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Abstract

We present a set of new analytical solutions to the single layer
reservoir problem, both in real time and Laplace space. The
solutions are derived assuming a cuboid shaped reservoir
using a method of integral transforms. The method can be
applied to calculate the pressure as a function of position and
time when using any continuous function to describe the
production rate of a point source. Successive integration of the
point source solution can be performed to calculate the
average bottom hole pressure of awell.

These equations are applicable to partially penetrating vertical,
horizontal and fractured wells and take into account
superposition effects in multi-well and multi-rate scenarios.
Notably, regarding fractured wells, we are able to accurately
model the case of a finite conductivity fracture with non-
Darcy flow as well as those of infinite conductivity. The
generality of our method allows any continuous function of
position and time to be used to treat either pressures or fluid
fluxes on the boundaries.

Also, using solutions in Laplace space we are able to model
naturally fractured reservoirs, wellbore storage, non-Darcy D-
factors as well as constant well pressure production, also all
within a full field multi-well scenario. Our method, therefore,
provides a powerful alternative to simulation in terms of
reservoir modeling.

We present a comparison of our solutions with that generated
using a commercia finite difference ssmulator for a variety of
problems in terms of accuracy and speed. We find amazing
accuracy with massive gains (factors>300) in CPU times for
fracture problems in particular.

Introduction

Reservoir simulation is an essential tool for the management
of oil and gas reservoirs. Prediction of pressure-production
behaviour under various operating conditions allows, among
other benefits, proper investment decisions to be made. In
order to make such a prediction one must construct a reservoir
model. History matching observed behaviour of the reservoir
must validate the parameters of this model.

Idedlly, finite difference numerical simulators are used to
construct reservoir models. However, in order to make full use
of such atool alarge amount of reliable datais required. Also
a full study, including a history-matching analysis, may take
months to carry out. Therefore, there is a need for an
aternative tool that honours the physics of fluid flow and at
the same time offers a solution many orders quicker.
Analytical solutions are fast and provide a broad
understanding of the reservoir dynamics.

The equations applicable to laminar flow of fluids in a porous
medium were the results of Darcy’s experimental study of the
flow characteristics of sand filters. This combined with the
equation of continuity and an equation of state for dightly
compressible fluid gives the diffusivity eguation, which is the
equation for pressure diffusion in porous medium.

Solution of the diffusivity equation under different boundary
condition forms the basis for prediction of bottom hole
pressure response of a producing well. These analytical
solutions are generally applicable for a single well and used
widely in the area of well testing. The efficiency of analytical
modelsis generally judged by accuracy and speed.

The application of integral transform techniques to solve
physica problems involving linear partia differentia
equations is well known. The theory has been extensively
developed and given by Sneddon®, Churchill®® and Tranter®. A
common practice in solving linear partial differential
equations is to use the classical Fourier methods in the space-
variables after removing the time variable by Laplace
transformation. The classical methods often require at their
outset a correct form of the solution that satisfies the
governing differential equation. Hence, with these methods,
solutions are developed to provide answers to specific
problems. The integral transform techniques on the other hand
are direct and can be applied to a wide range of general class



of problems. Titchmarsh® and Korner® presented rigorous
mathematical treatment of the theory of integral transforms.
Thambynayagam’ provides practical and elegant solutions to
problems in diffusion by the use of successive integra
transforms. In our work we use these techniques to solve the
generalized multi-well problem in single-phase hydrocarbon
reservoirs. Inthe case of gas, the partial differential equations
have been linearlized by application of real gas pseudo-
pressure as described by Al-Hussainy et al®. At low pressures
linearization was improved by using Agarwal’s pseudo-time’®
along with pseudo-pressure.

Formulation of the Problem

We consider a cuboid model of a reservoir. The reservoir is
penetrated by multiple wells both in the vertical and horizontal
directions. The horizontal wells are parallel to any of the axes
of the cuboid. The six faces of the cuboid can have either no-
flow or constant pressure boundaries. The wells may be
fractured or unfractured. A representation of the reservoir
model is presented in Figure 1.

Figure 1: Cuboid reservoir with multiple completions

Our model consists of asingle layer, cuboid reservoir bounded
by the planes passing through x=0, x=a; y=0, y=b; z=0, z=d.
The reservoir has porosity ¢ and permeability K, , k,, K, in
the X, Y and Z directions respectively. We consider the
case of asingle vertical well or line source completed between

the coordinates (XOV’ yOv’ ZOlv) and (XOV’ yOv’ ZOZV)
producing fluid at rate q|(t) for t >t,. Inthis particular

example, the boundary conditions on each face of the
homogeneous cuboid are of the Neumann type (i.e. they
describe flux conditions on the boundaries) such that for

t > 0 they satisfy the following conditions:
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where for instance, ¥, (Y, Z,t) isthe flux asafunction of
position acrossthe (Y, Z) planeat X=0. Assuming a
sightly compressible fluid with compressibility C,, the

pressure P(X, Y, z,t) can be shown to satisfy the diffusivity
equation:
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where G, = C, + Cy and isthetotal compressibility of the

system assuming arock compressibility, C; . Seefor example

Aziz and Settari'® for aderivation of the diffusivity equation
using the assumptions we have outlined.

