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Abstract 
Designing fluid injection policies to optimize the production 
of a hydrocarbon reservoir has attracted considerable interest 
in recent years. Production policies can emerge from 
numerical optimization analyses, the solutions for which are 
most frequently based on optimal control theory. In this paper 
we argue that (a) a simpler alternative to the optimal control 
approach may be used, and (b) we present a moving-horizon 
formulation alternative. We illustrate the proposed approach 
through several examples. 
 
Introduction 
The increasing availability of real-time downhole 
measurements and remotely activated valves in an oil-field has 
made field-wide optimization of operations in real time a 
distinct possibility.1 While the term real-time optimization 
(RTO) is certainly not new and RTO is practiced in elements 
of drilling or production operations 2, 3, the extent to which 
RTO is now feasible has increased dramatically. At the same 
time, the increased scope of RTO of oil-field operations 
entails significant complexity and creates challenges related 
to”  

 
� Conceptual development: e.g., what is “real time”? What 

should be optimized? What are associated work flows? 

� Technological realization: e.g., what hardware and 
software should be used? When? Where?  

� Practical implementation: e.g., what is the expected and 
actual return on investment? 

� Management: e.g., who is responsible for the 
development, implementation, operation, and 
maintenance?4  

RTO technologies have been advanced, either within the 
oil and gas industry or in related industries, such as oil 

refining. While it would certainly be beneficial to further 
develop technologies for field-wide RTO, it would also be 
useful to identify existing technologies suitable for the task, 
streamline such technologies for use in the oil-field, and 
ensure that such technologies are used prudently and 
ultimately add value.5 6 Because elements of field-wide RTO 
can be manifest in many activities related to production 
optimization7, 8, one may be overwhelmed by the multitude of 
approaches and breadth of scope of field-wide RTO. Putting 
field-wide RTO in a concrete framework offers clear 
development and implementation benefits, in that it can 
catalyze progress by suggesting the path to long-term benefits 
that might not be immediately obvious from incremental 
improvements from individual projects.  

Building on previous work that established the multi-scale 
nature of RTO and focused on decision making at the time-
scale of days to weeks9, we are concentrating in this work on 
decision making at coarser time-scales, e.g., months, with 
application to optimizing the production of a hydrocarbon 
reservoir by proper injection of fluids. Capitalizing on 
significant new capabilities for bottom-hole measurements and 
remote valve manipulation, a number of authors have 
convincingly pointed out that sizeable economic benefits can 
result by proper selection of fluid injection policies (for a 
thorough recent review see Brouwer’s Ph.D. Thesis 10). Such 
policies can be designed by solving a numerical optimization 
problem, usually for the net present value (NPV) of a project 
or for total oil recovery. The numerical solution of such an 
optimization problem has attracted considerable attention. The 
approach most frequently taken is based on optimal control 
theory. In this work we provide a critical assessment of recent 
work in this area, identify complexity issues, and suggest 
approaches toward complexity reduction based on the concept 
of moving-horizon optimization. In particular, we argue that 
(a) simpler alternatives to the optimal control approach may be 
used and (b) the formulation of a selected optimization 
problem may significantly affect how efficiently that problem 
can be solved. We illustrate the proposed approach through a 
number of examples. 

 
Real-Time Optimization under Uncertainty 
 
What Is “Real-time”? The term “real-time optimization” 
refers to the use of measurements of a process at a certain 
frequency to enable decision-making at the same frequency. 
Such optimization would ideally be performed continuously, 
by collecting all available data in real time and continuously 
solving an all-encompassing optimization problem. The 
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solution of that problem would indicate what decisions must 
be made at an instant and acted upon until new process 
measurements arrive at a subsequent instant at which the 
decision making process would be repeated. However, the 
overwhelming complexity and inherent uncertainty of such a 
task immediately render it impractical. Indeed, blending 
decision making at the scale of oil-field development over a 
number of years with decisions made minute by minute by an 
automatic flow controller is a daunting task.  

