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Abstract  
Reservoir simulation has become the de facto design and 
analysis tool to plan, develop, and manage oil and gas assets. 
With increasing complexity of flow networks and advanced 
recovery mechanisms in the fields, the model description and 
features of the reservoir simulator have also been 
progressively advancing.  

The goal of a single, evolving, life-cycle model for oil and 
gas assets has many benefits for effective and efficient field 
development and exploitation. However, the size and 
complexity of the reservoir models often require 
characterization at several resolutions, thus ranging from full 
field strategic models to short range operational models. Full 
field strategic models can be used to evaluate various 
production scenarios and development strategies and to 
estimate future drilling and facilities requirements. Short range 
operational models concentrate on issues such as rate 
requirements, production decline analysis, etc. However, the 
approach to integrate and maintain these separate reservoir 
models while describing the same field is often ad hoc and 
many times, inconsistent. 

This paper describes a new methodology for enhanced and 
effective use of reservoir simulation. Specifically, the 
application of a new method is presented to consistently 
integrate the full field strategic models and the short range 
operational models using a parametric system identification 
approach. The measurements from the field are used to 
continuously update the short range operational models over a 
moving time horizon, while simultaneously preparing the data 

for a history match of the full-field, strategic model. This 
hierarchical model structure at different scales avoids frequent 
and costly history-match runs of the larger strategic models 
without compromising on short term accuracy, for example, 
those required by production optimization.  In addition, the 
hierarchical model structure improves effectiveness and 
efficiency in carrying out the simulation objectives. A case 
study of a full-field performance is presented to highlight the 
benefits of the method. 
 
Introduction 
The increasing availability of real-time measurements and 
remotely activated valves in an oilfield has made oilfield-wide 
optimization of operations a distinct possibility1. While the 
term real-time optimization (RTO) is certainly not new and 
RTO is practiced in elements of drilling or production 
operations2-4, the extent to which RTO is now feasible has 
increased dramatically. At the same time, the increased scope 
of RTO of oilfield operations entails significant complexity 
and creates challenges. 

RTO technologies have been advanced, either within the 
oil and gas industry or in related industries, such as oil 
refining. While it would certainly be beneficial to further 
develop technologies for field-wide RTO, it is also useful to 
identify existing technologies suitable for the task, streamline 
such technologies for use in the oilfield, and ensure that such 
technologies are used prudently and ultimately add value 
Because elements of field-wide RTO can be manifested in 
many activities related to production optimization, one may be 
overwhelmed by the multitude of approaches and breadth of 
scope of field-wide RTO. Putting field-wide RTO in a 
concrete framework, as discussed in the next section, offers 
clear development and implementation benefits, in that it can 
catalyze progress by suggesting the path to long-term benefits 
which might not be immediately obvious from incremental 
improvements stemming from individual projects.  

The essence of the RTO strategy considered in this paper 
is a multi-level (multi-scale) approach1, 5, as depicted in Fig. 1 
[adapted from Saputelli et al., 20031]. The nested feedback 
loops in Fig. 1 involve decision making at each level (scale). 
Available measurements from a lower level are used, in “real 
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time”, to make a decision, which will be fed back to the lower  
measurement-providing level. In such decision making, it is 
crucial that some sort of a model be available, such that future 
outcomes of potential decisions can be predicted and assessed 
before optimal decisions are selected. When the corresponding 
level in Fig. 1 concerns production policies, a reservoir model 
is needed. Such a model is usually based on first principles, 
and is used in numerical simulation that guides the design of 
optimal production policies. In a companion paper6, we 
present a moving-horizon optimization approach that focuses 
on using a reservoir simulator to make decisions within a few 
weeks to months. As useful as reservoir simulation is, it may 
be cumbersome and time consuming, particularly when it has 
to be performed repeatedly for the purpose of assessing an 
objective function to be optimized. An obvious alternative to a 
reservoir simulator would be a simplified (proxy) reservoir 
model that could generate predictions suitable for real-time 
decision making. In this paper, we discuss the possibility of 
using such a model as a computationally efficient alternative 
to the flow simulator for high-frequency decisions, i.e., on the 
order of hours to days. Such a model can be built from 
available data, on a real-time basis, while its basic structure 
should be consistent with first principles describing reservoir 
behavior.  

