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Abstract
Technological advances have resulted in use of smart
wells, which are typically equipped with remotely operated
downhole chokes. We present an approach for controlling
these chokes so that the water flooding is optimized. The
optimization problem is done by maximizing either total
cumulative oil production or net present value.

The new methodology presented here avoids the limi-
tations related to using optimal control as no adjoint equa-
tions are needed and the model equations are treated as a
“black box”.

In the new approach the ensemble Kalman filter is used
as an optimization routine, and the methodology is com-
pared to the Partial Enumeration Method.

We demonstrate the methodologies on a simple syn-
thetic reservoir with five layers of different permeabili-
ties. The conclusions from this work are that the ensemble
Kalman filter approach is working robustly, and the results
are in agreement with, or superior to, the results obtained
with the Partial Enumeration Method and a reference so-
lution.

Introduction
Controlling downhole choke settings in smart wells for op-
timal water flooding represents a great challenge. Tradi-
tionally, the solution of this problem has been to apply
optimal control. Optimal control falls under the category
of gradient-based optimization, and does require the con-
struction and solution of an adjoint set of equations. This
approach was pursued in the work by Brouwer and Jansen1

and Virnovsky2. These papers also contain references to
other works within this area.

A disadvantage with the adjoint approach is that ex-
plicit knowledge of the model equations is necessary. In
addition, extensive programming is needed to implement
the equations. A remedy for the latter drawback was sug-
gested by Sarma et. al.3. Here an approach was introduced
which simplified the calculation of the adjoint equations.
However, the approach requires specific forms of the cost
function and a fully implicit forward model.

We introduce a new approach for solving the optimiza-
tion problem which is completely independent of the model
equations used. That is, the model is treated as a “black
box”. The approach is not gradient-based, so no imple-
mentation of adjoint equations is necessary. Here, the
methodology is used to optimize either net present value
(NPV), or total cumulative oil production. In addition,
for further validation, the methodology is compared to the
Partial Enumeration Method (see Wang4), which is a dis-
crete non-gradient based method.

The new approach introduced here is based on utilizing
the ensemble Kalman filter (see Evensen5). The ensemble
Kalman filter was originally developed for estimation of
state variables, but is in this work used as an optimization
routine. The ensemble Kalman filter updates a state vector
based on a set of measurements. In this new application,
the measurements are replaced by values representing an
upper limit for the possible cumulative oil production or
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NPV. The filter will then return choke settings which re-
sults in cumulative oil production, or NPV, as close as
possible to the predefined value.

Optimization of water flooding problems
In this section we give a brief introduction to the ensemble
Kalman filter. This is followed by a thorough description
of how the filter is used for controlling the downhole choke
settings in order to maximize the total cumulative oil pro-
duction or NPV. Thereafter we introduce the Partial Enu-
meration Method. Note that this method is only used to
maximize total cumulative oil production, and not NPV.
In both approaches, the reservoir simulator can be treated
as a “black box”, where no explicit knowledge of the model
equations is necessary.

The ensemble Kalman filter The ensemble Kalman fil-
ter has been applied in a variety of physical problems, in-
cluding both pure state estimation and combined state and
parameter estimation. A comprehensive descriptions of the
ensemble Kalman filter is found in the work by Evensen5.
Here we present an abridgment of the ensemble Kalman
filter theory necessary for our application. The ensemble
Kalman filter is a Monte Carlo approach where an ensem-
ble of model states is used to approximate the necessary
covariance matrices. This implies that no linearization of
the model function is necessary.

One iteration of the ensemble Kalman filter consists
of two steps, a forecast step (giving Uf ) and an analysis
step (giving Ua). Here U represents the state vector. The
forecast step is calculated by using the model function to
propagate the state vectors (ensemble) from timestep n−1
to timestep n

Un,i
f = f(Un−1,i

a ),

where i runs from 1 to the number of ensemble members
(N).

