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Abstract 
Reservoir simulation has become the industry standard for 
reservoir management. It is now used in all phases of field 
development in the oil and gas industry. The full field 
reservoir models that have become the major source of 
information and prediction for decision making are 
continuously updated and major fields now have several 
versions of their model with each new version being a major 
improvement over the previous one. The newer versions have 
the latest information (geologic, geophysical and petro-
physical measurements, interpretations and calculations based 
on new logs, seismic data, injection and productions, etc.) 
incorporated in them along with adjustments that usually are 
the result of single-well or multi-well history matching.  

 
A typical reservoir model consists of hundreds of thousands 
and in many cases millions of grid blocks. As the size of the 
reservoir models grow the time required for each run 
increases. Schemes such as grid computing and parallel 
processing helps to a certain degree but cannot close the gap 
that exists between simulation runs and real-time processing. 
On the other hand with the new push for smart fields (a.k.a. i-
fields) in the industry that is a natural growth of smart 
completions and smart wells, the need for being able to 
process information in real time becomes more pronounced. 
Surrogate Reservoir Models (SRMs) are the natural solution to 
address this necessity.  SRMs are prototypes of the full field 
models that can run in fractions of a second rather than in 
hours or days. They mimic the capabilities of a full field 
model with high accuracy.  These models can be developed 
regularly (as new versions of the full field models become 
available) off-line and can be put online for automatic history 
matching and real-time processing that can guide important 
decisions. SRMs can efficiently be used for real-time 

optimization, real-time decision making as well as analysis 
under uncertain conditions. 

 
This paper presents a unified approach for development of 
SRMs using the state-of-the-art in intelligent systems 
techniques. An example for developing an SRM for a giant oil 
field in the Middle East is presented and the results of the 
analysis using the SRM for this field is discussed. In this 
example application SRM is used in order to analyze the 
impact of the uncertainties associated with several input 
parameters into the full field model. 
 
Introduction 
Over the past several years computer simulation has made 
major advances in terms of scope and complexity. Today they 
can reach the levels of accuracy, which make it possible to 
play realistic scenarios of complex mechanical and geo-
physical processes. The success of computer simulation 
techniques is due to the development of efficient algorithms 
and solution methods for general partial differential equations 
(PDE), the advancement of modern computational fluid 
dynamic (CFD) and multi-physics simulation technologies, as 
well as due to the availability of increasingly capable 
hardware platforms, such as supercomputer facilities, and 
Beowulf clusters. 
 
Reservoir Simulation is now an industry standard. No serious 
alternative to the conventional reservoir simulation and 
modeling is in the horizon. It is a well understood technology 
that usually works well in the hand of experience modelers 
incorporating reasonably good geological, geophysical, and 
petro-physical interpretations and measurements with the 
reasonably sophisticated simulators that are currently available 
in the market. The reservoir models that are built for an 
average size field with tens and sometimes hundreds of wells 
tend to include very large number of grid blocks. As the 
number of reservoir layers or the thickness of the formations 
increase the number of cells included in the model approaches 
several millions. Technologies such as Local Grid 
Refinements1-2 have been developed to dampen the geometric 
increase of the number of grid blocks required for detail and 
focused simulation and modeling around the wellbore and 
locations in the reservoir where more detail is required, but the 
size of the models remains in the several millions of cells.  
 
As the size of the reservoir models grow the time required for 
each run increases. Schemes such as grid computing and 
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parallel processing helps to a certain degree but cannot close 
the large gap that exists between simulation runs and real-time 
processing. On the other hand with the new push for smart 
fields (a.k.a. i-fields) in our industry that is a natural growth of 
smart completion and smart wells, the need for being able to 
process information in real time becomes more pronounced. 
Surrogate Reservoir Models – SRMs are the natural solution 
to this necessity. In this article authors will introduce a detail 
process for successful development of SRMs. The potential 
pitfalls for such developments will also be discussed.  
 
First attempt in developing a surrogate model in the oil and 
gas industry was concentrated on developing a surrogate 
model for a hydraulic fracturing simulator. In 1999 
Mohaghegh and Popa3-4 developed a surrogate model that was 
able to accurately mimic the capabilities a hydraulic fracturing 
simulator called FracPro5. They used the surrogate model for 
real-time optimization of hydraulic fracture design of tight 
formations. If we define surrogate modeling in the context of 
model development that can replicate results of complete 
reservoir, hydraulic fracturing, and/or other comprehensive 
numerical simulators, then authors were unable to find other 
serious efforts that can be sited in the literature. Other attempts 
for surrogate model developments6-9 can be found in the 
literature that does not necessarily fit the definition that is 
presented in this paper. 
 