To address this issue, the overall real-time optimization 
problem for an oil-field can be decomposed into a hierarchy of 
multiple levels, each level corresponding to a different time 
scale, as shown in Fig.1 2, 11, 12, 13. At each level, optimization 
is performed at an appropriate frequency, i.e. time scale. It 
should also be mentioned that in addition to time scale, other 
significant differences exist among various levels of the multi-
level hierarchy of Fig.1. For example, each level entails 
different space scales 14, 15 (e.g., optimization of production of 
several wells vs. flow regulation in a pipe), uncertainty and 
risk (e.g., reservoir properties used by a simulator early stages 
of field development vs. effect of choke characteristics on 
flow), decision making and optimization paradigms (e.g., 
global optimization 16, 17, 18, 19 vs. PID control algorithms), and 
extent of automation of decision making tasks (e.g., business 
development decisions vs. control action for flow regulation). 
There is a vast amount of published work related to specific 
elements of each level of the multi-level hierarchy of Fig.1. 
Fig.1 makes it clear that the term “real-time” is level-specific. 
It is commensurate with the time scale of the corresponding 
level. At each level, real-time optimization refers to a 
feedback scheme. Decisions passed downward from a certain 
level to an underlying level are updated at the time scale of the 
decision passing level. The underlying level follows the 
decisions passed to it from above at its own time scale, namely 
“almost instantly” in comparison to the time scale of the 
overlying level.  

The feedback scheme of Fig.1 encompasses a broad class 
of optimization and control paradigms, ranging from 
optimization for field development and production planning 
and scheduling, to second-by-second feedback control of flow 
rate through valve adjustment. For example, decision making 
at the upper levels of Fig.1 may involve various optimization 
paradigms concentrating on explicitly stated economic 
objectives 20, whereas decision making at the lower levels may 
be automated and focus on engineering objectives, such as via 
standard PID controllers. 

The hierarchy of Fig.1 is not unique to hydrocarbon 
production operations but has broad applicability. As a notable 
example, such a hierarchy of real-time optimization of 
operations has been practiced by the oil refining industry for 
more than two decades, with great success. 21  

As is the case for any feedback loop, the scheme depicted 
in Fig.1 can only be functional if several indispensable 
elements are available. 

Measurements. New downhole instrumentation is offering 
important capabilities in this area. The potential to use other 
real-time information, such as 4D-seismic data, could also 
have significant impact. 

Manipulations. Remotely activated downhole valves offer 
obvious control capabilities. 

Decision Making Algorithm (Control Law). Any such 
algorithm uses measurements to produce manipulations by 
explicitly or implicitly postulating: 

 
� Objectives and constraints 

� A model describing how manipulated variables (process 
inputs) affect controlled variables (process outputs) 

� A description of uncertainty, e.g. process modeling 
uncertainty or kind and uncertainty of external 
disturbances 

Human-machine Interaction. Human-machine interaction 
may include explaining to computers what is desired (e.g., set-
points, economic objectives, constraints) and monitoring 
system operation. In fact, humans can play an important role 
as decision makers in various places of the hierarchy in Fig.1 
and may well be elements of related feedback loops. Assisting 
humans at this task, technologies such as visualization, 
monitoring, data analysis, modeling, and numerical 
optimization are important enablers. For example, 

 
� Visualization can help humans recognize a problem or 

opportunity for value creation. It is also important for 
collaboration that is essential to making better decisions. 

� Monitoring enables production teams to recognize when 
wells and equipment are drifting from their design 
efficiencies. Such observations are important not only 
from a simple performance perspective but also for 
anticipating potentially costly failures and taking 
corrective actions to prevent them. 

� With the myriad of data that digital oil fields are bringing 
in to data historians every second, analysis tools can 
convert these data to information, diagnoses, and 
knowledge. These tools span a broad spectrum including 
conventional engineering tools as well modeling and 
pressure transient analysis, tools based on multivariate 
statistics, artificial intelligence, and dynamic systems. 

It should be stressed that tools used at any level should be 
used in a way that eventually produces actionable decisions, to 
ensure value creation. The actionable decision principle is 
applicable whether dealing with a control system 
automatically adjusting valves and chokes or with a work flow 
manager who leads an organization through a process. 

