generated, which has a value in between 
the new lower and upper bounds. The input 
parameters have to be changed for each region and 
according to each region modifier. After finishing the 
new run, again the RMS-errors per region are 
compared and the region modifier leading to the 
highest RMS-error in each region is dismissed. This 
leads again to new modifier boundaries (See Figure 
3). 

• Steps 5&6: now the engineer can go back to step #3 
and repeat the process as many times as he wants. 
The other possibility is, to switch to an automated 
history matching tool using the new bounds of the 
modifiers. The previous five steps should have lead to 
a drastically reduced search space for the history 
matching tool, so that it should converge to a solution 
pretty fast. Unfortunately, many of these tools are 
limited in the number of variables to change. 
Therefore the regions with the highest impact on the 
global match should be used. The determination of 
these regions is easy; they just have to be ranked 
according to their RMS-error. 

As shown in Figure 3, the sensitivity analysis can also be 
run using several steps for the parameter multiplier. In this 
example, the x-axis shows the value of the multiplier for the 
water relative permeability (krw) endpoint, the y-axis shows 
the RMS-error value for a specific region. It is clear to see, 
that a range between 0.6 and 0.8 will lead to the best history 
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match of this region. This represents already a major reduction 
in the uncertainty of this match parameter in this region. 

Final Search SpaceFinal Search Space

 
Figure 3: Reduction of Search space 

The steps and the resource consumption are shown in the 
next table. Provided, that the simulation model is setup and the 
quality control workflow has been performed, the amount of 
time to apply this workflow is reduced to a minimum. 

Depending on the model and the parameters, which are 
adjusted during the match, the time consumption may grow. 
This can happen, if the necessary changes cannot be included 
in the simulation model automatically, e.g. if some formatting 
work is needed. 

The table shows also the number of simulation runs needed 
for the complete workflow. To decrease the search space for 
an automatic history matching tool, only four runs are needed. 
Of course, the loop of steps 3 & 4 can be performed several 
times, which would also increase the number of runs. The 
estimation of 20 runs for the automated HM tool is based on a 
gradient technique for optimization. Other methods e.g. 
Experimental Design (ED) may need a much higher number of 
runs. Nevertheless, the workflow can be used independently of 
any simulator type and it is not bound to any commercial 
software. Below is a table showing the sequence of the steps 
needed to take. 

 
 Step User 

days 
Computer
Sim-Runs

1. Identify regions using SOM 1  

1.1 Determine PORO-Perm Relationship 1  

2. Perform two sensitivity runs  2 

3. Calculate weigthed RMS factors 0.5  

3.1 Evaluate the three runs 0.25  

4. Set new boundaries 0.25  

4.1 Perform one run  1 

4.2 Evaluate the new run   

5. Rank the regions by sensitivity - - 

6. Run automated HM tool 1 20 

 Total Time  4 23 

Table 1: Steps of HM workflow 

Clustering (SOM) 
After getting familiar with all parameters, using various 

options of cross plots, a selection of these parameters might be 
used to create reservoir regions of similar behavior. 

A common way to history match numerical simulation 
models is, to multiply the value of a parameter (e.g. 
permeability) with a certain value. It is clear, that the 
multiplier cannot be the same number for each grid block. 
Therefore, the engineer defines regions, where he thinks the 
same multiplier would be suitable to improve the match. The 
selection of these regions might be done in alliance with the 
geological model. The geological model was definitely built 
by distinguishing different lithofacies types, which have been 
generated in the geological life of the reservoir. Therefore 
grouping grid blocks with a similar geological description 
sounds reasonable. 

One problem associated with this approach is, that the 
geological model is very often based on static geological 
information, but not directly related to hydraulic parameters 
(e.g. permeability is derived from a correlation with porosity 
after the creation of the geological model). 

Instead of grouping grid blocks based on geology, it is 
proposed to generate regions of similar behavior based on all 
available information. This includes also model parameters 
from the initialization, like initial pressure and saturation. If 
pressures are recorded over time and reliable pressure maps 
can be created, also this information can flow into the 
clustering algorithm and influence the creation of regions. 

The advantage of this approach is its simplicity. As the self 
organizing map (SOM) is a special kind of neural network 
with a self-learning approach; no expert knowledge is required 
to use this technology. The only decision, which the user has 
to make, is how many regions he wants to create. 