The next attempt in developing surrogate models (being 
discussed in this paper) was on a major oil field in the Middle 
East. In this research and development effort, a full filed 
reservoir model that included close to a million grid blocks 
and more than 165 horizontal wells was the target. During this 
study a Surrogate Reservoir Mode – SRM that was able to 
successfully mimic the behavior of the full field reservoir 
model was developed and validated. The SRM was then used 
for candidate well selection and analysis under uncertainty. 
The results were used for important decision making on the 
future of the field and optimum operation of the horizontal 
wells. 
 
One of the major issues that must be addressed as we approach 
the smart field era is the bottleneck that currently exists 
between high frequency data streams coming from the field 
through permanent downhole gauges and the major reservoir 
management tools, specifically reservoir models. While the 
data streams have the potential to provide data at a time scale 
of seconds, the reservoir simulators or the Full Field Models 
(FFM) run in time scales of several hours or even days, in 
some cases. The problem intensifies when we realize that in 
many cases in order to make reservoir management decisions, 
several FFFM runs must be made. 
 
A similar problem exists when one decides to use the FFM in 
order to perform uncertainty analysis. Due to the same 
problem that was mentioned above (length of time required for 
a single FFM run) uncertainty analysis becomes a painful and 
time consuming process. Most of the techniques used for 
uncertainly analysis call for development and analysis of 
several realizations. In order for the uncertainty analysis to be 
meaningful, the number of realizations must be statistically 

significant. As the number independent parameters involved in 
a problem increase, so does the number of realizations needed 
for statistical significancy. It can be argued that each grid 
block in a FFM represent a set of several independent 
variables. Given the high number of grid blocks in even a 
moderate size FFM, one can imagine that the number of 
realizations needed in order to have a statistically significant 
dataset will be relatively large. There have been many 
advances in the statistics and geostatistics that contribute to 
decreasing the number of realizations required for such 
analysis while keeping the integrity of the analysis intact. 
Nevertheless, even after all the approximations and techniques 
such as Latin Hyper Cube10 and Design Of Experiment11 that 
are used, the number of the FFM runs required for a 
reasonably accurate uncertainty analysis remains quite high.  
 
Surrogate Reservoir Models – SRMs play an important role in 
addressing problems such as those mentioned here. They 
provide the means for making hundreds and even thousands of 
FFM runs in matter of seconds. In the problem that is 
presented in this article we demonstrate a Monte Carlo 
simulation study for uncertainty analysis on several 
parameters that were making significant contribution in the 
outcome of the FFM. The Monte Carlo simulation used the 
FFM of a giant oil filed in the Middle East as its objective 
function. The Surrogate Reservoir Model that was built to 
represent this FFM was validated using a significant number 
of blind data and had proven to be quite accurate. During the 
uncertainty analysis using Monte Carlo simulation, the 
Surrogate Reservoir Models (essentially the FFM) was run 
5000 times in less than 10 seconds. 
 
Field of Dreams 
There is a famous phrase from a movie called “Field of 
Dreams” that says, “If we build it, they will come”. In that 
movie the main character was referring to building a baseball 
field and was hoping that once it was built, then the legends of 
baseball will show up to play in it. It seems that today the 
smart fields have become the “Field of Dreams” of the oil 
industry.  
 
Much effort has been concentrated on hardware, manily 
permanent downhole tools and gauges and the communication 
infrastructure that can capture and transmit high resolution 
data streams into offices where engineers and managers are 
located.  
 
This is the brain that is indeed a significant and essential 
component of the “Field of Dreams”. But in order to have a 
complete entity and have actual “intelligentce”, smart fileds 
need more than just brain (hardware). They need “mind” or 
enabling software. Many scientists around the world are 
currently working on this problem using different tools such as 
kalman filters12,13 and other techniques, we claim that in order 
to successfully address this complex issue intelligent systems 
must be a significant contributer to any serious effeorts. To 
realize the merit of this claim one needs to observe that not a 
single industry (from aerospace to automotive to household 
appliances) has been able to increase its products IQ 
(Intelligence Quotient) without significant use of intelligent 
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systems. Here the term intelligent system is referred to a series 
of techniques that include but are not limited to artificial 
neural networks14, genetic optimization15 and fuzzy logic16.  
 