In the analysis step, the forecast state vectors Un
f are

updated by taking into account the mismatch between
measurements and the corresponding predictions from the
ensemble members. The state vectors are related to the
measured variables through the following equation

D = HU, (1)

where H is a matrix that selects measured variables from
the state vector. Note here that it may be necessary to
include the measured variables explicitly in the state vec-
tor, in order to get a linear relationship between U and D.
Further we assume that the true observation vector at time
n is given by Dn

o . The analyzed states are now computed
as

Un,i
a = Un,i

f + Kn(Dn,i
o − HUn,i

f ),

where Kn is called the Kalman gain matrix and is given
by

Kn = Pn
f HT (HPn

fHT )−1.

The matrix Pn
f is an approximation to the model error

covariance matrix, and can be written as

Pn
f = Ln

f (Ln
f )T ,

where Ln
f is given by

Ln
f =

1√
N − 1

[
(Un,1

f − Ûn
f ) ... (Un,N

f − Ûn
f )

]
.

Here ·̂ represents the ensemble mean.

Choke regulation using the ensemble Kalman filter
The ensemble Kalman filter corrects a state vector as mea-
surements become available. If the measurement error is
small, the result will honour the data correspondingly. The
idea behind the approach described here is to replace the
measurements by an upper limit for the total cumulative
oil production or NPV. This scalar value is then stored in
Do. The motivation for constructing this value, is to force
the ensemble Kalman filter to produce a solution that fits,
or lies as close as possible to the point stored in Do. With
this objective, it is clear that the measurement error should
be chosen small or zero.

In standard applications of the ensemble Kalman filter,
the state vector usually contains space distributed data at
a specific time. That approach is not pursued here, but in-
stead the state vector is constructed from different choke
settings (c) over a time interval, in addition to a calculated
value for total cumulative oil production or NPV

U =
[

m c
]T

, c = [c1 c2 ... cM ].

Here m represents the total cumulative oil production or
NPV, and corresponds to calculated measured values (D
in Eq. 1 ).

Further, the production interval is divided into a set of
M regulation intervals. Choke settings are constant within
each regulation interval. The choke settings within each
regulation interval are here vectors where each entry repre-
sents one choke. Note that in our case, these choke settings
are represented by discrete numbers.

An initial ensemble of choke settings, c0, is constructed
by choosing random integers with equal probability of get-
ting every allowed choke setting, and m0 is calculated by
running forward simulations using c0.

The updating procedure is as follows: First, data
(mj−1) and choke settings (cj−1) are collected. Then the
ensemble Kalman filter is run for each ensemble member
(i) to produce m̃j and c̃j . I.e.

Ũj,i = Uj−1,i + Kj−1(Dj−1
o − HUj−1,i).

This results in continuous choke settings, c̃j . These are
rounded to the closest allowed discrete setting to produce
cj . Finally, forward simulations using cj are run to pro-
duce mj . This ensures that there is consistency between



cj and mj . In addition, to accelerate the convergence,
the new ensemble (Uj) is modified by selecting the N best
ensemble members from Uj and Uj−1. We also replace du-
plicated ensemble members with random numbers drawn
in the same manner as for the initial ensemble.

The value stored in Dj−1
o is calculated by using the

known ensemble of total cumulative oil production or
NPV, mj−1, according to the formula

Dj−1
o = max(mj−1) + std(mj−1),

where ’std’ denotes the standard deviation.
Note the change in notation when compared to the

previous section. The vector Un,i
a is replaced by Ũj,i and

Un,i
f is replaced by Uj−1,i

In order to find the optimal choke settings (cj
max) at

a given iteration (j), the ensemble of state vectors are
searched to find the maximum total cumulative oil produc-
tion or NPV, and cj

max is defined to be the corresponding
choke values. Note that the superscript j here represents
iterations, and not timestep or ensemble member.

Formula for net present value As mentioned, the en-
semble Kalman filter is used to optimize either total cu-
mulative oil production or NPV. Here we introduce the
notation and formula for the NPV.

