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Abstract 
 
We consider the problem of the control of a displacement front 
in a porous medium, via flow-rate partition in a well. We 
assume that the flow is potential and that the displacement is 
at a unit mobility ratio. These assumptions are for 
mathematical convenience only and can be relaxed. They 
allow, however, significant insight into the problem. The 
specific question we address is how to partition the flow rate 
within the injection well, so that the induced displacement 
front can be steered according to pre-determined dynamics.  
When the reservoir is homogeneous and isotropic, we derive 
an integral equation in an analytical form, the solution of 
which determines the desired injection rate profile. We 
provide illustrative applications. A similar approach applies 
for an anisotropic or a heterogeneous system, except that the 
kernel in the integral equation must be determined 
numerically. This can be obtained by repeated calculations of 
the Green’s function in a heterogeneous system or a modified 
two well system.  
For the solution of the integral (Fredholm) equation, a 
regularization technique is necessary. However, it is found that 
numerical instabilities do develop, even with the use of 
regularization, for later times, when tranverse cross-flow is 
large. Conversely, the instabilities diminish with a more 
stratified structure.  
The results find applications to the rapidly emerging field of 
smart wells and the optimization of displacement problems in 
oil reservoirs using flow rate control. 
 
Introduction 
 
Optimizing the recovery efficiency of displacement processes 
can be obtained in a most direct way by the optimal control of 
the rates of injection and production wells. Various measures 
of the recovery efficiency, or the objective function, can be 
defined that lead to corresponding optimal rate profiles. The 

literature in the subject has been sparse, but it is considerably 
expanding in recent years. Asheim 1  studied methods to 
increase the waterflooding efficiency by controlling rates in 

production/injection wells. Sudaryanto and Yortsos
2

provided 
a systematic approach for the dynamic optimization of 
displacement problems, in which the objective function was 
the displacement efficiency at breakthrough. Using potential 
flow in 2-D and point sources (vertical wells) for injection and 
production wells (Figure 1), they showed that the optimal 
injection policy is “bang-bang”. 
Smart wells and intelligent completion have gained significant 
attention in recent years in the the field of dynamic 
optimization of EOR processes. The ability to implement 
separate downhole control valves enables the application of 
optimal rate control in real time, through the appropriate valve 
settings in injection and production wells. In recent work, 
Brouwer and colleagues 4,3 published a series of papers 
investigating the optimization of waterflooding in 
heteregenous reservoirs having multiple segments along both 
injectors and producers. Two smart horizontal wells, in both 
injection and production, with multiple Inflow Conrol Valves 
(ICVs) were used. In the static approach, optimization of the 
waterflooding process was based on heuristic algorithms, 
resulting in fixed valve settings, which were kept fixed during 
the displacement. The approach was then extended to dynamic 
conditions, using optimal control theory for maximizing 
ultimate recovery by controlling the valve settings 
continuously. Yetan 5 applied an optimization technique based 
on conjugate gradients to optimize the operation of smart 
wells. He linked the optimization algorithm with a commercial 
simulator to model the inflow control devices. As in all 
previous studies, significant improvement in ultimate recovery 
was obtained, compared to the non-optimized case.  
In this paper, we consider a fundamental question in rate-
control flow problems, namely the control of a displacement 
front via flow-rate partition in a horizontal well. The specific 
question we address is how to partition the flow rate within the 
well, so that the displacement front can be steered according to 
pre-determined dynamics, or as is necessary. To our 
knowledge, this problem has not been addressed before. The 
ability to steer a front at will is of obvious significance. Given 
the reservoir geology, one can for example, steer the front 
away from flow obstacles, affect a piston-like displacement in 
heterogeneous formations and otherwise control the 
displacement process as needed. We address this problem in a 
simple rectangular geometry based on potential flow. These 
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simplifications allow for the problem to be posed through an 
exact formalism, resulting in significant insight. Subsequent 
extensions to more complex geometries and processes will 
follows.  
We show that, in principle, the injection profile that will result 
into specified front dynamics can be determined from the 
solution of an integral equation. The kernel of the equation is 
obtained analytically, in the case of a homogeneous and 
isotropic reservoir, or numerically in the general case. Because 
the integral equation is ill-posed, however, as is often the case 
in inverse problems, a regularization technique is necessary. 
We discuss the application of such techniques and the extent 
to which they can provide useful solutions. 
 