Single Vertical Partially Penetrating Well

Using a method of integral transforms devised by
Thambynayagam’ a solution for the average pressure of a
single, vertical, partialy penetrating well can be derived in the
form:

(8)

py (X, y.1) =

u(t-t,)d o
— [ at-t, - 0)x

0

Zﬂzath¢|Z -Z

02v 01v

X{SX(X’ XOv’z-)sy(y’ yOv’T)Si,j, (Zolv’ ZOZV’ ZOlv’ ZOZV’T)}dT +

t

" : I{ > Bif (x,y, 201v1202V,7)}dT+

¢ctabd|z -Z o bi=x,y.z

02v 0lv

1
+—X
4ab7r|Z A

02v 01v
a
dl
0

(p(u,v,w){lx(u, x) | y(v, y)IZJ (w,z, 202)}dudvdw

O T
o —a

where @(X, Y, z) = p(X, Y, Z,0) and describes the initial
pressure of the reservoir. We define g < O to signify
producing fluid. A positive value can be used for q to signify
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injection. Werefer to the first term as the source term which
describes the pressure contribution from the producing line
source. The second term we call the boundary term since it
describes the pressure contribution due to the fluid flow across
the boundaries. Finally, the third term isthe initial term which
dictates the pressure contribution due to the initial conditions
of thereservoir. The source functions,

SX(X’ XOV’T)'Sy(y’ yOv’T)’ SEH (ZOlV’ZOZV'ZOlV’ZOZV'T)’

boundary
functions, B>J<. (% Ys Zyays Zgoy s 7) B)J: (X Ys Zoay» Zopy 7)

BZI (X, Y, Zyy s Zgpy» T) and initial functions,

LU, x) 1, (v, y),IZj (W, 2y, Z,,) aredefinedin

Appendix C. A detailed description of the solution derivation
of equation (8) isdescribed in Appendix A.

The point (X, Y) ischosen in equation (8) such that it is
evaluated at the well radius so that our solution then describes
the average pressure along the well radius. We have found
that the average pressure is an excellent approximate to the
bottom hole pressure (BHP) of the well and evidence of thisis
shown in our comparisons with the ECLIPSE reservoir
simulator.

Analytic solutions for a uniform flux well with constant
sandface rate in a sealed, box-shaped reservoir have been
discussed fairly extensively in the literature 1234, Qur
method, on the other hand, fully accounts for the general
description of boundary and initial conditions we have
outlined.

In our example solution we have considered flux or Neumann
boundary conditions on all faces of our cuboid, but this need
not be the case. The Dirichlet condition:

@  p(0,y,z,1) = Py, (y,Z,1)

could be used for example to specify the pressure as afunction
of ¥, Z and t onthe X =0 boundary. An application of

thiskind of boundary condition would be to model the
pressure support from an aquifer. A Robin condition could
also specify amixture of pressure and flux conditionsin the
form:

ap(0,vy,z,1t)
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X
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The method of Thambynayagam’ can handle all permutations
of the Neumann, Dirichlet and Robin conditions over the six
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faces of the cuboid. However, in this paper we will deal with
Neumann boundary conditions only.

Thereis clearly huge scope for practical applications of these
solutions, both in single layer and multiple layer reservoir
problems. The multiple layer scenario can be modeled by
numerically solving for the crossflow between layers. Once
one has this crossflow as afunction of position and time
between each pair of adjacent layers then these analytical
solutions can be applied directly to calculate the pressure
anywhere in the reservoir. In this paper we will focus on single
layer problems.

Multiple Horizontal and Vertical Wells
Let us consider asealed (i.e. no fluid flow across any of the
boundaries) single layer reservoir. If we assume that our well

produces at constant rate V't and that the initial pressure

p(X, Y, z,0) = p, thenwe have aspecial case of equation
(8) where the boundary term vanishes and the initial termisa
constant, equal to ]J, , so that the average pressure of asingle
vertical well is:

(11)
qd
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In any real reservoir problem the rate history of awell will be
afunction of time. In the petroleum industry an often-used
condition is:

(12) q(t):iAqu(t—ti),[t0<t1<t2 ...... <t, .t ]

i=1

where AQ, =@, —0;_,. One can then use the principle of

superposition as outlined for example in Sabet™® which easily
lends itself to our solutions. The average pressure of our
single vertical well using the rate history defined in equation
(12) can then be written as:

(13)
d
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Our model provides much flexibility in terms of the placement
of wellsin the reservoir meaning we can use our solutions to
solve all manner of both well testing and full field simulation
problems with multiple wells (both horizontal and vertical).
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To give an example which nicely illustrates the power of these
solutions let us assume we have a reservoir model consisting
of avertical and ahorizontal well. The vertical well has

perforation end-pointsat (X,, Y, , Z,) and

(X,s Yy» Zoy,) and the horizontal well at (Xop,, Yiys Z,) and
(Xo2ns Yi» Z) - We also assume that the vertical and
horizontal wells have rate history:

(14)

M
G, (1) =D AqUt-t,),[t, <t, <t.<t, .t,]

(15

The average pressures of our vertical and horizontal wells,
P, (X, y,t) and p,, (Y, Z,t) respectively can then be written
as:
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The point (X, y) isthen chosen in equation (16) such that it is
evaluated at the well radius. The same is true of the point
(Y, 2) inequation (17). In the above expressionsfor the

average pressure of our vertical and horizontal wells
interference effects between the wells are fully accounted for
over all timeregimes of interest. Clearly our method can be
applied to similar problems where any number of wells are
specified.