 
Figure 4: Example of Automatic Creation of Regions 

Figure 4 is an example for clustering; each color represents 
a region. The total number of regions is ten. This number 
might seem to be too low, but it is better to start with a course 
and simple creation of regions, than with the most complicated 
to think of. Later during the history match – at any point of 
time - the engineer can come back and increase the number of 
regions. Of course, he has also to modify all steps of the 
workflow, which are successors of this step. 

If the clustering is based on geologic parameters, the 
regions strongly correlate with the geological description. 
Including permeabilities, water saturations (initial and critical) 
as well as initial pressure a good description of hydraulic flow 
units (HFU) can be achieved. In addition, spatial discretization 
can be taken into account (e.g. DZ). Depending on the 
importance of the parameter, its influence can be controlled 
using a weight factor. This factor is normalized between 0 and 
1. The parameter gets the highest weight, if the factor is one. 
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He has no influence on the clustering, if the weight factor is 
set to 0. 

Create Regions 
After the creation of the SOM and the definition of the 

number of regions to use, the SOM is using Ward’s 
Hierarchical Clustering method to define which grid block 
belongs to which region. This information is exported in a 
format, which the simulator can read. The region information 
can be used as describer for FIPNUM, SATNUM or any other 
region parameter in the simulator. 

The values of a certain grid block parameter can be 
modified using a multiplier, which is constant for each region. 
In this way, grid block properties can be changed on a regional 
base respecting the natural occurrence and distribution of this 
parameter. It is also possible to write out the modified 
parameter values per grid block and include them in the 
simulation run. 

Modify Permeability 
For the pressure history match in the sector model, the XY 

permeability has been used as modification parameter. The 
SOM has clustered all available grid blocks according to the 
available grid block properties. As the input parameters for the 
SOM also include porosity, a quick quality control of the 
porosity - permeability parameter dependency can be done by 
cross-plotting the parameter versus each other. 

 
Figure 5: Cross-Plot of Porosity versus Permeability 

Figure 5 shows an example of the cross-plot. Each data 
point represents a grid block. The color of the points is equal 
to its region affiliation. It is clear to see, that different regions 
follow different trends. Some of them have a clear linear semi-
log character (e.g. magenta region). Some have a more fuzzy 
description (e.g. orange region). 

When the permeability of one region is changed by a 
multiplier, all grid blocks belonging to this region are shifted 
vertically on the cross-plot. This is possible only in a limited 
data range; otherwise, the correlation with the porosity is 
disturbed too much. 

To enlarge the possible data range, the porosity could be 
tied to the permeability through a linear semi-log function. In 
this case, the natural dependencies of porosity and 
permeabilities are preserved during the history match. Any 
changes in the pore volume of these regions should of course 
result also in a change in the pore-volume of the other regions, 
so that in total the original pore volume is preserved. 

Weighted RMS Factor 
Problem Statement 

When the setup of the simulation model is finished and 
first model has been executed, the deviation of the model 
behavior from reality has to be established. Usually engineers 
compare the calculated output to parameters measured during 
the field production history. 

One way to describe the deviation in form of an equation is 
the calculation of the root mean square (RMS) error. The Root 
Mean Square (RMS) error represents the difference between 
the measured points and the calculated points of a parameter.  

The RMS-error (RMSE) is given by: 

 
Where x is the difference of the calculated to the measured 

value of a point, n is the number of points in the sample. 
Many post-processing simulation tools use the RMS error 

to quantify the quality of the history match. In most cases, the 
total RMS error is used to do that. It is also possible, that the 
RMS error per well is displayed. Some tools allow picking so 
called ‘match points’ and calculate the RMS error of these 
points. Nevertheless, all of the methods described above show 
a value, which cannot be directly related to the changes made 
to adjust the simulation model.  

Usually, the modifications, which are performed by the 
engineer to increase the match quality, are based on geological 
rock properties like permeability etc. These modifications 
should be done in a way, so that the geological description is 
not destroyed. Therefore the possibility of using rock-regions 
has been introduced and become a standard way to describe 
rock properties in simulation models. The quality of the match 
is then measured by the impact of changes in rock-regions on 
the dynamic behavior of the wells (e.g. pressure, GOR or 
water cut). As each well is very likely influenced by more than 
one rock-region, the analyzed well performance does not 
relate to a single change of the input parameters. It represents 
the mixture of all changes, which are performed at the same 
step, i.e. before launching a new simulation run. This leads to 
the conclusion, that only one parameter of one rock-region 
should be changed at a time. Obeying this rule, it would take a 
high number of simulation runs to be able to match a 
simulation model. 