Problem Formulation 
 
In this section we present the general methodology and 
formulation. A simplified schematic of the problem considered 
is shown in Figure-2 with boundary conditions and a typical 
front location.  Under the assumption of incompressible 
miscible fluids of equal mobility, and in the absence of gravity 
and dispersion effects, the governing equation is  

( ) 0),( =∇⋅∇ Pyxk      (1) 
 
where P is a normalized flow potential. For the geometry of 
Figure 2, the appropriate boundary conditions in 
dimensionless notation are    

( )

0.0

0

,,

1,0

1

0

=
∂
∂

−

=

−=
∂
∂

−

==

=

=

yy

x

x

y
P

P

tyq
x
P

 

 
In the above the transverse and the flow direction have been 
scaled by H and L, respectively, and we assumed that the ratio 

L

V
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LR =  (where the two permeability values in the y and 

x directions were defined) is equal to one. In the general case 
when this does not apply, equation (1) should be replaced by  
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(where we considered only the homogeneous problem). 
Yortsos6 examined in detail the effect of parameter LR on 
displacements, with the limit ∞→LR corresponding to the so-
called limit of Transverse Flow Equilibrium and the limit 

0→LR  to the Dykstra-Parsons limit (see also Yang et al.7). 
Because the problem is linear, in the general case, the pressure 
field can be represented by a superposition of the rate q(y,t) 
with the Green’s function  
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For example, when the problem is homogeneous and 1=LR  
the Green’s function is  
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where πλ nn = . Analytical results are always possible in the 
homogeneous case (e.g. equation (2)), but numerical solutions 
will be needed in the heterogenous case (see below). Assume 
now that the front is given by the general equation 
( ) 0,, =tyxF , which can be also recast as  
( ) ),(,, tyfxtyxF −=     (5) 

where f is the front location. Because the front moves with the 
fluid, the material derivative is zero,  
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where we rescaled time appropriately and used Darcy’s law. 
Using (5) we further obtain the following kinematic equation 
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Then, using equation (3) for the pressure we rearrange (7) in 
the following integral equation 
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where the kernel is a function of the front dynamics 
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Equation (8) is a Fredholm integral equation of the first kind, 
the solution of which will allow in principle for the control 
profile to be determined, hence the front to be steered 
according to the prescribed dynamics. 
 
Heterogeneous Porous Media 
 
A similar technique can also be applied for displacement 
problems in heteregenous media. Alternatively, one can apply 
a different superposition technique, as elaborated in 

Sudaryanto and Yortsos
2

. The idea is to express the 
displacement as the superposition of the response of individual 
well segments of point source strength, in the horizontal well. 
For example, assume that 1=LR , in which case  the kinematic 
equation can be written in terms of the velocities at the front as  
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Because of the linearity of the problem, the velocities can be 
represented as the superposition of an (infinite) number of 
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velocity fields i
xv and i

yv  corresponding to well doublets 
(namely one injection and one production point sources and 
sinks)  
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Here, iα  is the correspondent injection rate for each well 
doublet (along each injection segment), and Nwi is the number 
of well segments along the injection well (theoretically 
infinite, but in practice finite). In the production well, 
segments are represented as one well by imposing the same 
Dritchlet boundary condition for all segments. By substituting 
(11) into (10) we find an integral equation similar to equation 
(8), the discretized form of which is 
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The solution of (12) gives the rate partition along the injection 
well as a function of time. 
 
Solution of the Inverse Problem  
 
Fredholm integral equations of the first kind arise in many 
engineering applications involving inverse problems. The 
generic form of the equation is 

 ( ) ( ) ( ) dscsgdttftsK
b

a

≤≤=∫ ,    (13) 

where the kernel ( )tsK ,  and the right-hand side ( )sg are 
known, while ( )tf  is the unknown function to be determined. 
These types of equations are inherently ill-posed and the 
solution is sensitive to the perturbation of the system, therefore 
the classical numerical techniques fail to compute a 
meaningful solution once the integral has been discretized. To 
compute a unique and meaningful solution one must impose 
stability by specifying additional information which helps to 
singles out a smooth solution close to the correct solution. One 
such technique is regularization. (Hansen 8)  
 
Tikhonov Regularization Method 
 
Regularization techniques, such as Tikhonov Regularization, 
have been used to get a meaningfull regularized solution. In 
theory regularization is applicable to the integral equation as 
proposed by Tikhonov in his original work. However, in 
practice it is simpler to implement it to the linear system 
produced by discretization of the integral equation. Then, 
Tikhonov regularization produces the solution λx from the 
following optimization problem 

{ }2

2
22

2
min oxxbAxArgx −+−= λλ                      (14) 

The regularization parameterλ  controls the amount of weight 
given to the side constraint. The idea behind Tikhonov 
regularization is to introduce a way to control the trade-off 
between the residual norm (first term above) and the constraint 
(second term). The optimum value ofλ is the one that 
balances the two. This is the concept behind the L-Curve 
technique which visually helps to choose the bestλ . 
 
