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Abstract 
Smart fields can provide enhanced oil recovery through the 
combined use of optimization and data assimilation. In this 
paper, we focus on the dynamic optimization of injection and 
production rates during waterflooding. In particular, we use 
optimal control theory in order to find an optimal well 
management strategy over the life of the reservoir that 
maximizes an objective function (e.g. recovery or net present 
value). Optimal control requires the determination of a 
potentially large number of (groups of) well rates for a 
potentially large number of time periods. However, the 
optimal number of well groups and time steps is not known 
a-priori. Moreover, taking these numbers too large slows down 
the optimization process and increases the chance of achieving 
a sub-optimal solution. We investigated the use of multi-scale 
regularization methods to achieve grouping of the control 
settings of the wells in both space and time. Starting out with a 
very coarse grouping, the resolution is subsequently refined 
during the optimization. The regularization is adaptive in that 
the multi-scale parameterization is chosen based on the 
gradients of the objective function. Results for the numerical 
examples studied indicate that the regularization may lead to 
significantly different optimum strategies, but may result in a 
similar cumulative oil production.  
 
Introduction 

We consider the secondary recovery phase of a 
heterogeneous oil reservoir, where water is injected into the 
reservoir for pressure maintenance and sweep improvement. 
We consider a scenario with multiple injectors and multiple 
producers of which the well rates can be controlled 
individually. Ideally, the injected water will displace the 
remaining oil in the reservoir on its way from the injection 
wells to the production wells. Rock heterogeneities will, 
however, influence the path of the injected water. The water 
will mainly flow in the high permeability channels, which 

causes only part of the oil to be produced. Recently, smart 
fields concepts have been proposed as a means to improve 
control over the water front through detailed adjustments of 
the injection and production rates in time using a combination 
of model-based flooding optimization and model updating1,2. 
For the optimization part these “closed-loop” reservoir 
management strategies rely on optimal control theory, which 
has been proposed before as a flooding optimization method 
by various authors3-7. However, optimal control is 
computationally expensive, and detailed management of every 
individual well of a smart field at every moment in time is 
economically and technically demanding. Moreover, there 
may not be enough information in the system to determine the 
optimal production strategy uniquely. Hence, we seek to 
develop management strategies with a restricted number of 
degrees of freedom, which at the same time maintain the 
advantages of this new technology.  

In this paper, multiscale estimation techniques are utilized 
to attempt to find the optimal well management level. These 
are hierarchical regularization methods where the number of 
degrees of freedom in the estimation is gradually increased as 
the optimization proceeds. Multi-scale methods were first 
applied for solving partial differential equations to speed up 
convergence8,9. Later, through the development of wavelets, 
multi-scale approaches have also widely been used within 
inverse problems10-13. 

 
Theory 
Optimal control 

We consider the problem of maximizing the net present 
value (NPV) of the cumulative oil production over a fixed 
time horizon,  

( )
1

max ,
TN

n n n

n
J J

=

= ∑ x u , .................................................. (1) 

subject to the dynamic constraint  

( )1 0
0

n n n n+, , = , =g x x u 0 x x . ........................................ (2) 

Here, the dynamic system (2) describes a heterogeneous, two-
phase (oil-water) reservoir with smart wells6. Based on a 
conventional, finite difference approximation, it is given as a 
discrete-time dynamic model, where M∈x �  denotes the state 
variables with elements corresponding to oil pressures and 
water saturations in all grid blocks at all times, and N∈u �  is 
the control variable vector, with elements denoting the settings 
of the different wells at all times. The parameter n represents 
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the discrete time. The dynamic system gives the relation 
between the state variables x and the control variables u. 
Hence, Eq. (2) must be fulfilled for all admissible optimal 
control trajectories. This constrained optimal control problem 
is solved by forming the Lagrangian,  

( ) ( ) ( )
1 1

1

0 0

T TN N Tn n n n n n n n n

n n
L L J

− −
+

= =

= = , + , ,∑ ∑ x u λ g x x u . ..... (3) 

Here the dynamic system (2) is formally included as a 
constraint by adding it to the objective function (1) with the 
aid of Lagrange multipliers λ . For more details of this optimal 
control problem, we refer to Brouwer and Jansen6. The 
necessary conditions for an optimal solution are derived by 
computing the first order variation of L; confer, for 
example14,15. The resulting first order optimality conditions are 
given by: 
the state equation,  