Assumptions 
This study lead to the development of a new approach to 

overcome the limitations described above. If it is possible to 
directly quantify the impact of an input change to the output 
result, many model modifications can be performed 
simultaneously. The need to run a new simulation for each 
modification vanishes. 
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The solution proposed in this study is simple to apply and 
therefore is bound to some basic assumptions, which are 
explained in the following. This approach assumes,  

• that the geology of the initial model is correct 
• the description of rock parameters is consistent within 

each lithofacies 
• the geological model and the population of the rock 

parameters is not destroyed during the up scaling 
process 

Many efforts to automate history matching allow the 
change of permeability and porosity in a way, so that the 
whole geological description of the model is changed (e.g. in a 
fluvial environment the paths of the channels). This approach 
relies on the work of geologists. It is assumed that the 
reservoir description is correct, within a limited range of 
uncertainty. 

A difficult task is the population of the reservoir model 
with parameters which cannot be directly measured. One 
example is the permeability distribution. Usually, permeability 
is established from core laboratory measurements and then 
correlated to porosity. Naturally, each lithofacies type has a 
different dependency of porosity and permeability. This 
approach assumes that this dependency has been established in 
the best possible manner and it should not be changed during 
the history matching process. 

Furthermore, it is assumed, that the upscaling process has 
not changed the above described dependency of porosity and 
permeability – or more generally spoken – any logical 
dependency of parameters, which are needed to describe the 
static and dynamic behavior of the reservoir. 

Region RMS 
The solution proposed here is to calculate a RMS error 

based on regions. It means that the direct impact of a 
parameter change of a region can be compared to the quality 
of the match in that region. 

To be able to do that, it is needed to split up the RMS error 
per well into the fractions, which are contributed by each 
individual region. Each region, in which a well is perforated, 
contributes in a different way to the well behavior. As the well 
behavior is mainly driven by its production, it is also clear, 
that the importance of a region in the well is depending on the 
product of permeability and thickness (kh). The higher the kh 
of a region in the perforated part of a well is, the higher its 
contribution to production will be. 

This principle is used to split up the well RMS error into 
an error for each region in which the well is perforated. 
Therefore the fraction of the region kh compared to the total 
kh of the perforated section of a well is determined. This 
fraction is called ‘region weight’ and calculated for each well. 
The region weight is then multiplied with the well RMS-error 
to obtain the RMS-error contribution of a region to the well. 
Now the region RMS-errors of all wells can be summed up to 
one value per region. In this way, the direct impact of a change 
in the region input parameter can be quantified directly. 

This is a very simple principle, which leads to a clear 
improvement of the match quality and the number of runs 
needed to achieve the match. 

Unfortunately, some facts complicate the application of this 
approach. The region weight is not constant over time. 
Completion changes are also changing the importance of 
regions during the live of a well. E.g. it is common practice to 
shut-in deeper zones after water-breakthrough. These zones 
might have a high kh and therefore a high influence on the 
well behavior and the RMS-error. When such a zone is shut-
in, the contribution to the calculation of the weights drops to 
zero. This example demonstrates that it is necessary to 
calculate time-dependent weights and apply them during the 
calculation of the RMS error. 
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Figure 6: Example of Error Contribution of Well-2B 

Figure 6 shows an example of the error contribution of all 
penetrated regions. The difference, between the measured 
water cut (blue curve) and the simulated watercut (brown 
curve) can be split and allocated to each region, which is 
penetrated by the well. This allows ranking the regions 
according to their impact on the match quality. In this 
example, the highest error contribution comes from region 43; 
i.e. that this regions is responsible for more than 50% of the 
error. It is clear, that the engineer will first concentrate on 
region 43 to improve the history match. Region 5 and region 
30 are together responsible for 34% of the error. If the 
engineer manages to estimate the correct values for the 
modified input parameter for only these three regions, the 
history match of this well can be improved by 85%. 

Of course, other wells might increase their RMS error, 
when these three regions are manipulated. Therefore, the RMS 
error of each region is also calculated and used as objective 
function; i.e. the overall quality of the history match shall be 
improved, not just one well. The match quality of Well-2B 
will be less than the theoretical improvement of 85%, but still 
show a satisfactory improvement. 