In the rest of this paper, we first give a brief overview of 
the multi-scale RTO approach, followed by a discussion of 
modeling issues related to real-time decision making in the 
time-scale of days. A reservoir modeling approach that uses 
real-time field measurements to build a short-term proxy 
model is presented thereafter. The proposed approach is 
illustrated through a field-scale example. 

 
Proposed Approach 
 
Model Hierarchy. Integration of asset-wide operations at 
different time scales and decision levels through a single 
model superstructure has always remained elusive. Some of 
the challenges of this problem may be attributed to its large 
computational needs and inability to capture multi-scale 
physical phenomena in a unified modeling framework. 
However, as a remedy, hierarchical decomposition of the 
problem at different time scales for multi-level decision-
making can be employed.  

Localized, high-frequency decision processes are often 
performed at the lowest levels, which are guided by governing 
targets calculated at the higher levels, which themselves focus 
on increasingly asset-wide, low frequency decision processes. 
Though this approach is well established in the downstream 
processes in the areas of simulation, control and optimization, 
it is still at its infancy in the upstream industry. By 
extrapolation, the multi-level model hierarchy for (oil and gas) 
field operations can be categorized as shown in Fig. 1.  
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Fig. 1 – Oil and gas field operations model hierarchy. 
 

The phenomena and principles governing the processes at 
the macro level have seldom the same requirements or drivers 
as at the micro level. As a result, the modeling framework and 
the underlying technology are often chosen to meet the 
specific needs at each hierarchical level. For example, a first-
principle based, (pseudo) steady state model may be used for 
unit wide optimization, whereas an empirical, dynamic model 
may better suit the regulatory control operation such as 
adjusting the choke position.  

The flow of information in Fig. 1 is bi-directional at each 
level, where the real time information from the field is passed 
to the level(s) above, while the decisions made are passed to 
the level(s) below and subsequently implemented in the field. 
The implicit assumption in the above decomposition is that the 
aggregate of the individual optimum decisions at each level 
will be close to the overall optimal decision at each point in 
time. This assumption is justified by the fact that decisions 
made at a certain level pass corresponding targets downwards 
to underlying level, which in turn attain such target almost 
instantly, with respect to the time scale of the decision-making 
level. Even though the multi-level decomposition cannot 
rigorously guarantee achievement of the global optimum, it 
nevertheless makes an otherwise unsolvable problem feasible. 

 
Framework. Fig. 2 provides an overall framework for making 
production decisions within different time scales. A key 
component of the framework is a predictive reservoir model 
for the asset. Reservoir simulation with a finite-difference 
model is often preferred because of its rigor7. However, its 



SPE 99451  3 

role is often limited to the long term decisions because (1) the 
history match updating of the model to fit new production data 
can take many months; and (2) the model takes many hours to 
compute. The simulation model is often disconnected from the 
actual field production by many months. Often in practice, 
proxy models are used for short-term decisions. These proxy 
models can be spreadsheets with simple decline curve 
analysis, single-well material balance models, etc. The 
consequences of these factors are that the simulator, with its 
rigor, is not used for short term production optimization 
decisions, and the production engineers and reservoir 
engineers may work at cross-purposes.  
 

 
Fig. 2 – A consistent framework towards production decision-
making at different time scales. 
 

The opportunity presented in this paper is to utilize a 
rigorous proxy model of the reservoir.8 The proxy is 
developed to provide predictions over a short period and is 
updated as new measurements become available. In contrast to 
a simple model, e.g., a decline curve, the proxy model is a 
closer representation of the short-term behavior of the 
reservoir. Thus, model-based optimization can be effected in a 
short-term decision framework, e.g., in the order of days. 