( )1 0
0

n n n+, , = , =g x x u 0 x x , .......................................... (4) 

the adjoint equation,  

( )
11 1

1( )
n n n nTn n T
n n n n

J J
−− −

−⎡ ⎤ ⎛ ⎞∂ ∂ ∂ ∂
= − − − ⎜ ⎟⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦ ⎝ ⎠

g gλ λ
x x x x

, ........... (5) 

and the optimality equation,  

( )
n n nTn
n n n

L J∂ ∂ ∂
= +

∂ ∂ ∂
gλ

u u u
. ................................................. (6) 

Solving the constrained optimization problem requires 
repetiton of the following steps until the optimal u is reached: 
 
1) Numerical simulation of the dynamic system (2), over the 

time interval [0 ]TN , with the initial choice of u. 
2) Evaluation of the objective function (1).  
3) Backward numerical simulation of the adjoint Eq. (5), 

starting from the terminal condition 0TNλ = . 
4) Computation of the gradients L∂ ∂u , 

where 1 T
TNL L L⎡ ⎤= ⎣ ⎦L .  

5) Computation of an improved control vector u. 
 
In the following, the steps (1-5) will be referred to as a cycle. 
Convergence to the optimum is assumed if the objective 
function value hardly increases for a number of subsequent 
cycles. Because the objective functions in flooding 
optimization are generally non-convex, the convergence to the 
global optimum is not guaranteed. However, a local optimum 
may often represent a significant improvement over the initial 
control strategy3-7. 

 
Control variable estimation 

A steepest ascent method is applied for optimizing the 
control variable. In the steepest ascent method, u is updated 
according to the following rule: 

( ) ( )1

T
T T

k k k
k

Lε+

⎛ ⎞∂
= + ⎜ ⎟∂⎝ ⎠

u u
u

. .......................................... (7) 

Here, kε  is the weighting factor at cycle k. The value of kε  is 
determined empirically, following a procedure as described in 
Ray16. An additional restriction on the change in the controls is 
imposed by not allowing L to change by more than a certain 
fraction γ  per cycle. The maximum allowable kLΔ , is 
increased for each subsequent cycle k according to the relation  

kL kγΔ = , ....................................................................... (8) 

up to some preset maximum maxLΔ , with an associated 
weighting factor, maxε . Because the optimization of u is 
gradient based, we may compute a local optimum where the 
result depends on the initial u. Further, there may not be 
enough information in the optimal control problem to 
determine the individual well settings uniquely, so that 
different values of u may produce the same result. Hence, we 
seek to regularize this problem by reducing the solution space 
to get a better posed problem. Decomposition of an 
optimization problem by scale is known to facilitate the 
convergence of iterative ascent techniques to the global 
solution, particular in the presence of multiple local minima13  

The dimension of u is determined by the total number of 
wells times the number of time steps in the numerical 
application, as each well in principle is allowed to be adjusted 
at every time step. Well settings that are altered rapidly in both 
space and time may give oscillations in the production and 
injection rates, hence, a more restricted representation of u 
may be beneficial also in order to get a more stable production 
profile. Multiscale techniques enable a restricted 
representation of u, where initially one starts out with a very 
coarse representation, but as the optimization proceeds and 
one hopefully approaches the right solution, the resolution is 
gradually increased.  

 
Multiscale parameterization 

A restricted representation of u is achieved by grouping 
the fine-scale elements of u both in space and time. Hence, 
instead of adjusting each well individually, multiple wells are 
grouped and treated as one. Further, the well settings are held 
constant over time as adjustments are allowed only at a 
restricted number of time steps. Mathematically u can be 
represented by the sum,  

( )
( )

( )
1

N k

i i
i

k v k
=

, = ,∑u y φ y . ................................................. (9) 

Here, y specifies the coordinates (in space and time) of the 
fine-scale elements of u and ( )N k  gives the number of 
coarse-scale parameters vi at cycle k. The vectors 

( ){ } ( )
1

N k
i i

k
=

,φ y  form a set of orthogonal basis functions with 

elements ( )j
i kϕ ,y  that can be represented as,  

( ) 1 if ;
0 otherwise

k
j i

i
C

kϕ
⎧ ∈

, = ⎨
.⎩

y
y .......................................... (10) 