Hydraulic Fractures

We can also model fractured wells using our integral
transform technique. Whereas the well is considered as a
uniform flux line source, a hydraulic fracture in our model is
considered as auniform flux plane source similar to that of
Gringarten et al*®. The source term for the average pressure of

ahydraulically fractured vertical well in the(X, Z) plane
producing at constant rate g can be obtained by integrating
equation (11) with respect to X, , from X, to X, , to give:

(18)
qd

p, (X y,t)=p, +

2
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We assume that the vertica well completion bisects the
rectangular fracture so that it is defined over the interval

between  the  points ((x, +%x,)/2,¥,,2,) and
((x, +%,)/2,y,,z,)and the fracture is bounded by the

planes X=Xy, X=Xy, Z=2y,, Z=12Zy,. The crucial

difference between our model and that of Gringarten is that,
firstly, the fracture does not have to fully penetrate the
formation and secondly, we do not assume the reservoir is
infinite in extent in theXand Y directions. In the above

example our uniform flux fracture produces at a constant rate
but this can be extended to a multi-rate scenario using a
similar approach that led us from equation (11) to (13).

While the so-called uniform flux model gives a good
approximation to a fracture with high conductivity, in order to
model fractures with low to intermediate conductivity the flow
dynamics inside the fracture must be considered.

Finite Conductivity Fractureswith Non-Darcy Flow

We have developed a model of a finite conductivity fracture
with non-Darcy flow using our solution for rectangular
sources in conjunction with a technique based on that of
Guppy’ to model flow within the fracture itself. The method
of solution involves forming two separate models. The first
models flow from the formation into the fracture, which we
will refer to as the Formation Model, The second models fluid
flow inside the fracture as it flows to the well where it is
produced, which we will refer to as the Fracture Model.

Formation Flow M odel
The Formation Model, as has been the case throughout this

paper, consists of a cuboid reservoir of length a, width b and
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height d. We again consider a vertical well which bisects a
rectangular vertical fracture in the (X, z) plane. The well is

(xﬂ yv’ ZOlv) and
(X,s YysZpp). The fracture has half-length X; and is

perforated  between the  points

bounded by the planes X=X, —X; , X=X, +X;, Z=Z,,
and Z=7,,. We dso split our rectangular fracture into

2N equal segments of length AX, athough because of
symmetry we consider only half the fracture, from X=X, to

X=X,+X;. The coordinates of the centre of fracture
segment J ae (Xj ’ yv’ (ZOZV + ZOlv) / 2) '

illustrates the problem with a cross-section though the
reservoir at the point Y,

Figure 2

s Well

Fracture

» >

X
Figure 2: Fracture paralle to the x-axis split into 2N
segments

We aso assume we have M time intervas so that
[t, <t <t,...<t, .t ]. Fluid from the formation flows
into the fracture and we assume that segment | produces
fluid at constant rate Qg between timeintervals t, andt,,; .

If the fracture produces at constant rate QV't , then at any time

N
t, we have the constraint qujk =q/ 2 for the half of the
j=1
fracture we are considering. The average pressure of the
surface of fracture segment |, which we denote Py (t),

producing at constant rate gy can then be obtained by setting

the appropriate segment coordinates in equation (18) and
integrating over the range of X values that the fracture
segment spans. This gives us the expression:

(19)
2q f ad

P t)=p +
P Hioglzg, -~z ¢

t
A{sl! 01 000000 8,000+ 1] 720,20 o
0

where X; = X; —AX/2and X;, = X; + AX/ 2are the lower

and upper positions of fracture segment | on the X axis
respectively.

However, equation (19) ignores the fact that a fracture
segment will feel a pressure drop due to fluid entering other
fracture segments as well asitself. We must also allow for the

fact that at time, t, , the fluid production rate of segment |,

Qjs1, Will be different to the production a time t, due

possibly to boundary effects and flow within the fracture as a
whole. We use the principle of superposition in time and
space to account for these effects and obtain an expression for
the average pressure over fracture ssgment | in the form:

(20)
N M 2Aq4,U (-t )ad

Pr=p DD~

2
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x | {Sx” X1 X X+, s ) + S (201,2021201,2021)}(11
0

2
X —X |Ax
ju il

t-t

for j =1,...N where AQg, =0g —Ofy- AN expression

can aso be written down for the average pressure at the
wellbore given a rate history for each fracture segment in the
form:

=z

(21)
M AqgU (t-t,)d

PO Yy )= P+ D, D —

2
i=1 k=17 bct¢|202v - ZOlvl |Xil - XIU | Ax

x [ {SI (K %y 50 7)+ 5, (3, 7) + S (201’202'2011202’1)}(17
0

t-t

An expression can then be written down using the formation
flow equations for the pressure drop between the wellbore and

fracture segment | attime t, :
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(22)
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In the next section we will use a Fracture Flow Model to
derive a corresponding equation for the pressure drop between
the wellbore and fracture segment j . We will see later how
these equations can be equated in order to solve for the rate
history of each fracture segment which will enable usto derive
our fractured well pressure as a function of time.

Fracture Flow Model
Non-Darcy flow within the fracture is described by
Forchheimer’ s equation:

aapf by v DA

(23)

where P; is the pressure as a function of position and time
within the fracture, ¢ and p are the fluid viscosity and
density, o, and b, the fracture conductivity and thickness,
V the fluid velocity and /3 is the so-called “Beta factor”

which quantifies the amount of non-Darcy flow. Setting
=0 onerecoversthe familiar law of Darcy.

We assume that al fluid flows along the fracture in a direction
perpendicular to the well at the fracture centre implying that
the pressure within the fracture is a function of X and t only,

P (X,t). Strictly speaking this means that we must model a

fracture that fully penetrates our reservoir as otherwise the
pressure within the fracture would not be independent of VY.