Let cumulative oil production be given by pop =
[pop

1 pop
2 ... pop

M ], where the time interval between the values
is Δt (measured in days). The value Δt is for simplicity
assumed constant. Similarly, let cumulative water produc-
tion be given by pwp = [pwp

1 pwp
2 ... pwp

M ] and cumulative
water injection by pwi = [pwi

1 pwi
2 ... pwi

M ]. The objective
function for the NPV is then given by

J =
M∑

k=1

roΔpop
k − rwpΔpwp

k − rwiΔpwi
k

(1 + b/100)k Δt
360

, (2)

where Δpop
k = pop

k − pop
k−1, and pop

0 ≡ 0. The quantities
Δpwp

k and Δpwi
k are defined similarly. Further, ro is the

benefit factor for oil production, and rwp and rwi are the
cost factors for water production and injection, respec-
tively. The interest rate (in percent) is given by b.

Choke regulation using Partial Enumeration
Method The Partial Enumeration Method (see Wang4)
consists of sequentially perturbations of choke settings. It
is quickly summarized by the following steps:

1. Iteration index k = 0.

2. Select choke j.

3. For choke j, do:

(a) Switch to one of the allowed settings.

(b) Run simulator for a given period of time.

(c) Repeat a-b for all allowed settings and choose
the setting that results in highest oil produc-
tion.

4. Repeat 2-3 for all chokes.

5. Increase k by 1.

6. Repeat 2-5 until convergence.

The steps are run to maximize the cumulative produc-
tion for the current time period, in contrast to the ensemble
Kalman filter which performs a global optimization. This
means that the choke settings for the first interval c1 are
computed by maximizing m1, then the choke settings for
the second interval are maximized, an so on. The algo-
rithm above is used to compute each of the choke settings
ci, i = 1...M . Note that mi here represents the cumulative
oil production corresponding to interval i.

The ensemble Kalman filter approach is compared to
the Partial Enumeration Method in order to validate the
performance. Note that there is a difference between how
the ensemble Kalman filter and the Partial Enumeration
Method are set up. The ensemble Kalman filter estimates
choke settings throughout the whole period in one iter-
ation. The Partial Enumeration Method estimates the
choke settings sequentially. I.e. choke settings for a given
interval are estimated and then fixed. The method then
proceeds to the next interval. This difference makes the
comparison not completely fair, as the objective function
is slightly different for the two methods.

Example
We consider an example with a simple synthetic reservoir.
The reservoir dimensions are 1020 m x 510 m horizontally
and 50 m vertically. The reservoir is divided into 30 x 3
x 20 grid blocks, with five horizontal layers with thickness
10 m. The layers have permeability (mD) 100, 1000, 50,
750 and 50 from top to bottom. The vertical permeability
between layers is 1% of the horizontal. There are two wells
penetrating the reservoir, one producer and one injector.
Both are located in the middle of the reservoir’s extension
in the y direction. In the x-direction, the producer is lo-
cated 153m away from the left end of the reservoir whereas
the injector is 867m away (i.e. both are 153m away from
a reservoir boundary). The producer has four inflow zones
and the injector has five injection zones (which gives a total
of nine chokes). The production chokes have three posi-
tions: open, half open, and closed. The injection chokes
have two positions: open and closed. In the forward sim-
ulator this is represented by the discrete values 1 (closed),
2 (half-open) and 3 (open) for the producer and 1 (closed)
and 2 (open) for the injector. Maximum allowed oil pro-
duction is 2500 scm/day. Further, minimum allowed bot-
tom hole pressure for producer is 215 bar, and maximum
allowed bottom hole pressure for injector is 285 bar. The



water injection is by voidage replacement (controlled by
reservoir fluid volumerate). Figure 1 shows the schematic
reservoir.

When NPV is optimized, the following economic pa-
rameters are used: ro = 50 $/bbl, rwp = 10 $/bbl and
rwi = 0 $/bbl. The interest rate b is set to 10%.

In this example we have used an ensemble size of 100,
and the number of iterations is 31 (j = 1, 2, ..., 31). Regula-
tion interval is 180 days, and number of regulation intervals
is 10 (M = 10, which gives a total production duration of
5 years).

Figure 2 shows the calculated maximum total cumu-
lative oil production versus iterations (left figure). The
green line represents the reference solution. The reference
solution is calculated by keeping all chokes open over the
entire production time. The figure also shows the calcu-
lated maximum NPV versus iterations (right figure). The
reference value is not included here as this value is very
low compared to the optimized NPV. The reason for this
is high cost due to water production, which again is a con-
sequence of keeping the chokes open all the time. We see
that the optimized values are increasing as a function of
iterations, for both approaches. The gain is 12 % and 15 %
respectively.