Here 1 : ( )j N i=  denotes the number of fine-scale elements, 
and k

iC  signifies the wells and the different time steps covered 
by the ith coarse-scale parameter at cycle k. The coarse-scale 
parameters vi can be interpreted as the elements of a reduced-
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order control vector v. Eq. (9) may therefore also be expressed 
as =u Φv  where the columns of matrix Φ  are the basis 

functions ( ){ } ( )
1

N k
i i

k
=

,φ y . 
The parameterization of u is hierarchical, where the 

number of parameters is increased by a fixed factor at each 
refinement. The dimension of v  will be given by the rule,  

/( ) ( ) ( ) (2 ) (2 )k k a

t sN k N k N k ceil ceil= + = + . In order to 
balance the number of degrees of freedom in space and time, 
we set the parameter /T sa N N= . Among the wells, the 
refinements are done successively along the x-direction and y-
direction. Initially, u is set to be constant over all production 
wells and all injection wells at all time steps. Hence, u will be 
represented by two parameter values, one for the production 
wells and one for the injection wells, i.e. v is a control vector 
with just two elements. After these values are optimized the 
parameterization of u is refined for the next cycle. The new 
parameters are then again optimized, before another 
refinement step is conducted, giving a successively finer 
resolution of u. The parameter refinement followed by 
optimization is repeated for each cycle until convergence is 
reached. In this application, u is refined at each cycle. Hence, 
the control variable is not optimized to reach an optimum 
between each refinement. With this approach we may reduce 
the risk of driving the optimization into a local minimum 
before further refinements are conducted. Furthermore, a 
reduction in the CPU time is achieved, since driving the 
optimization into an optimum at each scale would be  
computationally demanding (See e.g. Sun and Yeh17 and Tsai 
and Yeh18). In order to update the coarse-scale parameters by 
the steepest ascent method, the associated coarse-scale 
gradients are needed. These may easily be derived from the 
fine-scale gradients, as is shown in the next section, see also 
Yoon et al.13.  
 
Gradient calculation at a coarse scale 

Let 1j js L u j … N= ∂ ∂ , = , ,  represent the sensitivity of 
the Lagrangian with respect to a change in an element ju  of u, 
denoted by juδ . The change in the Lagrangian, Lδ , due to 
fine-scale perturbations, juδ , can then be expressed in terms 
of the fine-scale sensitivities as follows:  

( ) ( )N k N i

j j
i j

L s uδ δ= ∑ ∑ . ....................................................... (11) 

The inner summation term can be expressed as  
( )N i

j j i i
j

s u s vδ δ=∑ , ............................................................ (12) 

where si is the sensitivity of L with respect to a change in the 
coarse-scale parameter, ivδ . The change in the individual 
fine-scale elements juδ , will equal ivδ . From Eq. (11), the 
coarse-scale sensitivity can therefore be expressed as  

( )N i

i j
j

s s= ∑ ....................................................................... (13) 

Hence, control variable gradients at various scales can be 
obtained simply by integrating (adding) the fine-scale 
gradients.  

A multiscale approach results in a rapid increase in the 
number of parameters. The zonation is also very rigid, with a 
homogenous representation of u where the same number of 
time steps and wells are covered by each parameter. A more 
efficient parameterization can be achieved by local refinement 
strategies. Here the number of parameters is increased only 
when it is feasible according to some predefined rule. 
Different methods have been developed to enable local 
refinement strategies, see e.g. Chavent and Bissel19 and Sun 
and Yeh20. Adaptive multi-scale estimation as developed by 
Grimstad et al.21 base the parameterization of u on a 
linearization of the model equations. With this method, the 
chosen parameterization will give the optimal refinement of 
first order. This method, however, requires the objective 
function to be quadratic with respect to the model equations. 
Ben Ameur et al.22 developed another method where the 
zonation of u is determined by refinement indicators based on 
information from the gradients of the objective function. Their 
approach was developed for the inverse problem of 
transmissivity estimation for two-dimensional groundwater 
flow. Lately, Cominelli et al. 23 applied a simplified version of 
this method on a field-scale history-matching problem for 
permeability estimation. This method may be applied also to 
our problem and provides a tool to reach an efficient 
parameterization for the control variables.  