 
What Is Optimized? As already stated, optimization will 
ideally attempt to optimize an entire asset continuously  

 
� using all available information up to that point  

� predicting future outcomes with certain confidence 

� making decisions that would produce optimal future 
outcomes 

� implementing such decisions until the next decision 
making point in time 
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If there were complete information about the behavior of a 
system into the future, optimization would not have to be 
performed continuously. But uncertainty is always present in 
future predictions, thus rendering feedback-based, continual 
decision-making necessary. In addition, what is currently 
uncertain will be less uncertain in the future, as additional data 
are collected. For example, the optimal production plan for an 
oil-field could be computed at the beginning of production. 
However, uncertainty in reservoir parameters, market 
conditions, or unforeseen upsets during production should be 
accounted for early on, and the optimal plan should be 
continually revised as new data from actual production 
become available within reasonable time. As another example, 
the optimal choke opening which ensures that flow rate is at a 
certain value could be easily computed a priori, if there were 
no uncertainty in equipment condition, fluid properties, 
pressures, etc. Re-computation and re-adjustment of the choke 
opening (e.g., by an automatic feedback controller every few 
seconds) would ensure that the flow rate is at or close to its 
target. 

Current uncertainty as well as its future reduction can be 
accounted for by the Dynamic Programming formulation of 
the optimization problem 11, which at time t can be expressed 
as  
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where  is the optimal value of the time-
additive (uncertain) objective function (e.g., NPV) 
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(practically a large number), with the system starting at state 
, assumed to be known at time t (e.g.,  is the set of 

pressures and saturations of an oil reservoir);  is the input 
or decision variable at time t (e.g., the flow rates of injectors 
and/or producers);  is the additive part of 
the objective function from time t to time t  and is 
uncertain because of external disturbances; and 

 is the optimal value of the time-
additive objective function from time  to infinity, with 
the system starting at state , assumed to be known at 
time t , but uncertain at time t.  
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The state x  of the system at time t follows the dynamic 
equation (e.g., captured by a reservoir simulator) 

( )t

(( ) ( ), ( ), ( )t f t dt t dt t dt= − − −x x u d ; (2) 

where  is a stochastic disturbance (e.g., deviations of 
injection rates from desired values, equipment problems), 
introducing uncertainty to the system.  

( )td

While, in principle, the above equations (1) and (2) would 
be applicable for , in practice they are applied for a 
finite , commensurate with the time scale of each level in 

Fig.1. It is such a value of  that dictates the context within 
which the term “real-time” is understood, namely dt  
quantifies the time intervals at which equation (1) should be 
solved, as new information comes in and x  is updated. 

0dt →
dt

dt

( )t
 
The Curse of Dimensionality and Getting Around It with a 
Moving Horizon. An explicit solution of the problem posed 
by equation (1) is impossible in all but a few special cases. 
The well known reason is that the value of  
depends forward-recursively on the subsequent value of 

. Given that the latter is not known 
as a function of  in a closed form, one could use a 
collection of values  at distinct 
points x  and solve equation (1) for all of them. But, in 
turn,  depends on the subsequent 
value of 
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(t dt+x
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(i t dt+

( ( ); ( toiJ t dt t dt+ +x u
J  at time  through equation (1). Therefore, 

one would have to be able to evaluate 
 at distinct values . 

The preceding argument would have to be repeated for t going 
to infinity. This would create an explosion of combinations, 
i.e. number of paths to consider for optimization from time t, 
as depicted in Fig. 2. 
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To avoid this so-called “curse of dimensionality”, heuristic 
alternatives have been applied. One that has found widespread 
success in practice is based on a concept that is known as 
moving or receding horizon in the process control literature or 
rolling horizon in the planning and scheduling literature. The 
idea is based on the following heuristics: 
� Rather than performing the optimization suggested by 

equation (1), which accounts for reduction of uncertainty in 
the future, one neglects the fact that uncertainty will be 
reduced in the future due to availability of updated 
information, and formulates the problem as (cf. equation (1)) 

(
( to )
max ( ), ( to )
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E

θ
φ θ θ θ θ∞
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x u  (3) 

� Note that in the above optimization the fact that the future 
state  x(θ) of the system, which is unknown at time t, will 
be known at each future time θ>t  is neglected. 