 
Full Field Reservoir Model. In practice, reservoir simulation 
is the de facto industry standard for reservoir management. 
With technological advances, it is now possible to measure 
and acquire increasingly more data from an oil field. This 
explosion of available data further enables the development of 
advanced reservoir simulation technology to accurately 
characterize, model and simulate reservoirs in a multi-
disciplinary manner. The development of advanced reservoir 
simulation technology leads to larger and more complex 
reservoir models, which have become the major source of 
forecasting for decision making. 

While larger and complex models result in better long term 
forecasts and overall field management, it is often achieved at 
the cost of high computational time. Even with advanced 
schemes such as local grid refinement, grid computing, and 
parallel processing, there is a time gap which mandates the 
requirement of simplified reservoir models developed with fit-

for-purpose requirements. The recent rise of the smart field 
initiatives warrants prediction tools capable of responding 
immediately based on real-time field information.  

Also, the full field reservoir models need to be constantly 
updated through history matching (adjustment of model 
parameters to match production history). History matching is 
often a laborious, lengthy, and unwieldy task. In fact, history 
matching may sometimes take a year or so to complete, by 
which time additional discrepancies arise between the data 
used to update the model and actual production. As a result, 
full field reservoir simulators are not suitable for the accurate 
short term predictions that are necessary for optimization of 
daily production. 

Consequently, there is significant value and demand to 
develop a modeling approach which can make more accurate 
short-term predictions based on real-time field data. In the past 
few years, several data-driven approaches for real time 
decision making have appeared, such as neural networks9, 
Kalman filtering10, wavelets11, optimal control12,13, system 
identification, and principal component analysis14. In this 
context, we examine below a parametric modeling framework 
to facilitate the development and use of tools for asset-wide 
optimal decision making, based on mature and proven 
techniques. 

 
Short-range Parametric Reservoir Model. In this paper, we 
take the approach that a full field reservoir model is built with 
the vision of long term-field development (months to years), 
while the short range parametric reservoir model considers 
short-term field responses (days). Therefore, the primary 
objective of the short-range parametric reservoir model is to 
simulate the phenomena at this time-scale (days) that relate the 
field production and injection rates to static reservoir pressure 
and hydrocarbon saturation. The methodology of developing a 
parametric model for the hydrocarbon flow processes in the 
reservoir involves identifying the input and output variables 
and establishing a statistical relationship between them based 
on observed results. 

Consider an injector-producer pair (as shown in Fig. 3) for 
a single-layer reservoir. The well production rates for oil, 
water and gas (qo, qw, qg) and water injection rates (qinj) that 
can be manipulated by adjusting their respective chokes are 
taken as inputs of the parametric model. The outputs of the 
model include static reservoir pressure (Pb); water saturation 
(Sw) and gas saturation (Sg) associated with each well. 
 

Oil Rate: qoProducer Flowing 
Pressure, pwf1

Inputs (U)

Water Fraction: fw

qwinj
qo, w, g

Water Injection Rate: qwi

Outputs (Y)

u1

u2

y1
y2

y3

y4
y5

Injector Flowing 
Pressure, pwf2

Gas Rate: qg

Water Rate: qw

 
Fig. 3 – Injector-producer pair example. 
 

From first principles (conservation of mass) and 
constitutive equations (Darcy’s law, compressibility equations, 
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and capillary pressure equations) � after discretization of 
derivatives with respect to the spatial co-ordinates � one can 
get a reservoir model in vector-matrix form as follows 
(equation (A.57) in Brouwer’s Ph.D. Thesis15, based on a 
summary of Ref. 16): 

4

ˆˆ ˆ ˆ ˆ( ) ( )
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t t
dt
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contains values of variables that are sufficient to characterize 
the distribution of fluids in the reservoir at all discretization 
points (grid blocks), indexed by { , , }i j k ; the vector q̂ , 
defined as 
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refers to all external fluid flows, obviously being non-zero 
only at injection or production points; and the matrices B̂ , T̂  
and 4T  are associated with formation volume factors, 
mobilities, and gravitational forces, respectively, and vary 
with time. 