 
Refinement indicators 

In this section, the rules governing the local 
parameterization of u are derived. Following Ben Ameur et 
al.22, the refinements at each cycle may be implemented as 
equality constraints in the optimal control problem. Consider 
the case where u is represented by one parameter, i.e. such that 
v = iv . We consider dividing this parameter into potentially 

two new parameters, i.e. such that 1 2 T

i iv v⎡ ⎤= ⎣ ⎦v . This may be 
achieved, either by a refinement among the wells or 
refinement in time. This tentative partitioning may be written 
as =Av b , where [ ]1 1 .= −A  Here s=b b  or t=b b  
determine the grouping in space (i.e. among the wells) or in 
time, respectively. The constraint =Av b  can be extended to 
represent an arbitrary number of tentative parameters, ( )N k . 
In this work, A has the general form  

1 1 0 0 0
0 0 1 1
0 0 0 0 1 1

0
0 0 1 1

− ⋅ ⋅ ⋅ ⋅⎡ ⎤
⎢ ⎥− ⋅ ⋅ ⋅ ⋅ ⋅⎢ ⎥
⎢ ⎥= ,− ⋅ ⋅ ⋅
⎢ ⎥

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅⎢ ⎥
⎢ ⎥⋅ ⋅ ⋅ ⋅ ⋅ −⎣ ⎦

A ...................... (14) 

where each row relates to one tentative cut, i.e. potential 
discontinuity in space or time. We start the refinement process 
with 1 2

i iv v=  (i.e. =b 0 ), after which we investigate the 
potential gain of allowing the new parameters to take on 
different values. Imposing =Av b  as an equality constraint to 
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the optimal control problem, we obtain the extended 
Lagrangian,  

( )TL L= + −μ b Av% ........................................................ (15) 

We note that the adjoint Eq. (5) is unaffected by this new 
constraint. However, the optimality equation (6) now reads,  

TL L∂ ∂
= − = .

∂ ∂
μ A 0

v v

%
....................................................... (16) 

In equality-constrained optimization, the multipliers have a 
useful interpretation. Define ( )V b  to be the value of L%  at an 
optimum,  

( ) ( )TV L= + −b μ b Av . ............................................... (17) 

Differentiating with respect to b, using the chain rule, we 
obtain 

( ) T TL d L dV
d d

∂ ∂⎛ ⎞′ = + − +⎜ ⎟∂ ∂⎝ ⎠
x vb μ A μ

x b u b
. .......................... (18) 

At an optimum the first and second term vanish, and Eq. (18) 
reduces to ( ) TV ′ =b μ . Thus, the multiplier vector μ may be 
interpreted as the sensitivity of the optimal Lagrangian to the 
perturbation b. That is the marginal value of allowing new 
degrees of freedom in the well management. From Eq. (7), we 
note that μ may be expressed by means of the gradients of L,  

TL∂
=

∂
μ A

v
. .................................................................... (19) 

For the example with one tentative cut, sb  or tb , the 
following rule applies at an optimum: 

1 2 0
i i i

L L L
v v v

∂ ∂ ∂
= + =

∂ ∂ ∂
. ..................................................... (20) 

Hence, the partitioning of iv  into 1
iv  and 2

iv , will have the 
following refinement indicator  

1 2i
i i

L L
v v

μ ∂ ∂
= = −

∂ ∂
. .......................................................... (21) 

The individual gradients of the new parameters may be 
interpreted as the marginal value of allowing to adjust them 
independently. From the solution of the adjoint Eq. (5) and the 
optimality condition (6), all the fine-scale gradients are 
available at every cycle. Hence, this method allows us to 
compare a high number of different cuts at virtually no cost. 
This gives a more flexible algorithm, with respect to reaching 
the optimal parameterization with a minimum number of 
parameters.  