� Because predictions into the future are increasingly 
uncertain, the summation in equation (3) is confined up to 
a finite terminal time (i.e. up to the end of a finite time 
horizon), beyond which the optimization is meaningless. 
In addition, because the further one looks into the future, 
the more difficult it becomes to make reliable high-
frequency predictions; thus, values of the input u are 
decided upon less frequently as θ increases within the 
horizon. 

The final optimization problem can be further simplified as 

(
( )

max ( ), ( to )
ii

t T
i i i it
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where the time points { }iθ  are increasingly less densely 
spaced as  goes from t to t .  iθ T+
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Once the optimization in equation (4) is performed at time 
t, only the optimal input  out of the sequence 
of optimal inputs over the horizon is implemented until the 
next decision-making time point . At t , new 
information is collected and used to formulate and solve the 
new optimization problem. 

opt ( to )t t dt+u

1t + dt+

(1

1( )
max ( ), ( to )

ii

t T
i i i it

E
θθ

φ θ θ θ θ+ +

= +
⎡ +⎣∑u

x u )d ⎤
⎦ . (5) 

The procedure is repeated at subsequent times, 
, as illustrated schematically in Fig. 3. Note 

that the shift of the summation indices from equation (4) to 
equation (5) manifests the concept of moving horizon. Note 
also that because the moving-horizon strategy always uses the 
latest measurements to formulate a corresponding 
optimization problem it is a feedback strategy. 

2 , 3 ,...t dt t dt+ +

Naturally, the moving horizon idea is explicitly or 
implicitly applicable to many levels of the hierarchy in Fig.1, 
including planning, model predictive control (MPC), or 
regulatory control. In this work we concentrate on the upper 
levels in Fig.1, as discussed below. 

At this point it should be made clear that the moving-
horizon idea involves the following parameters. 

 
� The sampling period, i.e. frequency at which 

measurements are taken. 

� The frequency of decision making. 

� The time length of the moving horizon. 

Note also that the system model used at each time step t 
(equation (2)) can be updated (history-matched) on the basis 
of the latest observed data available (Fig. 3). 

 
Solving the Optimization Problem in a Moving Horizon. 
Within a single moving-horizon window, the optimization 
problem to solve, i.e., equation (4) subject to constraints is a 
standard one. A standard approach toward solution is based on 
optimal control theory, of which the most elaborate example is 
Pontryagin’s Maximum Principle (PMP)22. PMP augments the 
original system states by creating a co-state (adjoint) vector of 
the same dimension as the state vector. The co-states satisfy a 
set of differential or difference equations that can be directly 
constructed from the original system equations. Then the 
optimal values of the decision variables can be found by 
maximizing, subject to constraints, the Hamiltonian function 
at each time point (hence the term “Maximum Principle”). 
While this maximization is relatively simple if the states and 
co-states are known, knowing the states and co-states is not. 
As a result, PMP reformulates the original problem as one 
which is conceptually appealing by being mathematically 
concise. However, the PMP formulation is numerically as 
difficult to solve as the original one. From a reservoir 
simulation viewpoint, the co-state equations are of comparable 
complexity to the reservoir simulation equations and must be 
solved in concert with the latter repeatedly. In addition, 
numerical solutions based on the PMP formulation may easily 
converge to a local optimum; or they may have difficulty 
converging given that the problem may be non-convex. 

As an alternative to optimal control, one can solve the 
optimization within the moving horizon window by using 
direct methods for global optimization, such as genetic 
algorithms and variants, e.g. scatter or tabu search. While such 
algorithms are probabilistic in nature and can be inefficient, 
they are very easy to program, requiring only a function 
evaluation from the reservoir simulator. Furthermore, they can 
be easily run in parallel over a network of computers, and 
solutions are not trapped in local optima. 
 
Results 
The three examples illustrate the moving-horizon optimization 
methodology on small reservoir models with a few wells. 
They compare conventional control practice, e.g., reactively 
shutting in zones to high water-cut, with use of proactive 
optimal zonal controls. The reservoir simulator and the 
economic net present value (NPV) calculator are treated as 
black-box functions by the global optimizer. A full description 
of the optimizer, the reservoir simulator, and the optimization 
workflow is found elsewhere26. All computations were 
performed on desktop computers using the Windows operating 
system. For each example, a discounted cash flow calculation 
was performed to obtain a net present value (NPV), using a 
discount rate of 12%, a tax rate of 35%, assumed operating 
costs, and constant oil and gas prices.  
 
