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Abstract 
We present a set of new analytical solutions to the single layer 
reservoir problem, both in real time and Laplace space.  The 
solutions are derived assuming a cuboid shaped reservoir 
using a method of integral transforms.  The method can be 
applied to calculate the pressure as a function of position and 
time when using any continuous function to describe the 
production rate of a point source. Successive integration of the 
point source solution can be performed to calculate the 
average bottom hole pressure of a well.  
 
These equations are applicable to partially penetrating vertical, 
horizontal and fractured wells and take into account 
superposition effects in multi-well and multi-rate scenarios. 
Notably, regarding fractured wells, we are able to accurately 
model the case of a finite conductivity fracture with non-
Darcy flow as well as those of infinite conductivity. The 
generality of our method allows any continuous function of 
position and time to be used to treat either pressures or fluid 
fluxes on the boundaries. 

 
Also, using solutions in Laplace space we are able to model 
naturally fractured reservoirs, wellbore storage, non-Darcy D-
factors as well as constant well pressure production, also all 
within a full field multi-well scenario.  Our method, therefore, 
provides a powerful alternative to simulation in terms of 
reservoir modeling. 
  
We present a comparison of our solutions with that generated 
using a commercial finite difference simulator for a variety of 
problems in terms of accuracy and speed.  We find amazing 
accuracy with massive gains (factors>300) in CPU times for 
fracture problems in particular. 

 

Introduction 
Reservoir simulation is an essential tool for the management 
of oil and gas reservoirs. Prediction of pressure-production 
behaviour under various operating conditions allows, among 
other benefits, proper investment decisions to be made. In 
order to make such a prediction one must construct a reservoir 
model. History matching observed behaviour of the reservoir 
must validate the parameters of this model. 
 
Ideally, finite difference numerical simulators are used to 
construct reservoir models. However, in order to make full use 
of such a tool a large amount of reliable data is required. Also 
a full study, including a history-matching analysis, may take 
months to carry out. Therefore, there is a need for an 
alternative tool that honours the physics of fluid flow and at 
the same time offers a solution many orders quicker. 
Analytical solutions are fast and provide a broad 
understanding of the reservoir dynamics.  
 
The equations applicable to laminar flow of fluids in a porous 
medium were the results of Darcy’s experimental study of the 
flow characteristics of sand filters. This combined with the 
equation of continuity and an equation of state for slightly 
compressible fluid gives the diffusivity equation, which is the 
equation for pressure diffusion in porous medium.    
 
Solution of the diffusivity equation under different boundary 
condition forms the basis for prediction of bottom hole 
pressure response of a producing well. These analytical 
solutions are generally applicable for a single well and used 
widely in the area of well testing.  The efficiency of analytical 
models is generally judged by accuracy and speed. 

 
The application of integral transform techniques to solve 
physical problems involving linear partial differential 
equations is well known. The theory has been extensively 
developed and given by Sneddon1, Churchill2,3 and Tranter4. A 
common practice in solving linear partial differential 
equations is to use the classical Fourier methods in the space-
variables after removing the time variable by Laplace 
transformation.   The classical methods often require at their 
outset a correct form of the solution that satisfies the 
governing differential equation. Hence, with these methods, 
solutions are developed to provide answers to specific 
problems. The integral transform techniques on the other hand 
are direct and can be applied to a wide range of general class 
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of problems. Titchmarsh5 and Korner6 presented rigorous 
mathematical treatment of the theory of integral transforms.  
Thambynayagam7 provides practical and elegant solutions to 
problems in diffusion by the use of successive integral 
transforms. In our work we use these techniques to solve the 
generalized multi-well problem in single-phase hydrocarbon 
reservoirs.   In the case of gas, the partial differential equations 
have been linearlized by application of real gas pseudo-
pressure as described by Al-Hussainy et al8. At low pressures 
linearization was improved by using Agarwal’s pseudo-time9 
along with pseudo-pressure.  

 
Formulation of the Problem  
We consider a cuboid model of a reservoir. The reservoir is 
penetrated by multiple wells both in the vertical and horizontal 
directions.  The horizontal wells are parallel to any of the axes 
of the cuboid. The six faces of the cuboid can have either no-
flow or constant pressure boundaries. The wells may be 
fractured or unfractured. A representation of the reservoir 
model is presented in Figure 1.  
 