In this application, we compare six equally spaced cuts in 
space and six equally spaced cuts in time for each parameter. 
We note that the ordering of the tentative cuts will have an 
impact on the final parameterization. This has not been a topic 
in this application. The two cuts associated with the largest 
refinement indicators are selected. If the selected cuts are 
parallel (i.e. both cuts are conducted either in time or space, 
respectively) the parameter is divided into three new 
parameters, if they are orthogonal the parameter is divided into 
four new parameters. The refinement indicators are required to 
exceed a predefined threshold value in order for the 

refinement to be conducted. Hence, each parameter may be 
divided into all from one to four new parameters. To maintain 
a restricted number of parameters, only one coarse-scale 
parameter is refined at each cycle. The refinement process 
consists of two main steps; 
1) For each coarse-scale parameter vi select the local best 

refinement candidate, { } ( )

1
ˆ

N il
I i l =

=v v , where ( ) [ ]0,4N i ∈  

based on refinement indicators, μi. 
2) Among the local best candidates, choose the 

parameterization that gives the greatest change in the 
Lagrangian, ( ) ( )ˆ ˆJ IL L I JΔ > Δ ∀ ≠v v% % .  
 

Refinement away from the optimum 
In this application, we consider a relatively 

computationally demanding forward problem, with a high 
number of parameters. Hence, it is important to restrict the 
number of forward calculations. Computing the optimum of 
the objective function value for all scales, would be very 
computationally demanding. Hence, refinement of v is 
conducted before the optimum is reached. Outside an 
optimum, however, the gradient of L%  will have a constant 
value, different from zero. Let us consider the example of one 
tentative cut in time or space, where initially, u is described by 
one parameter iv . Starting the refinement process, the 

gradients will have a constant value iL v c∂ ∂ =% . In terms of 
the tentative new parameters 1

iv  and 2
iv , the gradient reads  

1 2
i i i

L L L c
v v v

∂ ∂ ∂
= + =

∂ ∂ ∂

% % %
. ..................................................... (22) 

Hence, we may write l
i lL v c∂ ∂ =% , 1 2l = , , where the values 

of { }2

1l l
c

=
 reflect how far the different parameters are from the 

optimum. The refinement indicator outside the optimum now 
reads,  

1 21 2i
i i

L Lc c
v v

μ ∂ ∂
= − = − +

∂ ∂
. ............................................. (23) 

We note that for a given parameter, the refinement indicator is 
shifted by a constant value. In order to asses whether the 
gradients are valid as selection criteria away from an optimum 
we look at the physical interpretation of L∂ ∂v% . Given the 
general form of A (see Eq. (14)), we have the relation 

T r=AA I . By forming the right pseudo-inverse, we can write, 

( ) 1 1T T T
r

−
= =v A AA b A b . Hence, we get the expression 

1 T
rd d =v b A . Here, 2r = , but will in general reflect the 

number of new parameters in the refinement of each iv . By 
inserting for 2r =  and [1 1]T T= −A  into Eq. (18) and 

applying l T
i lL∂ ∂ =v c% , 1 2l = , , we obtain  

( ) ( )1 2
1
2

T TV ′ = − +b c c μ . ............................................. (24) 

Here, we have assumed TL∂ ∂ ≈b 0 . By inserting (23) into 
Eq. (24) we obtain,  
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( ) 1 2

1
2 i i

L LV
⎛ ⎞∂ ∂′ = −⎜ ⎟∂ ∂⎝ ⎠

b
v v

. ................................................. (25) 

Hence, the constant values 2
1{ }l lc =  vanish, and the sensitivity of 

the Lagrangian with respect to the perturbation b will still be a 
function of the resulting gradients. Refinements associated 
with large gradients of opposite sign will represent the greatest 
potential for increased objective function value. We note that 
the gradients will always have opposite signs for refinements 
at an optimum, whereas this will not always be the case here.  

 
Objective function 

The objective function to be maximized is the NPV of the 
cumulative oil production over all times,  

1

0

[(1 ) ]
(1 )

T

n

n n n nN
t w o w w

gb t
n

q t f r f r
J V

d

−

=

⎧ ⎫Δ − +⎪ ⎪= −⎨ ⎬
+⎪ ⎪⎩ ⎭

∑ . ..................... (26) 

Here, Vgb is the grid block volume [m3], ro is the oil revenue 
3[ ]$

m
, rw is the water cost 3[ ]$

m
, d is the discount rate 1[ ]year , t is 

the cumulative time [year], n
wf  is the water fraction [ ]−  and 

n
tq  is the total injection rate per unit volume 1[ ]s .  

 
Constraints on the controls 

In water flood optimization, there are additional constraints 
on the control variables apart from the ones that are imposed 
by the dynamic system. In this paper we considered one type 
of well operating constraints in which, the total water injection 
rate, injq , and the total liquid production rate, prodq , are 
controlled directly, i.e. a rate-constrained scenario. In an 
earlier publication we also considered a pressure-constrained 
scenario in which the well flowing pressures in the injector 
and producer wells are held fixed24.  