Example 1. Example 1 is adapted from Chapter 6.2 of 
Brouwer’s Ph.D. thesis10. The reservoir is primarily low-
permeability with one high-permeability streak that runs 
parallel to the direction of flow, as shown in Fig. 4. There are 
two horizontal wells, a smart injector (left) and a producer 
(right). Each well is has forty-five independent injection or 
production perforations. The economic data for this study are 
shown in Table 1. We compare water injection and production 
managed by “reactive control” (that is when a production well 
exceeds a water-cut threshold, it is shut-in) with results from 
“ideal control” (that is when the reservoir properties are 
completely known with the optimization conducted over the 
full time horizon). 

 
Reactive control: This is conventional oil-field practice, i.e. 
reacting to high water-cut from producing zones by 
shutting-in the zone or the well. Water injection is targeted 
at constant flow rates. Production zones that exceed a water-
cut threshold are shut in 

Ideal control: This scenario provides the theoretically 
maximum NPV that would be obtained in a single 
optimization with no modeling uncertainty. The decision 
variables are annual injection flow rate targets for each of 
the forty-five injection intervals over an entire 12-year 
period. Each injection rate is constrained by an upper bound.  

A summary of the production strategies employed along 
with resulting NPV is shown in Table 2. Saturations for the 
two cases are shown in Fig. 5 through Fig. 8. The NPV 
increases from $12.9 million to $16.6 million. Flow control of 
each interval in the horizontal wells with the optimizer clearly 
improves the water sweep with less unrecovered mobile oil.  
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Example 2. Example 2 is a one-quarter 5-spot configuration 
with one water injector and one oil producer (Fig. 9). The 
reservoir has an upper, high-permeability layer and a lower 
low-permeability layer, separated by an impermeable layer. 
Each vertical well is perforated at each of the two producing 
layers. Remotely activated valves are available at each 
permeable layer, so that injection or production can be 
remotely adjusted. The challenge for this problem is caused by 
the contrast in permeability between the upper and lower 
layers.  

The following production strategies over a 10-year time 
horizon are compared: 

 
1. No control: Water is injected at a well constant flow-rate 

target. The water entering each layer is determined by its 
kh. 

2. Reactive control: Water is injected at constant flow-rate 
targets as in (1), but production at a perforation-interval 
that exceeds a water-cut threshold is shut in.  

3. Moving-horizon control with individual upper bounds on 
injection rate targets: The decision variables are the flow 
rate targets for each of the two injection zones set at the 
beginning of each year for six years. Thus, there twelve 
decision variables for each optimization of the moving 
horizon window. Fig. 10 has the moving horizon 
optimization template for the six-year windows of time, 
i.e. the time horizon. Each flow rate target is bounded 
individually and is held constant for one year. The 
algorithm performs an optimization at the beginning of 
each year to maximize NPV for production from the 
beginning of that year, discounting the cash flow from the 
end of the 10th year. At the end of each six-year window, 
the final values for injection rate targets are held constant 
until the end of the 10th year. After an optimization is 
completed, the first value in the sequence of optimal 
future injection rate targets is implemented for a year. At 
the beginning of the following year, it is assumed that 
new data have been collected, and the optimization is 
repeated. This recursive cycle continues until the end of 
the 10th year, simulating field production over 10 years.  

To make the simulation more realistic, it is assumed 
that a discrepancy exists between the reservoir model 
used by the optimizer and the “actual” reservoir. That 
discrepancy is realized in the form of different 
permeability values, which are assumed to be updateable 
with new data from the field each year. The optimizer 
uses initial estimates in the first year; and for every 
subsequent year, it revises the estimates, as a result of an 
assumed history match. The assumed model permeability 
values are shown in Fig. 11 for the upper layer, 
asymptotically approaching the true reservoir 
permeability of 400 md. The lower layer model 
permeability is adjusted by only a few md over the period. 