= p; (X,t) is a good

assumption as long as the fracture penetrates a reasonably
large fraction of the formation.

We find however that assuming

We aso note that the fluid velocity, V =0, (X,t)/bh,

where Q. (X,t) isthe cumulative fluid flow rate at time t that

passes the point X within the fracture on its way to the well.
Substituting for V' in equation (23) we obtain:

Py _ - pg(xt) PBY: (x.1)

(24)
X O (Zo—Zon) D7 (Zopy = Zon)°

(Zo1) Zop» 201’202'7)}(:'7

We assume that no fluid flows into the fracture at the fracture
tip and that al the fluid is eventually produced up the well
resulting in the following conditions:

apc(X/ + Xf ’t) —
X

Ip (%, 1) _ Ar
oX 2

Asin Guppy et d*’. we assume that . (X,t) varies linearly

within a fracture segment and therefore we define it with the
functional form:

_ Qi1 (t) — (t) _ g
(25) qc(xit)_qci (t)+[ AX j(x )ﬂ + 2 j

where AX isthe size of each segment, ., (t) isthe value of
the cumulative flux at the interface between segments i and
I+1and Qg (t) is the value of the cumulative flux at the
interface between segments i —1 and | .

The pressure drop at the centre of segment | (relative to the

well pressure) can then be found by integrating equation (24)
so that:

(26)
P (X Yoo t) = P; (%,1)
pB 2
qc — | & dX
O-f (ZOZV ZOlv I bz(ZOZV ZOlv) J-

We then sum the resulting pressure drops from each fracture
segment so that equation (26) transforms into:

(27)

P (% Yo t) = Py (X, 1) = H

—X
O (ZOZV - ZOlv)

j—1 X +Ax/2 X
X Z 0 dx + I G X |+
i=1 % —Ax/2 X —Ax/2
. PB
2 2
bf (ZOZV - zOlv)
1 %+Ax/2 j
Z .[ qCI dX+ I qu dX
i=1 X —AX/2 X; —AXx/2
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where Q; is the cumulative fluid flow rate across the interface
between fracture segment | and j —1. Using equation (25)
to substitute for each Qy; at a specific timestep t, and
evaluating the integrals yields:

Pe (% Yoo i) — P (%, 1)
(28)
_ U T, + PP
(oF (ZOZV_ ZOlv) bf (202v_201v

) 2 TND
where Ty and T, are terms representing the Darcy and non-
Darcy terms respectively and are defined:
(29)

2 AX AX
Ty = Z(qci (tk)7+ qci+l(tk)7 +

i=1

3AX AX 7AX

0, (8) =5~ + 0y (6) 5+ G5 (8) — =+
AX AX
+qc2j+l(tk)§+ Oy (t) Ay (tk)g

(30)
j-1

AX AX AX
Twpo = Z(fﬁ (tk)?_i_ Qs (tk)qci+1(tk)?+ q§+1(tk)?

i=1

N—

Solution Formulation

We proceed by equating the pressure drop in equations (22)
and (28) which were derived using the Formation Flow Model
and the Fracture Flow Model respectively. In order to do this
we note that the cumulative flux in the fracture is related to the
flux into each fracture segment by the simple relationship:

(8) g =g (t) — g (te)

Substituting for Ok in equation (22) and then equating
equations (22) and (28) gives us our final expression:

(32
H N PP
D 2
O (Zozv - ZOlv) bf (Zozv —
3} g GO R NVl MR NI IS

3 2
i=1 k=1 z bct¢|202v _ZOIV| Ax
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)2 TND -

{S)'!. ()SI’XI-|’XI-UT)+Sy(yV’T)+ (20112021201120211)}(:17—’_

M
+ZZ 2[q0i+1(tk) -0 (tk) B qci+1(tk—1) +0; (tk—l)] u(t _tk)db %

i=1 k=1 ”4Ct¢|202v_201v|2 AXZ

t—tj

x| {Sx” 4 X% Xy D)+, 3,10+ (201'202’201'202’7)}(17
0

-0

for j=2,...Ni.e. N—1 equations. Each equation contains
N -1 unknowns at each timestep, t,, which are the

cumulative fluxes 0., (t, ), Qes(te ), Oy (t,) . We have

successfully used Newton's method to solve this system of
non-linear equations to obtain the set of cumulative fluxes at
each timestep. Once they are known then the average well
pressure can be obtained using the equation:

(33)
N M AggU(t-t,)d

PO Y. =P+ ), D —

2
i=1 k=17 bct¢|202v - val Ax

i

x | {SI (X%, %, 7) + S, (¥, 7) + (2011202’201‘20217)}(17'
0

and choosing suitable values of X and Yy using the known
well redius.

Development of the Solutions in Laplace Space
Analytical solutionsin Laplace space have been well
documented in the literature and open up the possibility to
model wellbore storage, naturally fractured reservoirs, non-
Darcy flow in wells and wells operating under constant
pressure production. However, there are severe computational
problems associated with evaluating analytic Laplace space
solutions of this nature, as described for examplein Ozkan and
Raghavan™.