For rate-constrained optimization, the injection and 
production rates are controlled directly in each well 

1 1( ) ( ) ( ) ( )
inj prod

T
n n n n n

inj inj N prod prod Nq … q q … q⎡ ⎤= ⎣ ⎦u .............. (27) 

The total injection and production rate is set to be constant 
throughout the considered production period. That is, the 
control variable must fulfill the following constraint,  

1

( )
sN

max
s i

i

q q
=

=∑ ................................................................ (28) 

for { },s inj prod∈ . Hence, the optimal control strategy comes 
down to an optimal allocation of injection and production over 
the individual wells. The different wells are, therefore, defined 
to be favorable or unfavorable, depending on whether their 
production (injection) rates are to be increased or decreased. In 
this application, we apply the gradients to determine which 
group the individual wells belong to, where the wells 
associated with gradients above the mean are defined to be 
favorable and those with gradients below the mean to be 
unfavorable. The modified gradients in the rate-controlled case 
are, thus, given as  

1

1
( ) ( ) ( )

sNn mod n n

n n n
iss l s l s i

L L L
Nq q q

,

=

∂ ∂ ∂
= −

∂ ∂ ∂∑ .................................... (29) 

Examples 
Example 1 

Fig. 1 depicts a reservoir with 9 injectors and 8 producers. 
We considered both conventional vertical wells (single 
completions), each completed in all 7 layers, as well as dual 
completions. In the latter case the upper completion is in the 
upper 3 layers, and the lower completion is in the lower 4 
layers. The upper completions are numbered 1, 2, 3,…, while 
the lower completions are numbered 1b, 2b, 3b,….. The 
permeability field contains a number of high permeability 
channels, highlighted in Fig. 2. The porosity field was taken 
homogeneous at 0.2. The optimization was done for a fixed 
production period of 10 years, with balanced injection and 
production at a constant field rate of 9000 bbl/d. Further 
information on the field is given in Table 1. 

As initial guess for the control function, an equal and 
constant rate per well was chosen. For the single completion 
injectors and producers this amounts to 1000 bbl/day and 1125 
bbl/day respectively. For the double completion injectors and 
producers this amounts to 500 bbl/day and 612.5 bbl/day 
respectively. The objective was to maximize cumulative oil 
production. Because field injection and production rates are 
constant this is equivalent to minimizing cumulative water 
production. Optimization was done with an ordinary steepest 
ascent method (OSA), the ordinary multi-scale method (OM), 
and an adaptive multi-scale method by means of refinement 
indicators (RI).  

The optimum liquid injection and production rates found in 
the single completion case are shown in Fig. 3, Fig. 4, and 
Fig. 5. A comparison of the cumulative production figures is 
shown in Fig. 6. All methods result in an improvement with 
respect to the reference case with the largest improvement 
being obtained with the OSA method. The second highest 
cumulative oil production is obtained with the RI method. Fig. 
4 shows that in the optimum case injector 2 is shut in for the 
entire period, indicating that even with less wells compared to 
the reference case an improvement in cumulative oil 
production is possible. Costs for wells were, however, not 
considered in this study. The lowest improvement was 
obtained with the OM method, with poor convergence toward 
the optimum. If undesirable, the extreme well rates achieved 
for this method should be avoided by setting upper limits to 
the rate per well. 

The optimum liquid injection and production rates found 
with the dual completion wells are shown in Fig. 7, Fig. 8, and 
Fig. 9. Although the optimum injection and production rates 
vary widely with the method used, they all result in a quite 
similar cumulative oil production (Fig. 10). Fig. 11 shows that 
all optimized dual completion cases gave higher cumulative 
oil production than the optimized single completion cases, 
pointing at the added value of having enhanced control 
functionality in the wells.  