 

Figure 1: Cuboid reservoir with multiple completions 

Our model consists of a single layer, cuboid reservoir bounded 
by the planes passing through x=0, x=a; y=0, y=b; z=0, z=d.  
The reservoir has porosity φ  and permeability , ,  in 
the 

xk yk zk
x ,  and  directions respectively.  We consider the 

case of a single vertical well or line source completed between 
the coordinates 

y z
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producing fluid at rate  for . In this particular 
example, the boundary conditions on each face of the 
homogeneous cuboid are of the Neumann type (i.e. they 
describe flux conditions on the boundaries) such that for 
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where for instance, 0 ( , , )yz y z tψ  is the flux as a function of 

position across the  plane at .  Assuming a 

slightly compressible fluid with compressibility , the 

pressure 

( , )y z 0x =

oc
( , , , )p x y z t  can be shown to satisfy the diffusivity 

equation: 
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where  and is the total compressibility of the 

system assuming a rock compressibility, .  See for example 
Aziz and Settari

t oc c c= + R

Rc
10 for a derivation of the diffusivity equation 

using the assumptions we have outlined.   
 
Single Vertical Partially Penetrating Well 
Using a method of integral transforms devised by 
Thambynayagam7 a solution for the average pressure of a 
single, vertical, partially penetrating well can be derived in the 
form: 
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where ( , , ) ( , , , 0)x y z p x y zϕ = and describes the initial 
pressure of the reservoir.  We define  to signify 
producing fluid.  A positive value can be used for  to signify 

0q <
q
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injection.  We refer to the first term as the source term which 
describes the pressure contribution from the producing line 
source.  The second term we call the boundary term since it 
describes the pressure contribution due to the fluid flow across 
the boundaries.  Finally, the third term is the initial term which 
dictates the pressure contribution due to the initial conditions 
of the reservoir.  The source functions, 

, , , 
boundary 

functions, , , 

 and initial functions, 
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Appendix C.  A detailed description of the solution derivation 
of equation (8) is described in Appendix A.   
 
The point ( , )x y  is chosen in equation (8) such that it is 
evaluated at the well radius so that our solution then describes 
the average pressure along the well radius.  We have found 
that the average pressure is an excellent approximate to the 
bottom hole pressure (BHP) of the well and evidence of this is 
shown in our comparisons with the ECLIPSE* reservoir 
simulator. 
 
Analytic solutions for a uniform flux well with constant 
sandface rate in a sealed, box-shaped reservoir have been 
discussed fairly extensively in the literature 11,12,13,14.  Our 
method, on the other hand, fully accounts for the general 
description of boundary and initial conditions we have 
outlined.  
 
In our example solution we have considered flux or Neumann 
boundary conditions on all faces of our cuboid, but this need 
not be the case.  The Dirichlet condition: 
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could be used for example to specify the pressure as a function 
of ,  and  on the  boundary. An application of 
this kind of boundary condition would be to model the 
pressure support from an aquifer.  A Robin condition could 
also specify a mixture of pressure and flux conditions in the 
form: 
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The method of Thambynayagam7 can handle all permutations 
of the Neumann, Dirichlet and Robin conditions over the six 

                                                           
* Mark of Schlumberger  

faces of the cuboid.  However, in this paper we will deal with 
Neumann boundary conditions only.  
 
There is clearly huge scope for practical applications of these 
solutions, both in single layer and multiple layer reservoir 
problems.   The multiple layer scenario can be modeled by 
numerically solving for the crossflow between layers.  Once 
one has this crossflow as a function of position and time 
between each pair of adjacent layers then these analytical 
solutions can be applied directly to calculate the pressure 
anywhere in the reservoir. In this paper we will focus on single 
layer problems. 
 