This paper presents an example of developing such application 
that is considered to be an enabling technology for the smart 
fields. Here we describe the steps that need to be taken in 
development of a Surrogate Reservoir Model and present the 
results. 
 
The Full Field Model 
The Full Field Flow Model (FFFM) that was the target of this 
study is a reservoir simulation model build for a giant oil field 
in the Middle East. Figure 1 shows a cross section of the 
reservoir in order to demonstrate the complexity of this model. 
The FFM represented the formation that is indentified by 
XXX in Figure1. 
 

 
Figure 1. The crosssection of the reservoir that the Full Filed Flow 

Model is based on. 
 
There are more than 165 horizontal wells drilled in this field 
that are currently producing at a capped production rate. The 
field is certainly capapble of producing more but the cap is 
imposed for reservoir management purposes. 
 
Figure 2 shows an approximate top view of the field with 
approximate locations of the horizontal wells. As it is shown 
in Figure 1, this reservoir is multi-layered. Most of the wells 
are completed in one particular layer and layers above and 
below the layer in which the wells are completed contribute to 
the production.  
 
The operation in this filed includes water injection into some 
of the layers for pressure maintenance and sweep purposes. 
Gas injection is also taking place in some areas of the filed. 
The reservoir includes many major and minor faults (Figure 2) 
that have been detected by geo-scientists and are part of the 
earth model that has been used to build the FFM. Several rock 
types have been identified in this reservoir and have played an 
important role in developing the model. The Full Field Model 

has been developed using ECLIPSE17 and includes less than 
one million grid blocks. A single run of the version of the 
FFM used for this study took about 10 hours on a cluster of 
tweleve 3.2 Ghz Intel Xeon CPUs.  
 

 
Figure 2. Top view of the reservoir with approximate location of 

more than 165 horizontal wells. 
 

 
The Curse of Dimensionality 
The first step in developing a Surrogate Reservoir Model 
(SRM) is to identify the FFM that it is going to represent. The 
FFM include two sets of information that need to be 
represented in the SRM. These two sets of information are the 
static, earth model and the dynamic flow characteristics.  
 
To fulfill the objectives of this study it was decided to 
represent the static model only around the wellbore. 
Furthermore only horizontal wells in this field were being 
studied. After carefully studying the characteristics of the 
reservoir and its multi-layered nature, it was decided to 
represent the reservoir characteristics around the wellbore 
using five layers. This is shown in Figure 3 where there is a 
bottom layer representing the layers below the wellbore, the 
layer that includes the wellbore, and three distinct layers 
above the wellbore known as top layer I, that is immediately 
above the wellbore and layers II, and III that represent the rest 
of the layers in the reservoir. 
 
Furthermore, each layer is divided into eight equal sections. 
The size of each section is a function of well’s length and 
therefore may not be the same from well to well. Another 
schem that was tried included dividing the length of the 
horizontal well into three sections called heel, middle and toe. 
In cases where reasonable amount of production log is 
available, or when this technique is being used for single-well 
history matching, this scheme may prove to be more 
appropriate. 
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Table 1. List of parameters used in the SRM development on a 
per segment basis. 

 
Figure 3. Schematic diagram of the reservoir representation around 

horizontal wells. 
 
 
List of parameters that have been identified to be used in the 
SRM development from the static model are shown in Tables 
1 and 2. As it is shown in Figure 3 the model for the SRM 
includes 5 layers with 8 segments per layer adding up to a 
total of 40 segments per well. While data shown in Table 1 is 
collected on a “per-segment” basis, data in Table 2 need to be 
collected on a per well basis.  
 

Mid Depth Thickness
Relative Rock Ttype Porosity

Initial Water 
Saturations

Stylolite Intensity

Horizontal Permeability Vertical Permeability

Sw @ Reference Point So @ Reference Point

Capillary 
Pressure/Saturation 

Function

Pressure @ 
Reference Point

Parameters Used on a per segment 
basis

 
 
 
 
Now let’s try to calculate the number of parameters 
contributed by the static model that should be used during the 
SRM development. There are 12 parameters in Table 1 and 
one value per segment is needed from this table. That would 
add up to 480 parameters. Plus there are 16 parameters 
identified in Table 2 and we need one value for each well from 
this table.  
 