Fig. 12 shows the final saturation distribution in the 
reservoir. Sweep is particularly poor near the attic of the 
reservoir. Fig. 13 & Fig. 14 show that these areas are locally 
better swept in the optimum case, but also that a significant 
part of the oil near the attic of the reservoir is still not swept.   
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Example 2 
Fig. 15 depicts a reservoir consisting of 4 layers with with 

36 dually completed injectors and 25 dually completed 
producers. For each well one completion is in the upper two 
layers and the second completion in the lower two layers. The 
upper completions are odd numbered, and the corresponding 
lower completions are even numbered. Main reservoir 
properties are shown in Table 2. The optimization was again 
done for a fixed production period of 10 years, with balanced 
injection and production at a constant field rate of 47000 
bbl/d. As an initial control strategy all wells/completions were 
operated at the same rate of respectively 653 bbl/d for each 
injector completion, and 940 bbl/d for each producer 
completion. 

Fig. 16 shows the water saturation distribution at 3650 
days. Most of the reservoir is water saturated leaving little 
scope for optimization. The optimization for this example was 
done only with the OSA and the RI methods. The optimum 
liquid injection and production rates found are shown in Fig. 
17 and Fig. 18. Again the optimum injection production 
strategies vary considerably for both methods, with slightly 
higher ultimate recovery for the OSA method (Fig. 19). An 
important advantage of the RI derived solution is that wells 
rates only need to be managed at a restricted number of times 
during the production period. In the examples, the RI approach 
results in a well management strategy that provides almost the 
same amount of oil as the fine-scale solution. 
From comparing Fig. 3 & Fig. 4, Fig. 7 & Fig. 8, and Fig. 17 
& Fig. 18, it is seen that the computed optima for the RI cases 
give the solutions with the lowest well rates. This is 
advantageous since high flow rates in the producers may lead 
to for instance sand production or excess gas production in a 
reservoir close to the bubble point. For the injectors high rates 
may not be desirable because it may for instance lead to 
reservoir fracturing. High flow rates requirements will also 
make a well more expensive. Based on these considerations, 
out of two control policies giving the same end result, the one 
with the lowest requirements in terms of maximum rate and 
ease of implementation is to be preferred.  

 
Conclusion 
Numerical examples illustrated considerable gain from 
applying flooding optimization. By allowing for a detailed 
well management (grouping of well controls in time and 
space) the scope of increased oil recovery is considerable. We 
compared different approaches to derive the optimal injection 
and production strategy over the life of the field. In the 
ordinary steepest ascent approach, each individual well is 
controlled near-continuously in time. In multi-scale 
optimization, the degree of freedom in the well management is 
found as a part of the solution strategy, resulting in grouping 
of the wells, and less frequent control. By applying refinement 
indicators to determine the grouping of the wells, adaptive 
multi-scale estimation was enabled. In the method of 
refinement indicators, we obtained solutions with nearly the 
same total oil recovery as in the ordinary steepest ascent 
approach. However, this was achieved with a more restricted 
well management strategy. We also found that this multi-scale 
solution gave well rates more easily attainable than those 
found with the ordinary steepest ascent approach. 

Nomenclature 
 
 A = matrix 
 b = vector of grouping parameters 
 c = parameter, Mt, $s 
 C = set of control variables, - 
 d = discount rate, 1/t, 1/a 
 f = water fraction, - 
 g = vector function 
 I = unit matrix 
 J = objective function (cost function), M, $ 
 k = refinement cycle counter, - 
 L = Lagrangian, M, $ 
 n = time step, - 
 NT = final time step, - 
 q = flow rate per unit volume, 1/t, 1/s 
 r = number of refinements, - 
 ro = oil price per unit volume, M/L3, $/m3 
 rw = water costs per unit volume, M/L3, $/m3 
 s = sensitivity vector 
 t = time, t, a 
 u = control vector, - 
 v = reduced order control vector, - 
 V = optimal value of L, M, $ 
 x = state vector 
 y = coordinate vector 
  
 γ = restriction on control change, - 
 ε = weight factor, - 
 ϕ = basis function 
 Φ = transformation matrix 
 λ = vector of Lagrange multipliers, - 
 μ = vector of refinement indicators, - 
 