Appendix B gives an example of the computationa issues
associated with such solutions by considering the analytic
solution in Laplace space of the single rate vertica well
problem. It is clearly illustrated that calculating the series
solution is completely impractical and that another approach is
necessary.
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Our solution deals with this problem in asimple but elegant
way and can cope with all time ranges of interest. Let us
return to the problem of the single rate vertical well problem
in equation (11). We can perform the Laplace transform of
this equation numerically so that:

(34)

B, (% y,9) =2+

j j f (7)dzdt
S 2 abc ¢ | ZOZV lev 0 0

where f (7) ={Sx(x,r)+ S,(y,7)+ SZ” (z,, 2, zm,zoz,r)}

Using standard properties of the Laplace transform, equation
(34) can be reduced to the form:

(35

_ qd
P, (X,Y,8) = Py

j e (t)dt
s 2sr’abcg|z,, - 7,

meaning we now only have to perform oneintegral over time.

Equation (35) can then be rewritten in the form:

(36)
qd «
S 257%abG0 7, — 2|

x[ e f@at+ j e f (t)dt]

We now use the fact that over therange O0<t < T (fora

P (XY, 8)-

carefully chosen valueof T ) theterm e¥is approximately
constant and can therefore be brought outside the integral to
yield:

(37)
od o
s 2srabog|z,, )

x(esm j f (t)dt + j e f (t)dt]

0

Py (X Y,s)—-

Wefind setting T =1/(ns) gives good results where N is

the value of N used in the Stehfest™ inversion agorithm
given by:

@) pv(x,y,t):'”Tziwp(x,y,”‘Tzi]
i=1

Finally, we re-write the second integral in equation (37) to
obtain:

(39)

— P, qd
p (XY, 8)——= 7 X
S 2sm abc¢|z |

ov ~ Zowy

—sT /2 —(t+sT t
x( .[f(t)dt+ j ( )f(g+T]dt)

Equation (34) gives huge computational gains when re-
written in the form of equation (39). The fact that the first
integral is not dependent on S means that previous
evaluations of the integral for other values of S can bere-
used. Thiscan be exploited to maximum effect by

performing the sum in equation (39) from i = N,....,1.

The second integral in equation (36) isin aform suitable for
use with the Gauss-L aguerre integration agorithm®® since the
integrand decays exponentially over the range of t of interest.
Given anumber of pointsto use in the integration, the Gauss-
Laguerre algorithm requires the weights used in the
calculation to be computed just once. Any subsequent
integrals to be evaluated can then use these pre-calculated
weights. We have found that as few as 15 points are required
to compute thisintegral accurately using the Gauss-Laguerre
algorithm making it an extremely cheap calculation.

Our method therefore offers very fast calculation of well
pressures in Laplace space over al time ranges of interest.
There have been other attemptsin the literature to obtain well
pressures in Laplace space by numerically transforming the
real time well pressures such asin Thompson et al**.
However, this method relies on pre-calculated tables of the
real time well pressure, whereas our method requires no such
a-priori knowledge without the speed of the calculation being
compromised.

Problemsinvolving wellbore storage, constant pressure
production, non-Darcy flow and that of naturally fractured
mediums can now be easily computed as outlined in Ozkan &
Raghavan™ or Sabet™. For example, van Everdingen and
Hurst®® showed that the pressure response of awell with

wellbore storage coefficient C can be written in the form:

r)ur

40 P,(X,V,S) =
40) p(xVy.s q1+szq_)ur

where P, isthe Laplace transform of the unit rate pressure
response of awell without wellbore storage and is defined:

(41)
d

ZSﬂ'Zath¢ | Z02v ZOlv|

P (X, Y,8) = j e f (t)dt
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As already outlined, equation (39) can be used to calculate the
pressure response in Laplace space for awell producing at

constant rate V't . If we allow a series of Heaviside step

function based rates to be used for the rate history of the well,
asin eguation (12), then our Laplace space solution will be
written:

(42)

— d
B, (% y,9) =t -
S 237[ a‘bct¢|202v - Z()lv

\ .
x{zo Age™ } j e f (t)dt
]= 0

|2

There are problems associated with using the Stehfest®
inversion algorithm on equation (42) due to the discontinuous
nature of the rate history. The solution, asoutlined in avery
elegant approach by Chen & Raghavan®, isto

superpose N different L aplace space functions, each function
having its own Laplace variable S;- The Stehfest algorithm

can then be used to invert each Laplace function individually
to obtain a set of N real time pressure responses which can
simply be added to obtain the total real time pressure response
of thewell. Chen & Raghavan’s method can be used to write
the Laplace space pressure response due to the entire rate
history of the well as:

_ _ PN
(43 P(xy.8)=" +

=l j-1

t

AQ; By (X, Y, S;)

where S, isthe ] th Laplace variable, based on the elapsed

timet—tj_l.

Validation and Application

The agorithms were validated against special cases of the
solution of the diffusivity equation for a single well. All well
test interpretation software packages have these solutions; we
used Weltest 200°. Subsequently, for multiple well situations
with long pressure production history, numerical simulation
results were used. We used the ECLIPSE reservoir simulator
to build our numerical models.

A comprehensive sets of tests were carried out. We present a
few examples to demonstrate the speed and accuracy of our
algorithms. Figures 3 and 4 present pressure and log-log
pressure derivative plots respectively corresponding to a well
test. It can be seen that our generalized solution reduces to the
specific channel sand solution.

" Mark of Schlumberger

Wl 1.Full-Test
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. Fame e 3000 v Fane Tema

éP 2%
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Figure 3: Pressureresponsein channel
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Figure4: Log-log plot for pressureresponsein channel

In order to provide a solid test of our semi-analytic model for a
finite conductivity fracture we used a fracture with avery low

dimensionless conductivity, o, = K.b; / kx, =0.004.