  
4. Moving-horizon control with upper bound on total 

injection rate target: This is similar to the preceding 
strategy, with the following difference:  the total water 
injection rate target is constrained, rather than individual 
layers. 

5. Ideal case: This scenario provides the theoretically 
maximum NPV that would be obtained in a single 
optimization with no modeling uncertainty. The decision 
variables are annual injection flow rate targets over the 
entire 10-year period. The total injection rate is 
constrained by an upper bound.  

A summary of the production strategies employed over a 
10-year period along with resulting NPV and oil recovery 
values are shown in Table 3. Fig. 12 compares the cumulative 
production and injection profiles for the field. Figs. 13, 14, 
and 15 compare the oil and water cumulative profiles for 
individual reservoir layers. The moving horizon approach 
shows improved NPV, as compared with reactive control and 
also compares quite well in the NPV for an ideal optimization, 
that is, with no uncertainty. The moving horizon has 
somewhat less oil production at ten years than reactive 
control, but the water-handling efficiency is so much 
improved that the NPV is much higher by comparison. For 
reactive control, the water in the high-permeability layer 
breaks through quite quickly, so the zone is shut off, whereas 
the optimization manages the water production in the high-
permeability layer at a low rate. The moving horizon with 
individual injection zonal targets is better than the moving 
horizon with an overall well target.   
 
Example 3. Example 3 is a 2-D model adapted from the 10th 
SPE Comparative Solution Project 23 as discussed in reference 
24. The reservoir model has  cells of dimensions 

 ft, and the properties correspond to layer 61 of 
the SPE model. The porosity and permeability spatial 
distributions are very heterogeneous, forming a somewhat 
channel-like geometry, as shown in Fig. 16. The well locations 
are in an approximate five-spot pattern with a vertical injector 
near the center and four vertical producers near the model’s 
corners. Economic data are shown in Table 4. Note that the 
price for produced water handling was deliberately selected to 
be artificially high, following Reference 10. The following 
production strategies over a 4.5-year period were considered. 

60 220 1× ×
20 10 170× ×

 
1. Reactive control: Water is injected at constant flow rate 

targets. Production wells that exceed a water-cut threshold 
are shut. 

2. Moving-horizon control with individual upper bounds on 
injection rate targets: Fig. 17 has the moving horizon 
optimization workflow. The decision variables are the 
flow rate targets for the water injection well for each 
month over the horizon time window. Each flow rate 
target is individually bounded and is held constant for a 
month. The algorithm proceeds by performing an 
optimization at the beginning of each year, to maximize 
NPV for production from the beginning of that year up to 
the end of year 4.5. The maximization is performed with 
respect to water injection rate targets over a horizon of up 
to two years (25 months). The 25th value of the optimal 
injection rate target is held constant until the end of year 
4.5. After an optimization is completed, the first 12 values 
in the sequence of optimal injection rate targets are 
implemented for a year. At the beginning of the next year, 
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it is assumed that new data have been collected and are 
the basis for an improved optimization. Then the 
optimization is repeated. The cycle continues until the end 
of year 4.5. It is assumed that no discrepancy exists 
between the reservoir model used by the optimizer and 
the actual reservoir. 

3. Ideal control: This scenario provides the theoretically 
maximum NPV that would be obtained in a single 
optimization with no modeling uncertainty. The decision 
variables are injection flow rate targets, selected every 
month over the entire 4.5-year period, i.e., 54 values in 
total.  

A summary of the production strategies employed over a 4.5-
year period along with resulting NPV and oil recovery values 
are shown in Table 5. The moving horizon NPV compares 
well with the NPV for ideal control. The resulting fluid 
saturation at the end of the production period for moving 
horizon control is shown in Fig. 16. Figs. 18, 19 and 20 show 
the improved oil production and water handling efficiency, as 
compared with reactive control. The moving horizon and ideal 
control methods show similar fluid profiles. 
 