This makes the total number of parameters from the static 
model to add up to 496. To this number of course we have to 
add the dynamic parameters that will be identified and needed 
during the SRM development. It goes without saying that 496 
are too many parameters. Some may argue that SRMs arethe 
same as reduced order models. Authors are of the opinion that 
this may not necessarily be a correct assessment of this 
technology. This is due to the fact that we are starting with a 

reservoir model that has almost a million grid block, averaging 
about 15 (to be on the safe side, the actual number is higher 
than 15) parameters per grid block. Therefore, the original 
order of the FFM (only static parameters) is about 15,000,000. 
Going from 15,000,000 to 496 may be considered a well 
designed reduced order model (of course if the reduced order 
model has acceptable performance). But we make the 
argument that at 496 parameters we already have too many 
parameters to develop a SRM. This is called the “Curse of 
Dimensionality” and is common whenever complex 
phenomena are to be modeled accurately.  
 

Latitude Longitude
Deviation Azimuth

Horizontal Well 
Length

Productivity Index

Distance to Free 
Water Level

Water Cut  @ 
Reference Point

Flowing BHP @ 
Reference Point

Oil Prod. Rate  @ 
Reference Point

Cum. Oil Prod.  @ 
Reference Point

Cum. Water Prod.  @ 
Reference Point

Distance to 
Nearest Producer

Distance to Nearest 
Injector

Distance to Major 
Fault

Distance to Minor 
Fault

Parameters Used on a per well 
basis

 
 
 

 
Figure 4 shows the actual behavior of two typical parameters 
that are being considered, namely Azimooth and Distant to 
Nearest Injector. From this figure it is clear that there are no 
apparent patterns that can be readily detected. Of course this 
was clearly expected, since if otherwise, this would not have 
been a challenging problem to solve.  
 
Once the parameters that represent the static model are 
identified, the next step is the identification of the dynamic 
parameters that need to be considered. This is an important 
step in the development since it controls the number of 
simulation runs that has to be performed.  
 
One of the key issues in SRM development is to realize that it 
is impractical to develop a global SRM. A global SRM is a 
SRM that is capapble of performing all the functions of a 
reservoir simulator. Developing a global SRM is a trap that 
many fall into.  To be practical one needs to identify the 
specific objectives of a project and then design and develop 
the appropriate SRM for that project. In other words, many 
SRMs, with different capabilities can be developed to 
represent the same FFM. For the purposes of this project we 

Table 2. List of parameters used in the SRM development on 
a per well basis. 
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needed to build a SRM capable of accurately predicting 
simultaneous water cut, cumulative oil production and 
cumulative water production for every horizontal well at any 
given time. 
 

 
Figure 4. Behavior of instantenous water cut as a function of well 
Azimooth and Distance to the Nearest Injector for 165 horizontal 

wells at several different times. 
 
In order to satisfy these objectives, ten runs were designed and 
performed on the Full Field Model. The ten runs included five 
runs with a predetermined cap on the total field production 
and five similar runs where no cap was imposed on the total 
production from the field. The five runs included: 
 

 Imposing a nominal production cap of 1,500 barrels of 
fluid per day on each well. 

 Imposing a nominal production cap of 2,500 barrels of 
fluid per day on each well. 

 Imposing a nominal production cap of 3,500 barrels of 
fluid per day on each well. 

 Imposing a nominal production cap of 4,500 barrels of 
fluid per day on each well. 

 Changing the imposed nominal production cap 
according to Figure 5. 

 
Figure 5. The Imposed production cap scheme on the FFM to 

generate dynamic data for the development of SRM. 
 
Once the total number of parameters (static and dynamic) that 
must be used in the development of the SRM were identified, 
the first order of business for the development of the SRM is 
reducing the dimensionalityof this problem to a manageable 
and reasonable number. We do this by using Fuzzy Pattern 
Recognition16,18.   
 
This technology can be used to identify the Key Performance 
Indicators (KPI) in any process. The idea is that when we look 
at all the 165 horizontal wells in our field, given the specific 
flow characteristics of the field being studied, some of the 
parameters will have more significant contribution to the well 
behavior than others. 
 