This ensures that the pressure derivative responseis
significantly affected by the flow in the fractureitself. We
have found agreement with the conclusions of Guppy®’ in that
for low dimensionless fracture conductivities we need about
30 fracture segments to yield accurate results. In Figure 5 we
shoYv alog-log plot of our results compared to that of Weltest
200 .

Well 1"Log-Log plot of Drawdown 10 to 96 hr
T - ——arqa e et
. " e ——
1E+00z 5
2
Sigs00t —
=3 =
: "’—(,.r’-
% i .t
TE+ 000 “ 1
1E-001  1E4000 TE1Do D62 1E4003
Delln | hr

Figure5: Log-log plot for pressureresponsein
hydraulically fractured well

Figure 6 shows the effect of non-Darcy flow in afracture.
Please note how the pressure drop increases with an increase
in mesh size. The betafactor, which quantifies the degree of
non-Darcy flow, isrelated to the mesh size by the formula of
Cooke?.
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Figure 6: Effect of non-Darcy flow on pressureresponse
for afractured well

Figure 7 shows a numerical simulation model of arectangular
reservoir with 25 wells. 12 of the wells are fractured and an
observation well is placed at the centre of the reservair.

Areal View ki1
10000 —

-Noaoa d 1a00h

Figure 7: Unstructured grid for the simulation model

As can be seen in the bottom hole pressure plot of the
observation well (Figure 8), an excellent match is obtained
between our algorithm and the numerical model. The
execution time for our model was less than 20 seconds
compared to more than 1.7 hours (6277 secs) for the numerical
model —again of afactor of more than 300. Please note that
the fractures were explicitly modeled in the numerical model.

Figure8: Pressureresponse at the observation well

In order to perform automatic history match history we
incorporated a gradient-based optimization routine into our
software. In order to test our approach we obtained synthetic
well bottom hole pressure and rate response from a numerical

simulation model containing 3 wells. Thus we had a-priori
knowledge of the values of the history matching parameters.

The parametersin this case were K, , k, , k, and well skins.

We perturbed the values of these parameters in our model,
used the synthetic simulation result as observed data and ran
the model through aregression loop. A very good match was
obtained for each of the wells. Figure 9 shows the match for
one of the wells. The matched parameters were within 1
percent of the model parameters used to generate the data.

Automatic History Matching - Well 2
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Figure 9: Bottom hole pressure match for Well2.

Our method has been implemented in the form of a software
library with awell-defined API. We see a number of
applications that could use this library. Firstly, it can be used
as aproxy simulator. Thisincludes integration with a pipeline
network simulator for asset management particularly in the
case of gasreservoirs. Moreover, simplicity and speed makes
the software useful for real-time application. Real-time well
diagnostics using permanent downhole gauges is an ideal
application. On a different note, a production engineer could
use it to quickly evaluate hydrocarbon reservoirs, perhaps as a
precursor to detailed full-field numerical smulation. Finaly,
one may use the library in awell test interpretation package as
ageneralized well test model allowing, among others,
interference tests and wireline formations tests.

Conclusions

In this paper we have outlined the mathematics of a
generalized single layer anaytical model that models multi-
well (horizontal and vertical) single layer reservoir problems.
The following results were outlined:

e Derivation of a solution to the diffusivity equation for
problems with a large variety of boundary and initial
conditions. We showed an example of a solution
where Neumann (flux) boundary conditions were
specified on each side of our single layer reservoir.
However, the integra transform technique of
Thambynayagam’ can be used to solve problems
where any permutation of the Neumann (flux),
Dirichlet (pressure) and Robin (flux+pressure)
conditions are specified over the 6 boundaries.
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e A mathematical model for both infinite conductivity
(uniform flux) and finite conductivity fractures with
non-Darcy flow in the context of our multi-well
closed box reservoir.

e A methodology for efficiently computing Laplace
solutions. This enabled us to model physical effects
such as constant pressure production and wellbore
storage.

e The agorithm achieves excellent accuracy with
massive speed gains over numerical finite difference
based simulators.

e Combined with a gradient-based optimizer algorithm
it also proves a powerful tool for performing very fast
history matching studies.

We see a number of possible use of our algorithm. It
could be used for production evauation, as a proxy to
numerical simulator and as a generalized well test model.

Nomenclature
a=reservoir length

b = reservoir width

b; = fracture thickness

C = wellbore storage coefficient

C, = fluid compressibility

Cr = rock compressibility

G, = total formation (fluid + rock) compressibility

d = reservoir height

K, = permeability in the X -direction

k, = permesbility in the  -direction

K, = permeability in the Z -direction

K, = fracture permeability

p, = initial well/reservoir pressure

P; (X,t) = fracture pressure as a function of position and time

P, (X, y,t) = average pressure of avertical well at point
(X, y) attimet

B, (X, Y, S) = Laplace transform of the average pressure of a
vertical well at point (X, Y)

0. (X, t) = cumulative fluid flow rate passing point x at timet

0 (t) =cumulative fluid flow rate across the interface
between fracture ssgment | and | —1

Qy = flow rate into fracture segment j at time interval k

Aq = difference between the flow rate at time j and j—1

S= Laplace variable corresponding to elapsed time t

S; = Laplace variable corresponding to elapsed time t —1;

Xop= X coordinate of apoint source

X; = fracture half-length

Xo1n, = lower X coordinate of a horizontal well
Xopn, = Upper X coordinate of a horizontal well
X, = X coordinate of avertical well

You = Y coordinate of avertical well

Yon =Y coordinate of a horizontal well

Yop =Y coordinate of a point source

Z,,= Z coordinate of ahorizontal well

Z,,, = lower Z coordinate of avertical well
Z,,, = upper Z coordinate of avertical well
Z,,= Z coordinate of apoint source