Conclusions and Discussion 
In this paper we emphasized that production optimization and 
efficiency is an element of oil-field-wide optimization, a task 
that spans many interconnected space and time scales, each 
scale entailing appropriate decision making paradigms. We 
focused on production optimization by designing optimal 
waterflood policies. We proposed a moving-horizon 
optimization paradigm, an approach that has found widespread 
success in other industries, such as oil refining. The moving-
horizon formulation allows the incorporation of uncertainty. In 
addition, it allows a variety of numerical optimization 
techniques to be used for computation of optimal profiles in 
each horizon. While the latter task has been attempted 
primarily by employing optimal control theory, we 
demonstrated that standard global optimization algorithms, 
such as genetic algorithms and variants, offer attractive 
alternatives, i.e., (a) they search for the global optimum; (b) 
they are extremely easy to program, as opposed to optimal 
control theory, which requires a simulation effort comparable 
and in addition to that of reservoir simulation; and (c) they can 
be easily run in parallel over widely available PC clusters. The 
computational time requirements are comparable to those of 
serially run algorithms based on optimal control; the approach 
requires no effort for the set up and programming of the 
adjoint equations 10; and the optimizer does not become 
trapped in local solutions. 

The examples demonstrated the upside potential of a real-
time proactive optimal control policy when applied to 
producing projects, as compared with only reacting to well 
performance.  

It is clear that the work presented in this paper can be 
refined in a number of ways, such as the following: 

 
� Explicitly introduce uncertainty in the moving-horizon 

optimization 25. The description and quantification of 
uncertainty will be important for both how realistic the 

moving-horizon optimization problem is and how 
efficiently it can be solved. 

� Use proxy models 1,26,27 to partially replace the reservoir 
simulator, to reduce simulation time. 

� Parametrize the decision variables (e.g., waterflood flow 
rates) in a more efficient manner, to reduce the size of the 
moving-horizon formulation.  
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Nomenclature 
BHP – bottom-hole pressure 
COP – cumulative oil produced 
CWI – cumulative water injected 
CWP – cumulative water produced 
D - day 
h – thickness 
J – general objective function form 
k – permeability 
md – milliDarcy, permeability 
NPV – net present value 
Q (q) – rate 
STB – stock tank barrels 
 
Subscripts: 

o – oil 
w – water 
g – gas 
max - maximum 
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Table 1 – Economic data for Example 1  
Variable Value 
Oil price, $/STB 30 
Water operating expense, $/STB 2 
Water injection expense, $/STB 0.5 
Discount rate, % 15 
 
Table 2 – Production scenarios for Example 1. Producers: BHP = 4000 psi, Qmax = 10000 STB/D 

Mode of Operation Constraints on water injection flow rates (in 
STB/D) 

NPV 
($ MM) 

COP 
(MSTB) 

CWP 
(MMSTB) 

CWI 
(MMSTB) 

Reactive control Water injectors: Qmax = 10,000,  
Wells with water cut > 0.90 are shut in  12.9 667  1.5  2.1  

Ideal control 
(Perfect model) 

Injectors: Qmax < 2000 
Wells with water cut > 0.90 are shut in 16.6 777  1.4  2.1 

 
Table 3 – Production scenarios for Example 2 
Mode of Operation Constraints on water injection flow rates in STB/D NPV Recovery 

No control Constant flowrate targets for both injection layers:  
Qmax_upper = 3000, Qmax_lower = 3000 $5.7 MM 28.7% 

Reactive control 
Constant flowrate targets for both injection layers: 
Qmax_upper = 3000, Qmax_lower = 3000 
Shut in production wells with Water cut > 0.85 

$6.5 MM 29.7% 

Moving-horizon 
control 1 

Optimized flowrate targets for both injection layers: Constraints: 
Qmax_upper < 3000, Qmax_lower < 3000 $7.2 MM 28.8% 

Moving-horizon 
control 2 

Optimized flowrate targets for both injection layers: Constraint: Qmax_upper 
+ Qmax_lower < 6000 $6.7 MM 28.7% 

Ideal case 
(Perfect model) 

Optimized flowrate targets for both injection layers: 
Constraint: Qmax_upper + Qmax_lower < 6000 $7.3 MM 28.8% 

 
Table 4 – Economic evaluation data for Example 3 (SPE 10) 28. 
Variable Value 
Oil price, $/STB 30 
Water operating expense, $/STB 40 
Water injection expense, $/STB 3 
Discount rate, % 0 
 