Results and Discussion 
 
Results corresponding only to the homogeneous problem are 
shown below. The heterogeneous case will be discussed in a 
future report. In all figures x and y axes are as depicted in 
Figure-2. Two simple front profiles were used. 
The first front profile has the sinusoidal form  

)4cos(2.0),( ytttyf π+=     (15) 
corresponding to a front translating at a y-dependent velocity. 
Figure 3a shows the desired evolution of the front at different 
times. Figure 3b shows the corresponding rate profile obtained 
after applying regularization and for the case 1=LR . For the 
times shown, the front is well controlled and with good 
accuracy. Indeed, using the obtained rate solution into a 
forward solving algorithm with front tracking, produces the 
results shown in Fig. 3c. The comparison between desired and 
achieved is good although one notes that there is progressive 
deterioration as time increases. Regularization allowed us to 
obtain a stable solution for a substantially larger values of time 
than would have otherwise been possible. The deterioration of 
the solution as time increases is a reflection of the extensive 
cross-flow that develops. In early times (or at small values of 

LR as also noted by Yang et al. 7), cross-flow is limited and the 
problem behaves as in a non-communicating layered system 
(see further discussion below). In fact, the early-time solution 
for the rate (Figure 3b) is identical to that corresponding to a 
layered system, which for the front above has the simple form  

)4cos(2.01)0,( yyq π+=    (16) 
As time increases, the rate profile has the same variation but 
with a larger amplitude, as shown in the Figure. At the same 
time, at larger times the intensity of cross-flow increases and 
the sensitivity of the front to the rate diminishes, causing ill-
posedness and instability. Extending the applicability to larger 
times is the subject of continuous study.    
The second example corresponds to a front evolving according 
to  

( ) )1(5.0)/5.0tanh()1(5.0)( κλκ ++−−= tyttf   (17) 
Parametersκ andλ dictate the sharpness of the front. A 
characteristic example is shown in Figure 4a, corresponding to 

5.0=κ and 25.0=λ , respectivly. The injection rate profile 
and the corresponding front dynamics achieved are shown in 
Figures 4b and 4c, respectively. As with the first profile, good 
control is possible at early times, when the system is almost 
behaving as layered. Indeed, the initial rate, as shown in 
Figure 4b, is very close to the layered-system profile 

( ) )1(5.0)/5.0tanh()1(5.0)0,( κλκ ++−−= yyq   (18) 
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The control is progressively weakened at larger times, when 
substantial cross-flow is experienced. Again, regularization 
was found to be necessary for a stable solution to be obtained.  
Using the first profile we computed solutions for the case 
when the TFE parameter is different than unity. Figures 5a and 
5b show results for the case 1.0=LR . As the system 
approaches conditions of a non-communicating layer, the flow 
rate profile becomes closer to (16) and control can be exerted 
at later times. This behavior is more pronounced in the more 
extreme case shown in Figures 6a and 6b, corresponding 
to 01.0=LR . The rate profile becomes independent of time and 
it is identical to (16).  
 
Conclusions 
 
In this paper we considered the problem of the control of a 
displacement front in a porous medium, via flow-rate partition 
in a well. Under the assumptions of potential flow and that the 
displacement is at a unit mobility ratio we derived a formalism 
that allows controlling displacement fronts of predetermined 
dynamics using rate control. The formulation results into the 
solution of an integral equation, which is in an analytical form, 
for the case of a rectangular geometry and a homogeneous 
reservoir.   
For the solution of the integral (Fredholm) equation, a 
regularization technique is necessary. However, it is found that 
numerical instabilities do develop, even with the use of 
regularization, for later times, when tranverse cross-flow is 
large. Conversely, the instabilities diminish with a more 
stratified structure. Work is currently under way to extend the 
applicability of the method to larger times and more general 
conditions. 
The results find applications to the rapidly emerging field of 
smart wells and the optimization of displacement problems in 
oil reservoirs using flow rate control. 
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Figure.3a One example of desired front location as a function 
of time. 
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Figure.3b: Injection rate profile that produces the front 
location as a function of time specified in Fig. 3a. ( 1=LR ) 
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Figure.3c Comparison between desired (blue color) (Fig. 3a) 
and achieved front dynamics (red color) using the profile of 
Fig. 3b. ( 1=LR ) 
 

 

Figure.2 Process schematic of the system under study 

 

Injector 

Injector Producer 

Figure.1 Performance comparison of conventional equal rate injection 
policy (left) vs. optimized Bang-Bang injection policy (right). 
(Sudaryanto and Y. Yortsos) 
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Figure.4a A different example of desired front location as a 
function of time. 
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Figure.4b Injection rate profile that produces the front 
location as a function of time specified in Fig. 4a. ( 1=LR ) 
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Figure.4c Comparison between desired (blue color) (Fig. 4a) 
and achieved front dynamics (red color) using the profile of 
Fig. 4b. ( 1=LR ) 
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Figure.5a Injection rate profile that produces the front 
location as a function of time specified in Fig. 3a. 1.0=LR   
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Figure 5b. Comparison between desired (blue color) (Fig. 3a) 
and achieved front dynamics (red color) using the profile of 
Fig. 5a. 1.0=LR  
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Figure.6a Injection rate profile that produces the front 
location as a function of time specified in Fig. 3a. 

01.0=LR  
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Figure.6b Achieved front dynamics using the profile of 

Figure.6a 
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