 
State-space System Representation. The time-dependence of 
the matrices B, T̂  and 4T  in equation (1) is relatively weak. 
Therefore, for “short” periods of time, these matrices can be 
considered to be approximately constant. Applying this 
simplifying assumption to equation (1), one can formulate a 
simplified input-output model of the reservoir in the standard 
state-space form17-19 as follows: 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

d
t t t t t t

dt
t t t t

= + ≈ +

= ≈

x A x B u Ax Bu

y C x Cx
 (4) 

where the vector x comprises the states of the system, namely 
the values of oP , wS , and gS  at all discretization points in the 

reservoir (indexed by { , , }i j k  in equation (2)); the vector u 
captures the effect of external manipulated inputs, i.e., flow 
rates or bottomhole pressures at all injection or production 
points (3); the matrix A captures the internal dynamics of the 
reservoir; the matrix B captures the effect of manipulated 
inputs; and the matrix C generates measurable outputs from 
system states x.  

Equation (4) can be obtained by streamlining of equation 
(1) as follows: 

• As already mentioned, for “short-time” predictions, i.e., on 
the order of days, the matrices A, B, C can be considered 
approximately constant. However, they will require a 
continuous evaluation scheme to maintain the accuracy of 
the estimated model for short-term prediction purposes. 

• External flow rates at injection or production points are 
related linearly to well flowing pressures via equations of 
the form  

ˆˆ ˆ ˆ ˆ( )wf c= − +q W p p w  (5) 

(equation (B.20) in Ref. 15, based on a summary of Ref. 16) 
where ˆ wfp  is the well flowing pressure; and ˆ cw  captures 

capillary pressure effects. Consequently, substitution of q̂  
from equation (5) into equation (1) results in a manipulated 
input vector u to the entire system which comprises the 
desired values of either bottomhole pressures or total flow 
rates, corresponding to valve openings of producers or 
injectors. 

• While equation (4) describe the time evolution of oP , wS , 

and gS  at all grid blocks in the reservoir, only values of 

oP , wS , and gS  at grid blocks associated with producers 
or injectors can be measured. Consequently, the output 
vector y contains values of p̂  at grid blocks associated 
with injectors or producers. 

• The state vector p̂  of the system in equation (1) has 
physical significance, as indicated by equation (2). 
Therefore, the natural order of the system dynamics is 
relatively high, corresponding to the number of grid blocks 
considered in the discretization of the reservoir. However, 
the input-output behavior of the overall system, i.e., the 
effect of injection and production flow rates or bottomhole 
pressures on pressures and saturations at injector and 
producer grid blocks, is expected to be represented by a 
reduced-order model. This model captures the dominant 
modes of the system dynamics, e.g., the modes 
corresponding to the dominant eigenvalues of the matrix 

1ˆ ˆ−B T  in equation (1). Note that if the well flowing 
pressures are used as inputs instead of flow rates, then the 
system dynamics will change according to equation (5). 
Consequently, the state vector x in equation (4) can be of 
considerably smaller dimension than that of p̂ . Of course, 
x does not need to (and typically does not) have physical 
significance in the same fashion as p̂  but simply serves to 
capture the dynamics of the input-output behavior of the 
reservoir. 

Given a model connecting manipulated inputs and measured 
outputs, one expects to be able to optimize production by 
using measured outputs to select values of manipulated inputs 
in a moving-horizon framework, as discussed briefly next. A 
more detailed discussion and related references are offered in 
a companion paper.6 
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Moving Horizon Approach. Production optimization ideally 
would have to account for the entire future effect of decisions 
made at a certain time. Because predictions of outcomes in the 
“distant” future are uncertain (where the term “distant” is 
commensurate with the time-scale at the corresponding level 
of the hierarchy in Fig. 1), the decisions up to a bounded 
future point at the end of a moving horizon are considered, as 
shown in Fig. 4. Optimal decisions are identified and acted 
upon until new measurements arrive at the next decision 
making point where new optimal decisions are made. To make 
decisions at each point in time, a model is used to assess future 
outcomes. This model is updated using available data with 
higher emphasis placed on recent data. Similarly to the 
prediction horizon, a moving horizon can be used for model 
refinement, such that data prior to the beginning of the horizon 
are not used to refine the model. 
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Fig. 4 – Moving horizon for real-time reservoir management6 in the 
time-scale of months to years (Fig. 1). A similar strategy can be 
used at all hierarchy levels. At each level, model-based 
predictions become increasingly uncertain as one moves within 
the finite (prediction) horizon into the future. Similarly, old data 
used for model refinement become increasingly less relevant as 
one moves within the finite (modeling) horizon into the past. 
 