Multiple Horizontal and Vertical Wells 
 Let us consider a sealed (i.e. no fluid flow across any of the 
boundaries) single layer reservoir.  If we assume that our well 
produces at constant rate  and that the initial pressure q t∀

( , , ,0) Ip x y z p=  then we have a special case of equation  
(8) where the boundary term vanishes and the initial term is a 
constant, equal to Ip , so that the average pressure of a single 
vertical well is: 
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In any real reservoir problem the rate history of a well will be 
a function of time.  In the petroleum industry an often-used 
condition is: 
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where .  One can then use the principle of 
superposition as outlined for example in Sabet

1i i iq q q −∆ = −
15 which easily 

lends itself to our solutions.  The average pressure of our 
single vertical well using the rate history defined in equation 
(12) can then be written as: 
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Our model provides much flexibility in terms of the placement 
of wells in the reservoir meaning we can use our solutions to 
solve all manner of both well testing and full field simulation 
problems with multiple wells (both horizontal and vertical).   
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To give an example which nicely illustrates the power of these 
solutions let us assume we have a reservoir model consisting 
of a vertical and a horizontal well.  The vertical well has 
perforation end-points at 01( , , )v v vx y z  and 

02( , , )v v vx y z and the horizontal well at 01( , ,h h h )x y z  and 

02( , ,h h h )x y z .  We also assume that the vertical and 
horizontal wells have rate history: 
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The average pressures of our vertical and horizontal wells, 
( , , )vp x y t and ( , , )hp y z t  respectively can then be written 

as: 
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The point ( , )x y  is then chosen in equation (16) such that it is 
evaluated at the well radius.  The same is true of the point 

 in equation (17).   In the above expressions for the 

average pressure of our vertical and horizontal wells 
interference effects between the wells are fully accounted for 
over all time regimes of interest.  Clearly our method can be 
applied to similar problems where any number of wells are 
specified. 

( , )y z

  
Hydraulic Fractures 
We can also model fractured wells using our integral 
transform technique.  Whereas the well is considered as a 
uniform flux line source, a hydraulic fracture in our model is 
considered as a uniform flux plane source similar to that of 
Gringarten et al16.  The source term for the average pressure of 
a hydraulically fractured vertical well in the ( , )x z plane 
producing at constant rate q can be obtained by integrating 
equation (11) with respect to 0x , from 01x  to 02x , to give: 
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We assume that the vertical well completion bisects the 
rectangular fracture so that it is defined over the interval 
between the points 02 01 01(( ) / 2, , )vx x y z+  and 

02 01 02(( ) / 2, , )vx x y z+ and the fracture is bounded by the 

planes 01x x= , 02x x= , , .  The crucial 
difference between our model and that of Gringarten is that, 
firstly, the fracture does not have to fully penetrate the 
formation and secondly, we do not assume the reservoir is 
infinite in extent in the

01z z= 02z z=

x and directions.  In the above 
example our uniform flux fracture produces at a constant rate 
but this can be extended to a multi-rate scenario using a 
similar approach that led us from equation (11) to (13).   

y

 
While the so-called uniform flux model gives a good 
approximation to a fracture with high conductivity, in order to 
model fractures with low to intermediate conductivity the flow 
dynamics inside the fracture must be considered. 
 
Finite Conductivity Fractures with Non-Darcy Flow 
We have developed a model of a finite conductivity fracture 
with non-Darcy flow using our solution for rectangular 
sources in conjunction with a technique based on that of 
Guppy17 to model flow within the fracture itself.  The method 
of solution involves forming two separate models. The first 
models flow from the formation into the fracture, which we 
will refer to as the Formation Model, The second models fluid 
flow inside the fracture as it flows to the well where it is 
produced, which we will refer to as the Fracture Model. 
 
Formation Flow Model 
The Formation Model, as has been the case throughout this 
paper, consists of a cuboid reservoir of length , width and a b
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height .  We again consider a vertical well which bisects a 
rectangular vertical fracture in the 

d
( , )x z  plane.  The well is 

perforated between the points 01( , , )v v vx y z and 

02( , , )v v vx y z .  The fracture has half-length fx and is 

bounded by the planes v fx x x= − , v fx x x= + ,  

and . We also split our rectangular fracture into 

equal segments of length 

01vz z=

02vz z=
2N x∆ , although because of 
symmetry we consider only half the fracture, from vx x=  to 

v fx x x= + .  The coordinates of the centre of fracture 

segment j  are .  Figure 2 
illustrates the problem with a cross-section though the 
reservoir at the point  

02 01( , , ( ) / 2)j v v vx y z z+

vy
 
 

 
Figure 2: Fracture parallel to the x-axis split into 2N 
segments 
 
We also assume we have M  time intervals so that 
[ ]0 1 2 1...... ,M Mt t t t t−< < < .  Fluid from the formation flows 
into the fracture and we assume that segment j  produces 

fluid at constant rate fjkq  between time intervals  and .  