Subscripts 
 gb = grid block 
 w = water 
 o = oil 
 prod = production 
 t = total 
 w = water 
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Metric Conversion Factors 
  
 bbl × 1.589 873 E–01 = m3 
 mD × 9.869 233 E–04 = μm2 
  



8  SPE 99728 

 
TABLE 1 – MODEL PROPERTIES EXAMPLE 1 

Variable Value Units 
Nr. of grid blocks 25200 (60 x 60 x 7 ) - 
Grid block size (xyz) 15 x 15 x 7 m 
Nr. of active grid blocks 18553 m 
Initial pressure 40e6 Pa 
Relative permeability model Corey - 
Residual oil saturations 0.10 - 
Endpoint relative permeability oil 1 - 
Corey exponent oil 2 - 
Connate water saturation 0.10 - 
Endpoint relative permeability water 1 - 
Corey exponent water 2 - 
Oil viscosity 2e-3 Pa s 
Oil compressibility 1e-10 1/Pa 
Oil density at reservoir conditions 800 kg/m3 
Water viscosity 1e-3 Pa s 
Water compressibility 1e-10 1/Pa 
Water density at reservoir condit. 1000 kg/m3 
Capillary pressure 0 Pa 
 
TABLE 2 – MODEL PROPERTIES EXAMPLE 2 

Variable Value Units 
Nr. of grid blocks 40804 (101 x 101 x 4 ) - 
Grid block size (xyz) 20 x 20 x 10 m 
Nr. of active grid blocks 40804 m 
Initial pressure 40e6 Pa 
Relative permeability model Corey - 
Residual oil saturations 0.10 - 
Endpoint relative permeability oil 1 - 
Corey exponent oil 2 - 
Connate water saturation 0.10 - 
Endpoint relative permeability water 1 - 
Corey exponent water 2 - 
Oil viscosity 0.75e-3 Pa s 
Oil compressibility 4.35e-10 1/Pa 
Oil density at reservoir conditions 846.5 kg/m3 
Water viscosity 0.31e-3 Pa s 
Water compressibility 4.35e-10 1/Pa 
Water density at reservoir condit. 1008.6 kg/m3 
Capillary pressure 0 Pa 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
Fig. 1: Example 1. Permeability field and well locations. 
 
 
 
 

 
Fig. 2: Example 1. Permeability range 1700-7000 mD. 
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Fig. 3: Optimum well rates obtained with OSA approach and 
single completions wells. Optimum obtained after 58 iterations. 
 

Time [day]

in
je

ct
or

 n
um

be
r

 

 

0 3650

2

4

6

8 500

1000

1500

2000

Time [day]

pr
od

uc
er

 n
um

be
r

 

 

0 3650

2

4

6

8
800

1000

1200

1400

1600

 
Fig. 4: Example 1. Optimum well rates obtained with RI method 
and single completions wells. Optimum obtained after 51 
iterations. 
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Fig. 5: Example 1. Optimum well rates obtained with OM approach 
and single completions wells. Optimum obtained after 32 
iterations. 
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Fig. 6: Comparison of cumulative production with single 
completion wells for reference case, and optimized cases using 
OSA, OM, and RI optimization approaches. 
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Fig. 7: Optimum well rates obtained with the OSA approach using 
dual completions. Optimum obtained after 43 iterations. 
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Fig. 8: Optimum well rates obtained with the RI approach using 
dual completions. Optimum obtained after 52 iterations. 
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Fig. 9: Optimum well rates obtained with the OM approach using 
dual completions. Optimum obtained after 27 iterations. 
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Fig. 10: Comparison of cumulative production with dual 
completion wells for reference case, and optimized cases using 
OSA, OM, and RI approaches. 
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Fig. 11: Example 1. Comparison of cumulative production for all 
cases.  

 
Fig. 12: Example 1. Final saturation for base case with single 
completions. Scale is from water saturation 0.1 (red) to 0.9 (blue). 
 

 
Fig. 13: Example 1. Final saturation in the single completion 
optimum case obtained with the OSA approach. Optimum 
obtained after 58 iterations. 
 

 
Fig. 14: Final saturation in the dual completions optimum case 
obtained with the RI approach. Optimum at 52 iterations. 
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Fig. 15: Example 2. Permeability field and well locations. 
 

 
Fig. 16: Example 2. Water saturation distribution at 3650 days for 
base case. Scale is from water saturation 0.1 (red) to 0.9 (blue). 
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Fig. 17: Example 2. Optimum liquid injection and production rates, 
obtained with the RI approach. 
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Fig. 18: Example 2. Optimum liquid injection and production rates, 
obtained with the OSA approach. 
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Fig. 19: Example 2. Cumulative production figures for base case, 
the OSA approach, and the RI approach. 
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