Figure 3 shows the choke settings for the ensemble
Kalman filter approaches and the Partial Enumeration ap-
proach. Chokes 1-4 represent the four chokes in the pro-
ducer, whilst the next five chokes represent the chokes in
the injector. The “Demo” choke (in the lower left cor-
ner of each figure) shows the color codes. The control of
choke 4 is standing out as very different for the NPV op-
timization compared to the other two approaches. In the
NPV optimization this choke, which is connected to a high
permeability zone, is kept closed all the time. The conse-
quence of this is reduced water production and reduced oil
production. This is also seen on subsequent figures.

Figure 4 shows the cumulative oil production and the
cumulative oil gain. The cumulative gain is the difference
between the cumulative oil production using the ensemble
Kalman filter approaches and the reference solution (solid
lines), and the difference between the cumulative oil pro-
duction using the Partial Enumeration Method and the
reference solution (dashed line). Optimization of cumula-
tive oil production using the ensemble Kalman filter ap-
proach shows the most profitable development as high val-
ues are obtained between 600 and 1800 days. It approaches
the same value as the Partial Enumeration Method. Op-
timization of NPV is not giving high values for the oil
production, as cost related to water production is making
the oil production unprofitable at an early stage.

Figure 5 shows the cumulative water production and
water cut. Here we see that optimization of NPV is giving
the decided lowest water production. Optimization of the
cumulative oil production using the ensemble Kalman filter

approach is also giving lower water production compared
to the Partial Enumeration Method.

Figure 6 shows the water and oil production rates. We
see that the water production rate when NPV is optimized
is some places close to zero. This is also seen for the oil
production rate.

Figure 7 shows the difference between the oil produc-
tion rate using the ensemble Kalman filter approaches and
the reference solution (solid lines), and the difference be-
tween the oil production rate using Partial Enumeration
Method and the reference solution (dashed line).

Figure 8 shows the cumulative water injection and the
water injection rate. Here we see the same trends as for
the cumulative water production. Lowest water injection
is obtained when NPV is optimized.

Figure 9 shows the water saturation after 1800 days (5
years). For each of the three figures we show the three lay-
ers in the y-direction. We see that almost identical results
are obtained when cumulative oil production is optimized
using the ensemble Kalman filter approach and the Partial
Enumeration Method, with the exception of a small pocket
of oil which is not recovered with the Partial Enumeration
Method. This pocket is seen at x = 15 and z = 9. Not
surprisingly, less oil is recovered when NPV is optimized.
We also see that far from all the oil is recovered from layer
one and layer five.

Table 1 shows some numerical results. We see that
the decided highest NPV value is obtained when the NPV
is optimized. The ensemble Kalman filter approach when
cumulative oil production is optimized is superior to the
Partial Enumeration Method when is comes to NPV. All
approaches are better than the reference solution. The
other numbers is a quantification of the results shown on
the figures.

Comparison of the approaches For this particular ex-
ample the Partial Enumeration Method used 440 Eclipse
simulations with duration 6 months. The Ensemble
Kalman filter method used 31 · 100 = 3100 Eclipse simula-
tions with duration 5 years. This means that the ensemble
Kalman filter is more time consuming, but is producing
better solutions. On the other hand, the Partial Enumer-
ation Method is using restart files, which makes the sim-
ulations somewhat slower. The number of forward simu-
lations will for the Partial Enumeration Method increase
rapidly when the number of chokes and allowed choke set-
tings increase. An advantage with the ensemble Kalman
filter approach is that it can easily be extended to handel
a variety of objective functions (cumulative oil production
and NPV in this example), and it can be extended to han-
dle continous choke settings.

Convergence criteria for the ensemble Kalman fil-
ter approach In this example we have simply used a fixed
number of iterations to obtain an optimized value for the



total cumulative oil production or NPV. As we can see
from Figure 2, the development of the optimized values
are at some places constant for a limited number of itera-
tions, before the values again are increasing. This implies
that it is difficult extract a convergence criteria based on
these values. It is also difficult to use the spread (standard
deviation) of the optimized values as convergence criteria,
as inspection of these values reveals that they are not nec-
essarily decreasing towards a small value. We have there-
fore, at this time, chosen to use the current approach with
a fixed number of iterations, but this is a topic suited for
further research.