If the fracture produces at constant rate , then at any time 

 we have the constraint  for the half of the 

fracture we are considering.  The average pressure of the 
surface of fracture segment 
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producing at constant rate fjq  can then be obtained by setting 
the appropriate segment coordinates in equation (18) and 
integrating over the range of x  values that the fracture 
segment spans.  This gives us the expression: 
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where / 2jl jx x x= − ∆ and / 2ju jx x x= + ∆ are the lower 

and upper positions of fracture segment j  on the x  axis 
respectively.   
 
However, equation (19) ignores the fact that a fracture 
segment will feel a pressure drop due to fluid entering other 
fracture segments as well as itself.  We must also allow for the 
fact that at time, the fluid production rate of segment 1kt + j , 

1fjkq + , will be different to the production at time due 
possibly to boundary effects and flow within the fracture as a 
whole.  We use the principle of superposition in time and 
space to account for these effects and obtain an expression for 
the average pressure over fracture segment 

kt

j  in the form: 
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for 1,...j N= where 1fik fik fikq q q −∆ = − .  An expression 
can also be written down for the average pressure at the 
wellbore given a rate history for each fracture segment in the 
form: 
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An expression can then be written down using the formation 
flow equations for the pressure drop between the wellbore and 
fracture segment j  at time : kt
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In the next section we will use a Fracture Flow Model to 
derive a corresponding equation for the pressure drop between 
the wellbore and fracture segment j .  We will see later how 
these equations can be equated in order to solve for the rate 
history of each fracture segment which will enable us to derive 
our fractured well pressure as a function of time. 
 
Fracture Flow Model 
Non-Darcy flow within the fracture is described by 
Forchheimer’s equation: 

(23)  2f f

f

p b
V V

x
µ

ρβ
σ

∂
= +

∂
 

where fp  is the pressure as a function of position and time 
within the fracture, µ  and ρ  are the fluid viscosity and 

density, fσ  and fb  the fracture conductivity and thickness, 

 the fluid velocity and V β  is the so-called “Beta factor” 
which quantifies the amount of non-Darcy flow.  Setting 

0β =  one recovers the familiar law of Darcy.  
 
We assume that all fluid flows along the fracture in a direction 
perpendicular to the well at the fracture centre implying that 
the pressure within the fracture is a function of x  and  only,  t

( , )fp x t .  Strictly speaking this means that we must model a 
fracture that fully penetrates our reservoir as otherwise the 
pressure within the fracture would not be independent of .  

We find however that assuming 

y
( , )f fp p x t=  is a good 

assumption as long as the fracture penetrates a reasonably 
large fraction of the formation. 
 
We also note that the fluid velocity, , 

where  is the cumulative fluid flow rate at time t  that 
passes the point 

( , ) /c fV q x t b h=
( , )cq x t

x  within the fracture on its way to the well.  
Substituting for V  in equation (23) we obtain: 
 

(24) 
2

2 2
02 01 02 01

( , ) ( , )
( ) ( )

f c c

f v v f v v

p q x t q x t
x z z b z z

µ ρβ
σ

∂
= +

∂ − −
 

 
We assume that no fluid flows into the fracture at the fracture 
tip and that all the fluid is eventually produced up the well 
resulting in the following conditions: 
 

( , )
0c v fp x x t

x
∂ +

=
∂

 

 
( , )

2
fc v qp x t

x
∂ =

∂
 

 
As in Guppy et al17. we assume that  varies linearly 
within a fracture segment and therefore we define it with the 
functional form: 

( , )cq x t

 

(25) 1( ) ( )( , ) ( )
2

ci ci
c ci i

q t q t xq x t q t x x
x

+ − ∆⎛ ⎞⎛= + − +⎜ ⎟⎜ ⎟∆ ⎝ ⎠⎝ ⎠
⎞

 
 
where x∆  is the size of each segment,  is the value of 
the cumulative flux at the interface between segments i  and 

and  is the value of the cumulative flux at the 

interface between segments  and i . 