The objective is to identify these key parameters and use 
“them” during the development of the SRM. This task is much 
more complex than it may appear. Nevertheless, Key 
Performance Indicators can be identified. 
 
The first challenge of developing a SRM for this reservoir was 
to reduce the dimensionality of the problem to a manageable 
number. Using the Key Performance Indicator (KPI) feature of 
IDEATM 18, the software application that was used during the 
development of the SRM, the top 33 paramters were selected 
for the development.  
 

  
Figure 6. Key Performance Indicators identified for the SRM 

development. 
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As mentioned before, this feature of the software application 
uses a Fuzzy Pattern Recognition technology to identify the 
KPIs for a given system. Figure 6 shows the top 23 parameters 
that were identified through the KPI procedure. Using the 
same feature we were able to identify the overall contribution 
of each of the layers to the production from the horizontal 
wells. Figure 7 shows the contribution of each layer to the 
instantaneous water cut. In this figure contribution of all the 
existing parameters were used in order to calculate the overall 
contribution of each layer to the production from the 
horizontal well. In this figure higher values on the fuzzy 
pattern recognition scale represent lower contribution and visa 
versa. It is interesting to note that the layer containing the 
wellbore has the lowest contribution to the production.  
 
This seems to be counter-intuitive since most of the time 
during the history matching process engineers tend to modify 
the paramters closest to the wellbore inorder to achieve a 
match. Figure 7 shows that in this particular multi-layer 
reservoir, by the time the fluids have made their way to the 
layer where the horizontal well is located, it is too late to 
modify any parameters. The top three layers control the water 
production in this reservoir and must be dealt with during a 
history matching procedure before the parameters in the layer 
where the wellbore is located.  
 

 
 

Figure 7. Contribution of each layer to the production from the 
horizontal wells. 

 
 
Validation of the Surrogate Reservoir Model 
Once the SRM is developed it must be validated with data that 
has not been used during its development. For this project 
40% of the original data was set aside for the validation 
purposes. Once the SRM’s development was completed its 
predictions were plotted agains FFM’s results for cumulative 
oil production and instantaneous water cut from many wells at 
different times. In both cases the results were acceptable and 
therefore the analysis could continue. Figure 8 shows the 
validation plots for cumulative oil production and 
simultaneous water cut. 
It should be noted, that the FFM was run in its prediction 
mode calculating the water cut and oil production from year 
2005 to 2026 and therefore the SRM was developed on such 

data. This was due to the specific objectives of the project. But 
once the SRM’s development was completed, it was checked 
in couple of occasions to see if it can correctly match the 
actual production from some of the horizontal wells’ 
production history. The results were very promising. 
 

 
Figure 8. Validation of the Surrogate Reservoir Model using 40% of 
the data that was not used during its development. Here actual FFFM 

outputs are plotted against SRM’s predictions. 
 
 
Once the SRM is developed and validated it can be used to 
generate oil and water production profiles as well as 
instantaneous water cut profiles for any of the wells in real 
time. In this project one of the objectives was to study the 
effect of imposing liquid cap rate on the water cut and 
cumulative oil production for each well. Figure 9 shows three 
dimensional view of cumulative oil production and 
instantenuous water cut as a function of time and liquid cap 
rate that is imposed on the well. Quick visual inspection of 
wells such as those shown in Figure 9 can help in analyzing 
well behavior as a function of liquid cap rates and identifying 
wells that can benefit from relaxing such restrictions. 
 
As part of this study we identified the wells that would benefit 
the most from relaxing rate cap restrictions using a candidate 
selection methodology that incorporated fuzzy cluster analysis 
technique.  



SPE 99667  7 

 

 
Figure 9. SRM’s output for the behavior of one well in the field 
showing water cut and cumulative oil production as a function of 

time and the liquid cap rate imposed on the well. 
 
Analysis of Uncertainty 
Upon completing the development of the Surrogate Reservoir 
Model for this particular filed another objective of the project 
could now be addressed effectively. The objective was to 
analyze the uncertainties associated with many interpretations 
that go into developing a Full Field Model and quantifying 
their contribution to the FFM’s output, i.e. cumulative oil and 
water production and instantenuous water cut. 
It is well known that many paramters that go into an earth 
model and form the foundation of any reservoir simulation are 
far from being certain. Actually when new versions of FFMs 
are released it is usually the result of better information that 
has become available about the earth model and the dynamic 
data. The geological, geophysical and petrophysical 

interpretations, calculations and measurements that form the 
foundation of the earth model as paramters that go into the 
reservoir simulation model, each carry a certain amount of 
uncertainty. SRM along with Monte Carlo simulation can 
serve as an important technique to quantify these uncertainties 
and demonstrate their individual or collective impact on the 
model’s outcome. 
 