Conclusions and further work
We have demonstrated a new approach for controlling
downhole chokes so that water flooding is optimized. The
methodology is based on utilizing the ensemble Kalman
filter. This new application is verified by comparing the
results to the Partial Enumeration Method. The ensemble
Kalman filter is used to optimize either total cumulative
oil production or NPV. The results reveals that the ap-
proach is producing better results compared to the Partial
Enumeration method. This is seen as more optimal oil pro-
duction and more optimal water production and injection.
The NPV values for the ensemble Kalman filter cases are
therefore higher than the NPV value for the Partial Enu-
meration approach. At the current stage, the ensemble
Kalman filter approach is however somewhat more time
consuming.

There are several topics suited for further research. It
remains some work to develop a good convergence criteria
for the ensemble Kalman filter approach. It is also pos-
sible that a more thorough investigation of the approach
opens for faster development towards a high value for the
optimized quantity. We have in this example not utilized
the reference solution in the optimization. This reference
solution could be included in the initial ensemble. We also
wish to investigate the effect of the ensemble size for the
optimized values. In addition, the approach is in this work
only applied to a simple synthetic example. The next step
is to apply the methodology to a large scale field example.
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Nomenclature
U = state vector
D = measurements
f = model function (reservoir simulator)
H = measurement matrix
K = Kalman gain matrix
P = covariance matrix for model uncertainty
L = left factor of covariance matrix
N = ensemble size
m = optimized value
c = choke settings
pop = cumulative oil production
pwp = cumulative water production
pwi = cumulative water injection
b = interest rate

Subscripts
f = forecast (a priori)
a = analyzed (a posteriori)
o = observation
M = number of regulation intervals
i = regulation interval
k = summation index

Superscripts
n = timestep index
i = ensemble member index
T = matrix transpose
j = iteration
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Figure 1: Schematic reservoir.
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Figure 2: Development of optimized value.



NPV ×106 (�) pop
M × 104 (scm) pwp

M × 104 (scm) pwi
M × 104 (scm)

Ref 118.4 162.3 672.5 881.0
EnKF-COP 240.1 171.3 476.6 696.2
EnKF-NPV 366.7 142.4 76.6 258.0

PEM 193.1 170.8 561.4 780.7

Table 1: The NPV, total cumulative oil production pop
M , total cumulative water production pwp

M and total cumulative water
injection pwi

M for the different runs.
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(b) Optimal choke settings for EnKF-NPV.
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(c) Optimal choke settings for PEM.

Figure 3: Choke settings for the different runs. Chokes 1-4 represent the four chokes in the producer, whilst the next five
chokes represent the chokes in the injector. The “Demo” choke shows the color codes.
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Figure 4: Cumulative oil production and cumulative gain. The cumulative gain is the difference between the cumulative oil
production using the ensemble Kalman filter approaches and the reference solution (solid lines), and the difference between
the cumulative oil production using the Partial Enumeration Method and the reference solution (dashed line).
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Figure 5: Cumulative water production and water cut.
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Figure 6: Water and oil production rates.
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Figure 7: Extra oil. This is the difference between the oil production rate using the ensemble Kalman filter approaches and
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the reference solution (dashed line).
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Figure 8: Cumulative water injection and water injection rate.
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(a) Water saturation for EnKF-COP after 1800 days.
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(b) Water saturation for EnKF-NPV after 1800 days.

10 20 30

2

4

6

8

10

12

14

16

18

20

x

z

First layer

10 20 30

2

4

6

8

10

12

14

16

18

20

x

z

Second layer

10 20 30

2

4

6

8

10

12

14

16

18

20

x

z

Third layer

(c) Water saturation for reference solution after 1800 days.
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(d) Water saturation for PEM after 1800 days.

Figure 9: Water saturation for the different runs. Minimum water saturation is 0.2 (dark red) and maximum water saturation
is 0.8 (dark blue).
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