Table 5 – Production scenarios for Example 3 (SPE 10) 

Mode of Operation Constraints on water injection flow rates (in 
STB/D) 

NPV 
($ MM) 

COP 
(MMSTB) 

CWP 
(MMSTB) 

CWI 
(MMSTB) 

Reactive control 

Water injector: Qmax = 5000,  
Producer: BHP = 3000 psi 
Shut in production wells with  
Water cut > 0.42 

55.5 2.5 0.24 3.3 

Moving-horizon 
control 

Injector: Qmax < 6000 
Producer: 500 < BHP < 4000 psi 77.3 3.2 0.30 2.2 

Ideal case 
(Perfect model) 

Injector: Qmax < 6000 
Producer: 500 < BHP < 4000 psi 81.4 3.1 0.14 1.8 
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Fig.1—A multi-level hierarchy of oil-field decision making tasks at 
different time scales. Feedback loops between levels consist of 
(a) passing data from a lower level to an overlying level, (b) 
processing data and making a decision over a time period at the 
overlying level, (c) passing the decision as objectives and 
constraints to the underlying level, and (d) almost instantly 
following the decision at the underlying level. 
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Fig. 2—Combinatorial explosion in dynamic programming 
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Fig. 3—Moving horizon for real-time reservoir 
management, within the context of the hierarchy in Fig.1. 
At lower levels of decision hierarchy, the frequency of 
observations increases. 
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Fig. 4—Example 1 reservoir and well model. The smart 
injector and smart producer each have 45 individual 
control points. 
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Fig. 5—Example 1 oil saturation after 1-year of water 
injection, illustrating improved sweep with well control. 
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Fig. 6—Example 1 oil saturation after 2nd-year of water 
injection, illustrating improved sweep with well control. 
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Fig. 7—Example 1 oil saturation after 3rd-year of water 
injection, illustrating improved sweep with well control. 
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Fig. 8—Example 1 oil saturation after 4th-year of water 
injection, illustrating improved sweep with well control. 
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Fig. 9—Example 2 reservoir and well configuration. 
 

 
Fig. 10—Moving horizon (MH) strategy for Example 2.  Each time window (horizon) is six years. An optimization of downhole 
zonal injection is performed from beginning of each six-year horizon to end of 10-year period, given previous years’ history.  
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Fig. 11—Example 2 evolution of reservoir model permeability of the upper high permeability later estimate for moving 
horizon model updates. 
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Fig. 12—Example 2 production and injection for reactive 
control and moving horizon control for each permeability 
layer.  
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Fig. 13—Example 2 Cumulative oil production (CUM 
PRD OIL MSTB) by layer for reactive control and moving 
horizon control for each permeability layer. 
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Fig. 14—Example 2 Cumulative water production (CUM 
PRD WTR MSTB) by individual permeability layer for 
reactive control and moving horizon control. 
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Fig. 15—Example 2 Cumulative water injection (CUM INJ 
WTR MSTB) by layer for reactive control and moving 
horizon control for each permeability layer. 
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Fig. 16—Example 3 – comparative solution model SPE 10. 
Saturation is shown for water injection at 1620 days for 
the ideal control case. The producing wells are labeled P1, 
P2, P3, P4. 
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Fig. 17—Example 3 SPE 10 model moving-horizon controls strategy. 
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Fig. 18—Example 3 - comparative solution model SPE 10. 
Cumulative produced oil (CUM PRD OIL, MSTB) profiles 
for reactive control, moving horizon control, and ideal 
control cases for each well. See Table 5 for the field 
cumulative results.  
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Fig. 19—Example 3 - comparative solution model SPE 10. 
Cumulative produced water (CUM PRD WTR, MSTB) 
profiles for reactive control, moving horizon control, and 
ideal control cases. See Table 5 for the field cumulative 
results. 
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Fig. 20—Example 3 - comparative solution model SPE10. 
Cumulative injected water (CUM INJ WTR, MSTB) 
profiles for reactive control, moving horizon control, and 
ideal control cases. See Table 5 for the field cumulative 
results. 
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