Results 
Pressure Match Case 

The first example model contains approximately 180 wells. 
The difficulty of the history lies in the presence of a tar zone at 
one of the flanks of the reservoir. The tar zone has been 
modeled as a low permeability area. To achieve a pressure 
match, the horizontal permeability of the reservoir is modified 
using multipliers. 

The parameters permeability (PERMXY, PERMZ), initial 
pressure and saturation (Pini, Sw), porosity (PORO), and the 
block thickness (DZ) of the initial are used to create 14 
regions. The Self Organizing Map (SOM) has clustered all 
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simulation grid blocks with similar parameter values into 
regions. 

These regions have been used to modify the permeabilities 
in horizontal direction. For each region, the minimum and 
maximum permeability multipliers have been defined. In the 
first level, the minimum has been set to 0.5 and the maximum 
to 2. Two additional runs have been calculated and the RMS 
error of each region has been calculated. Based on these 
results, new multipliers have been defined. Some of the region 
permeability multipliers did not change; some have been 
increased to a maximum of 5. 
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Figure 7: Pressure Match of Well-1A 

Figure 7 shows the sensitivity of all six runs, which have 
been performed in this model, for one well. It is clear to see 
the improvement. In this case, the well pressure is already 
matched. If not, this quick sensitivity analysis can reduce the 
search space (i.e. the starting constraints) for the automated 
history matching tool, which could perform the fine tuning.  

From the sensitivity analysis, the importance of the 
individual regions on the match performance can be derived. 
The difference of the RMS-Errors of the individual runs can 
be used to rank the regions according to their sensitivity. The 
result of the ranking can be seen in Figure 8. 
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Figure 8: Pressure Match of Well-1A 

One of the strong advantages of this approach is that it 
does not destroy the geological structure of the model. This 
can be seen in Figure 9. In the left picture, the initial 
permeability distribution in a small part of the model is shown. 
After the pressure matching workflow, leading to the results 
presented here, the permeability distribution did not change in 
shape, but in the magnitude in some of the areas. Low 
permeability areas did not change much, but in some of the 

higher permeable areas a clear increase of permeability can be 
observed. 

     
Figure 9: Comparison of Initial Model (left) and Final Model (right) 

 
Watercut Match Case 

A second model is chosen to demonstrate the new 
approach for improving the water cut match quality. The 
model shows an excellent pressure match, but needs some 
refinement in modeling the second phase fluid flow.  

The same procedure as in the previous study was applied. 
The initial run parameters were used to train a SOM. The 
simulation grid blocks have been clustered into 48 . 

As already illustrated in the description of the workflow, 
the first level modification is performed using the minimum 
and maximum parameter multipliers for all regions 
simultaneously. After the second iteration of the workflow, it 
is easy for the engineer to pick the results and compose a new 
run. Figure 10 shows the difference of the solutions on the 
well 3C. The grey area marks the sensitivity of the water cut 
when all regions are multiplied with the minimum and the 
maximum multiplier (in this case for the krw endpoint). The 
green points describe the solution which is obtained from a 
composition of the best multipliers of all regions. It is clear to 
see how superior this run is compared to the others. 
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Figure 10: Result of Sensitivity Analysis for Well-3C  

Conclusions 
This paper introduces a new approach for assisted history 

matching. The engineer is able to define the regions and the 
magnitude of necessary modifications using only a small 
amount of simulation runs. Thus the search space is reduced 
tremendously, so that any automated history tool will 
converge fast to an accurate solution. 

The SOM is able to cluster grid blocks of similar behavior 
using geological, as well as hydraulic (static and dynamic) 
information. The regions, which are built by the SOM are a 
critical and missing step in many history matching workflows. 
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By calculating a region RMS error, the changes in the 
input can be directly correlated to the resulting increase or 
decrease of the match quality in this region. Contradictory 
effects when using multiple modifications in the same 
simulation run vanish. 

The overall match error can now be regarded in two ways. 
A RMS error per region is created, which allows increasing 
the match quality on regional bases. The information about the 
error contribution of each region on each well gives the 
possibility to better understand the influence factors which 
lead to an improvement of the match performance on well 
level.  

The error function can be described more precisely. 
Therefore the match converges closer towards an unique 
solution. By maintaining the geological definition through the 
whole history matching process, many scenarios, which would 
have been created by geo-statistics can be disregarded in this 
way. 

The approach is not limited in size. It has been applied to 
multi-million block models with more than 400 wells. 
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