/3 = non-Darcy Beta factor

M = fluid viscosity

@ = porosity

@ = fracture porosity

@(X, Y, Z) = initial reservoir pressure as afunction of position
n, = diffusivity constant in the Xdirection

1, = diffusivity constant in the Y direction

n, = diffusivity constant in the Z direction

O ; = fracture conductivity

O ;p = dimensionless fracture conductivity
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Appendix A
Solution of the Diffusivity Equation

In this appendix we outline the derivation of the solution of the diffusivity equation for a single, partialy penetrating, vertical well.
We start by considering the case of a point source at (Xop, Yops Zop) which produces a quantity of fluid Q at t =t,. The resulting

pressure response in the reservoir will satisfy the diffusivity equation:

Ip I°p o°p o'p  Q
(4 —=n + 1 +1 + (X=Xgp)o(y—Ygpld(z-2gp)
ot *9%x Yo%y ‘3’z gc, op op op
where 77, =K, /gcu, n, =K, /gcu, n, =K,/ ¢gcu and are the diffusivity constants in the X, Y, Z directions respectively.

Our single layer (box) reservoir has length @, width b and height d with porosity ¢ and permesbilities K, , K, , Kk, inthe X, y

and Zdirections respectively. In this particular example we impose flux or Neumann-type boundary conditions on each of the six
boundaries of the reservoir so that:

Jop(0,vy,z,t) u
43 gPAE Y. 5t
(43) . [k jwoyz(y,z,t)

) ﬂﬁi&iﬂz_[ﬁjwmwlﬂ)
X k,
(45) ap(x;—)+,t)=_(:z_y v (X, 2,t)
op(x,b,z,t) U
46 02002
(46) 3y [ky v .., (X, z,1)
(47) M:_[L Voo (X, ¥, 1)
0z k,

d
) Eﬂél;;ﬂz_(ﬁqu(hwn
0z

where for instance ¥, (Y, Z,t) istheflux asafunction of position acrossthe (Y, z) planeat X=0.

We note that the L aplace transform of afunction, ?(S) is defined as:

oo

(49 f(s)=] f(t)e*dt
0
We apply the Laplace transform to equation (42) which gives us an expression in terms of P(X, Y, Z,S) in the form:

50 7,

2°p 2°p 1'p Q st
+7 +1 - sp = "~ p(X,Y,2
9 %x Y 9%y £ 9%z ¢(x.y,2)

sSp = ——5(x—x0p)5(y— yop)é(z— zop)e"

C

where @(X, Y, Z) istheinitial pressure of the reservoir. We also note that the finite cosine Fourier transform of afunction, (s),is
defined as:

(51 ?(n): J. f(x) COS(MJ dx
0 2a
with itsinversion formula by:



14

SPE 99288

(52) f(x)_i 0)+—Z f(n)cos(nzxj

a

We now apply successive Fourier transforms with respect to the X, Yy and Z variables respectively to obtain an expression for
P (n m,l,S) intheform:

(53)

nz xOp mzry,, lzz,, - st
_ Q cos cos| — = |cos| — e {(—1)"”1//_ayz(m l s)+l//oyz(m,|,5)}
Py

() en () oot woln () on () on(5) o)
77)’ b 772 d t nx 77 b 772 d
(l)m+1 sz(nls)+ onnls l'+1E nms+_xyonms
Vo )}2 I (G 2P CLID a2 )2} )
e e (5 ey e () o () on ()
+17, b n, q g
ijj(p(u,v,w)cos(nﬂu) ( ) (I”Wjdudvdw
+000 2d
nx
() e () (5] o
a
where the functions l//ayz(m l,s), ‘//ayz (m,1, ), etc. involve Fourier transforms of the various boundary flux functions and are

defined in appendix C. We then apply successive inverse Fourier transforms and an inverse Laplace transform to obtain a solution for
the pressure at any point in the reservoir, P(X, Y, z,t) in the form:

N

(54)

U((t-t,)Q °
p(x,y,zt)= W I {Sx (X, %0,,7)Sy (V. ¥0,.7)S,(2,2,,,7) 7 +

0

¢c CJ{Baxy 2 s By (v 2 )+ By ) JdT 4

g |
|

8abd I J¢(U’V’W){I x (U, X)Ly (v, y) 15 (w, Z)}dudvdw

where @(X, Y, 2) = p(X, Y, 2,0) and describestheinitial pressure of the reservoir. We refer to the first term as the source term which

describes the pressure contribution from the point source. The second term we call the boundary term since it describes the pressure
contribution due to the fluid flow across the boundaries. Finally, the third term isthe initial term which dictates the pressure

contribution due to the initial conditions of the reservoir. The source functions, S, (X, %,,,7) » S, (Y Yo, 7) » S,(Z, %, 7)
boundary functions, B, (X,7) , B, (Y,7), B,(z,7)and nitia functions, I, (u,X),1,(v,y),!,(w, Z) are defined in Appendix C.