Short-term decisions, namely on the order of a few days, 
include evaluating pressure and flow rate profiles against 
valve set points. Small adjustments to valve settings can have 
important consequences on production of oil, gas, and water. 
Models that can provide such predictions can be built in real–
time using data over a period of several days or months. A 
multitude of well known techniques exist for this task20, 21, one 
of which we discuss next. 

 
Parametric system identification. At each point in time, the 
matrices A, B, and C must be identified from available 
measurements over a period of time extending to the past in a 
moving horizon (Fig. 4). Because there are multiple inputs and 
multiple outputs in any realistic reservoir, a system 
identification method suitable for multivariable models must 
be used. A class of methods known as Subspace Identification 

(SI) methods22-24 has been fairly popular in recent years, 
because of its relative simplicity, generality, and numerical 
robustness. The general idea of SI methods is that they use 
input and output data (u and y in equation (4)) while avoiding 
the difficulty of not having direct measurements of the state 
vector x. A model identified using SI methods can be used 
directly, or it can serve as an initial guess for identification of 
a multivariable model via other methods, such as the 
multivariable prediction-error method (PEM).20, 21 

With the availability of continuous field data, it is 
straightforward to implement the parameter updating 
procedure on a daily basis. Parameter updating ensures that 
the parametric model used for short-term forecasting is 
accurate and reflects the actual field conditions. 
 
Case Study 
 
Caratinga Field. To illustrate the approach presented, a case 
study was undertaken using data from the Caratinga field, a 
deepwater oil field in offshore Brazil. The field is produced 
through a floating, production, storage, offtake (FPSO) vessel. 
Water injection began early in the reservoir life. There are, in 
total, ten producers and eight injectors. We used a history-
matched simulated model as the source of information to 
generate daily data. 

Assumptions and constraints of the simulated data include: 
 

• Average daily well bottomhole pressures are known. 
• Average daily total and well flowrates are known for each 

phase. 
• Block pressures and saturations would not be used for the 

field for building the model, except for grid blocks 
associated with injectors or producers. 

 
Parametric Reservoir Model.  

 
Case Study I. In the early days of the reservoir, only two 

producers are active. For these producers, the two total 
production flow rates are the manipulated input variables; and 
the two pressures of the grid blocks corresponding to the 
producers are the measured outputs. Thus, the corresponding 
multivariable model is 2 2× . Using a moving identification 
horizon of 600 days, a new linear model of the form in 
equation (4) was identified daily for a period of 360 days, 
using SI to provide an initial guess to prediction error method 
(PEM). Each of the daily identified linear models was used 
with corresponding input values (production flow rates) shown 
in Fig. 5 to make 5-day-ahead (Fig. 6) and 15-day-ahead (Fig. 
7) predictions of the resulting pressures (output variables) for 
each of the two producer grid blocks.  

The model order (dimension of the state vector x in 
equation (4)) is automatically selected by the SI method, as 
shown in Fig. 8.  

Fig. 9 indicates that the identified model is essentially an 
integrator (it has a maximum eigenvalue at 1) as expected.15 
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Fig. 5 – Total flow rates (input variables) for the two producers 
considered in Case I of the Caratinga Case Study. 

 
Fig. 6 – The 5-day-ahead predictions of block pressure using the 
daily updated model of the two producers considered in Case I of 
the Caratinga Case Study. 

 
Fig. 7 – Fifteen-day-ahead predictions of block pressure for the 
daily updated model of the two producers considered in Case I of 
the Caratinga Case Study. 