The procedure that was used in this study to analyze the 
contribution of the uncertainties associated with some of the 
parameters that are used in the FFM (essentially a Monte 
Carlo simulation approach with SRM as the objective 
function) is as follows: 
 

1. Identify the parameters that you are going to analyze. 
It is recommended that you start with the parameters 
that have the most contribution to the process 
outcome. Result of KPI analysis as shown in Figure 6 
is usually a good start. 

2. For each of the parameters define a probability 
distribution function (pdf). The pdf can take the form 
of uniform, triangular, guassian, or descrete as 
appropriate.  

3. Run the SRM thousands of times, each time 
randomly selecting a value from the defined pdf as 
input to the model and save the output. 

4. Plot the the output of the previous step in the form of 
a histogram. This histogram is essentially the pdf of 
the output that you are trying to analyze. 

 
Upon completion of the above steps, instead of a single value 
for the model output, let’s say instantenuous water cut of a 
particular well at year 2010, you now have a probability 
distribution function that would show the minimum, the 
maximum and sometimes the most likely water cut for that 
year. Following is a demonstration of the above process. 
 
 

 
Figure 10. Assigning pdf to specific parameters in SRM. 

 
In this example the uncertainties associated with capillary 
pressure values in the three layers above a particular 
horizontal well is going to be analyzed as shown in Figure 10. 
Once the parameters that are going to be studied are identified, 
the appropriate pdf can be assigned to each. Then the number 
of times the SRM (the objective fungtion of the Monte Carlo 
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simulation) should be run for the analysis is identified. This 
number is identified as 5000 at the bottom of Figure 11. It 
took less than 6 seconds to make the 5000 runs, and to plot the 
results as shown in Figure 11. 
 

 
Figure 11. The resulting pdf for the instateneous water cut of a 

particular horizontal well. 
 
 

 
Figure 12. Cumulative pdf for the instateneous water cut of a 

particular horizontal well. 
 
 

Figure 12 shows the cumulative pdf for the same problem as 
Figure 11. Also in this figure you can see that the analysis has 
been performed for year 5 (end of year 2010) at a liquid cap 
rate of 1500 barrels per day. Figure 11 shows that for this 
particular well the most likely water cut is about 5 percent 
with possibility of being as little as 2 percent and as much as 
20 percent with much less probabilities.  
 
Figure 13 shows the three dimensional output of SRM for the 
same well as a function of time and liquid cap rate with 
identifying the water cut to be 13.5 percent for year 5 at 1500 
barrels per day liquid cap rate. 
 

 
Figure 13. Water cut for the same well as Figures 11 and 12 as a 

function of time and liquid cap rate. 
 
 
Figures 14 and 15 show the probability distribution function 
and three dimensional plots of cumulative oil production for 
the same well shown in Figures 11 through 13. 
 
 

 
Figure 14. Probability distribution function for cumulative oil. 

 
 

 
 

Figure 15. Cumulative oil as a function of cap rate and time. 
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Conclusions 
In this paper, results of developing a Surrogate Reservoir 
Model (SRM) to accurately represent a Full Field Model 
(FFM) were presented. The essential steps that need to be 
taken in order to be able to develop such models were 
identified. These steps include careful representation of static 
and dynamic data during the data collection stage and 
performing Key Performance Indicator (KPI) analysis using 
Fuzzy Paatern Recognition (FPR) technology for 
dimensionality reduction. 
 
Validation of the SRM using a significant portion of the data 
that has not been used during the development stage was 
presented. The resulting SRM was then used to perform 
uncertainty analysis via Monte Carlo simulation methods and 
the results were demonstrated. 
 
It is the belief of the authors that SRM will play a significant 
role as the enabling technology for the smart fields since they 
are capable of bridging the gap between high frequency data 
streams coming from the field and much slower analytical and 
numerical techniques that are used for reservoir management. 
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