Part of the power of equation (54) is that each of the source, boundary and initial terms can be integrated multiple times depending on
the problem involved. To describe avertical well producing at rate q(t) for t >t, we integrate the source terms over the appropriate
time interval and integrate theterm S, (z, Z,, 7) over Zopfrom Zy,» the bottom end of the perforated vertical well, to 7, , the top
end. We then set X, = Xop and Y, =

Yop: since theXand Yy positions of our line source will remain the same as that of the
original point source. Thisyields:
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(55) -
Pyt = 47rabL(J:tg(bt|;02v ~ 7. qu(t _T){SX(X1X0v!T)Sy(y'yo\,,T)Si'. (zm,zmv,z,f)}dr+
* ¢Ct:1bd J:{Bx(x, y.2,7)+ By (x,y,2,7)+ B, (x,y,z,7) Jd7 +
i 8a1bd Eij;¢(u’V,W){|X(U,X)|y(V’ y)1,(w,z) Jdudvdw

where S£ (Zow» Zopy» 2,7) isaso defined in Appendix C. Given that the pressure of apartially penetrating well will vary across the

well itself we have found it most useful for practical applicationsto calculate the average well pressure. Thisis obtained by
integrating equation (55) over the spatia interval of the well and then dividing by the well length yielding an expression for the

average well pressure of our vertical well, which we will also denote p, (X, Y,t) :

(56)

U (t-t,)d o [
|2 j Q(t_to_f) SX(X,XOV,T)Sy(y,yOV,T)SZ (201\/'202\/'201\/'202\/'7) 7

0

py(x,y,t) =

2
27 “abc,¢ |202V = Zyyy

4
+ I{ x (Xoy,z,.,2,,,T)+ BJ (X, ¥,2,,,,2Z,,, r)+B'[ (x,y, zm,zOZV,r)}dz’+
¢c,abd |202v_ ZOlv|0
abd
1 ]
+ jjj(p(u v, W){ (u, )ty (v, y)l; (w,z,,,z 02V)}dudvdw
4ab7£|202V— ZOlv|OOO

We again refer the reader to Appendix C for definitions of the terms SZ“ (Zows Zopys Zogys Zopy s ) » B)! (X s Zgyys Zgpy» T)

BJ (X, y! ZOlv’ ZOZV’T) ! BJ (X1 y’ ZOlv' ZOZV’T) and |£ (W7 ZOlv' ZOZV) '

Appendix B
Convergence Analysis of Analytic Laplace Space Solutions

In this appendix we investigate the convergence problems of analytic solutionsin Laplace space. Our exampleis based on the single,

partially penetrating, vertical well problem addressed by equation (13) in the main text. Taking the Laplace transform of this equation
yields:

(57)

Zd{ques‘} ), csch{ ﬂx+} | | ,
P %y, =——= ”ZOZV —Sin(”—z"“)} COS( mﬂyjcos( mﬂy"”)x
87[ tix

d b b

m=|

- Z01v ﬂx +

x{cosh{(a |x—x,

) ,B+—}+cosh (a—x-x,) ﬁ+—H

X

where:
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n mz n,(Ilr ?
58 =X = z | =
S x[ijrnx(dj

Weset m=0 and 7, =7, in equation (57) in order to investigate the convergence of the sumin | . The exponential behaviour of the
sumin | isthen:

(59) cosh{—|x—xo| ﬂx+i} =cosh{—|;z |x—b—x0|}
n

X

which will control the convergence of the seriesin | . For the sake of illustration we choose some parameter values by setting the layer
width, b =10"m, and well radius, X— X, = 0.1m. We also define convergence to be the value of | where the exponential term is

. , , _ 10" In10° ,
10 of itsvaluewhen | = 0. Plugging these valuesin wefind we need | = ———— = 439761 terms to achieve convergence.
0.1z

Given that we in fact have a double sum to perform in equation (57) it is clear that there are severe computations issues with this
approach. Although Ozkan and Raghavan™® do address many of these computational issues they do not satisfactorily address all of
them, the main issue being their approximation for the long time behaviour of solutions like that in equation (57), which they admit is
slow.

Appendix C
Function Definitions

1] t>t
60) U (t—t )=
(60 ( ) 0}t<t0

(61) erf(x)= %I e “"du
0

(62) S,(x,7) =0, ia(x_xo)’e_[a)”xf ey La(X+XO),e_(Z) T

T (2 e T (&) ne
(63) Sy(y’T):®3 E(y_YO)'e(bJ +@3 E(y+yo)1e(]

©®) S, (z,7)=0, ZL(Z—ZO),G_(Zj ", ;—d(Z-l- zo),e_[%j "

d
(65)
z EAPE /4 (&) e
SzJ (201’202’217):®£ H(Z_Zm)'e d) +@£ H(Z"‘Zoz)ae d)
_@j L(Z—Z )e— %jzﬂzr _@I L(Z+Z )e_ %)Zlizr
s 1 5g 02)> 3 1 %4 01/
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(66)

T *lznx‘[
SJI (X01'X021X03’X04!7):®£ Z(XO4_X01)18 a]

z ( jz
(7).
2ﬂa (Xoq + Xg2),€ °°

T NES T () 7
_G)g _(X04_X02)1e aj _G)g E(Xm"'xm)ae a)

2a

J. T - ZJznr
—03 | 7 (Xp3 — Xp1), € *°

T - gznxr
2a —®£ [E(Xos"'xoz)’e( j

.
2a

(Xo5 = on)’e_(aj " + @i [27[_61()(03 + X01)’e_(aj T
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2
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2d 2d
jznzr
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Many of the analytical solutionswe present in this paper use dlliptical theta functions. We define the basic elliptical thetafunctions as
in Abramowitz & Stegun®, although the reader should be aware that there are alternative definitions e.g. Spanier & Oldham®.
Despite these functions consisting of infinite sums they converge very rapidly indeed for all parameter input ranges. Our definitions
are asfollows:
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