 
Fig. 8 – Dimension of state space (model order) for the daily 
updated model of the two producers considered in Case I of the 
Caratinga Case Study. 
 

 
Fig. 9 – Maximum eigenvalue of the matrix A (equation (4)) of the 
daily updated model for the two producers considered in Case I of 
the Caratinga Case Study. 
 

Note the discrepancy between model predictions and data 
around 2100 days. The reason for this discrepancy is not clear. 
It could manifest severe nonlinearity or simply a non-
convergence problem with the numerical simulation that 
produced the data. The discrepancy warrants further 
investigation. 

Case Study II. After approximately 4500 days, additional 
producers as well as injectors have become operational, 
creating a total of 14 (seven production and seven injection) 
manipulated flow rates (see Fig. 10). Five wells have already 
experienced water breakthrough. Therefore, a model was built 
to capture the effect of total flow rate at each injector and 
producer on water cut or water production flow rates. 
Similarly to Case I, data from a past moving horizon of 600 
days (see Fig. 10) are used to identify a model each day, such 
that future predictions of water production flow rates can be 
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made. The model order produced by SI was 28, indicating 
interesting dynamics for this reservoir. 

 
Fig. 10 – Total flow rates (input variables) for the seven producers 
and seven injectors considered in Case II of the Caratinga Case 
Study. 

 
Note that the discrepancies between predictions and data 

that appear in Fig. 11 are due, in part, to the fact that the 
identified model is mildly unstable as indicated by the 
maximum eigenvalue of the matrix A in equation (4) (see Fig. 
12). Because of this instability, long-term predictions are 
clearly infeasible. However, there also appear to be 
discrepancies between model predictions and data around 
4530 days. They cannot be attributed to this instability and 
warrant further investigation. 
 
Conclusions and Discussion 
 

We have illustrated how well-established methods of 
model identification for multivariable dynamic systems can be 
used to continuously develop proxy reservoir models. These 
models can effectively provide short-term predictions for the 
purpose of optimizing production operations within a multi-
scale framework. However, a number of questions should be 
further investigated to establish the value of the proposed 
approach, including the following: 
• How significant is the effect of nonlinearities on the 

accuracy of the predictions provided by the approximate 
linear model of equation (4)? 

• Over what time horizon length can reasonable predictions 
be provided by the proxy model of equation (4)? 

• Would transport delays be useful for the proxy model of 
equation (4)? 

• Can the effect of injector flow rates on producer water cut 
be captured by a proxy model, particularly before water 
breakthrough?  

• Can the behaviors of pressure and saturation be separated, 
thus simplifying the proxy model structure15? 

 
Fig. 11 – The 5-day-ahead predictions of water production flow 
rates using the daily updated model of the seven injectors and 
seven producers considered in Case II of the Caratinga Case 
Study. 
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Figure 12 – Maximum eigenvalue of the matrix A  (equation (4)) 
of the daily updated model of the seven injectors and seven 
producers considered in Case II of the Caratinga Case Study. 
 
 

 
Fig. 13 – Principal component analysis of the water flow rates for 
all 10 producers of the Caratinga Case Study. Significant 
interaction – with the potential for model reduction – is evident. 
 
• Can other techniques for dimensionality reduction (e.g., 

principal component analysis25 (PCA)) be used to simplify 
the proxy model? For example, PCA reveals that there is 
strong interaction among the water flow rates for all ten 
producers of the Case Study (Fig. 13). 

• What features of a proxy model are crucial for production 
optimization rather than for overall model quality (in the 
least squares sense)? 

• If the linear proxy model structure of equation (4) is not 
adequate, what alternatives can be used (e.g. neural 
networks3)? 

• How effectively can a proxy model be used for production 
optimization? 

We intend to address such issues in forthcoming publications. 
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Nomenclature 
Boldface uppercase: Matrix 
Boldface lowercase: Vector 
q – flow rate 
S – Saturation 
u – input vector 
y – output vector 
x – state vector 
A – matrix determining system dynamics 
B – matrix determining input effects 
C – matrix determining system outputs 
 
Subscripts 
w – water 
g – gas 
o – oil  
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