1( )ciq t+

1i + ( )ciq t
1i −

 
The pressure drop at the centre of segment i  (relative to the 
well pressure) can then be found by integrating equation (24) 
so that: 
 
(26)  

' 2 '
2 2

02 01 02 01

( , , ) ( , )

( ) ( )

i i

v v

f v v f i

x x

c c
f v v f v vx x

p x y t p x t

q dx q dx
z z b z z

µ ρβ
σ

−

= +
− −∫ ∫

 

 
We then sum the resulting pressure drops from each fracture 
segment so that equation (26) transforms into: 
 
(27)  

02 01

/ 21

1 / 2 / 2

2 2
02 01

/ 21
2 2

1 / 2 / 2

( , , ) ( , )
( )

( )

ji

i j

ji

i j

f v v f i
f v v

xx xj

ci cj
i x x x x

f v v

xx xj

ci cj
i x x x x

p x y t p x t
z z

q dx q dx

b z z

q dx q dx

µ
σ

ρβ

+∆−

= −∆ −∆

+∆−

= −∆ −∆

− =
−

⎛ ⎞
⎜ ⎟× + +
⎜ ⎟
⎝ ⎠

+ ×
−

⎛ ⎞
⎜ ⎟× +
⎜ ⎟
⎝ ⎠

∑ ∫ ∫

∑ ∫ ∫

×
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where is the cumulative fluid flow rate across the interface 

between fracture segment 
cjq

j  and 1j − .  Using equation (25) 

to substitute for each  at a specific timestep  and 
evaluating the integrals yields: 

cjq kt

 

(28) 
2 2

02 01 02 01

( , , ) ( , )

( ) ( )

f v v k f i k

D ND
f v v f v v

p x y t p x t

T T
z z b z z

µ ρβ
σ

−

= +
− −

 

 
where DT and  are terms representing the Darcy and non-
Darcy terms respectively and are defined: 

NDT

 
(29)  

1

1
1

2
1

2
1 1

( ) ( )
2 2

3 7( ) ( ) ( )
8 8

( ) ( ) ( )
24 6

j

D ci k ci k
i

cj k cj k cj k

cj k cj k cj k

x xT q t q t

24
x x xq t q t q t

x xq t q t q t

−

+
=

+

+ +

∆ ∆⎛ ⎞= + +⎜ ⎟
⎝ ⎠

∆ ∆+ + +

∆ ∆+ +

∑
∆ +  

 
(30)  

1
2 2

1 1
1

( ) ( ) ( ) ( )
3 3

j

ND ci k ci k ci k ci k
i 3

x xT q t q t q t q t
−

+ +
=

∆ ∆⎛= + +⎜ ⎟
⎝ ⎠

∑ x∆ ⎞

 
 
Solution Formulation 
We proceed by equating the pressure drop in equations (22) 
and (28) which were derived using the Formation Flow Model 
and the Fracture Flow Model respectively.  In order to do this 
we note that the cumulative flux in the fracture is related to the 
flux into each fracture segment by the simple relationship: 
 
(31) 1( ) ( )fjk cj k cj kq q t q t+= −  
 
Substituting for fjkq  in equation (22) and then equating 
equations (22) and (28) gives us our final expression: 

 
(32)  

[ ]

{ }

1 1 1 1

02 01

1 1

23

01 02 01 02
0

2 2
02 01 02 01

1 1

2 (

2

( , ) ( , ) ( , , , , )

( ) ( ) ( ) ( )

( ) ( )

( ) ( )

,

ci k ci k ci k ci k

v v

j

ci k ci k ci

k

t

t t

x y z

D ND
f v v f v v

N M

i k

v il iu v

U t t d

bc z z x

S x x x S y S z z z z d

q t q t q t q t

q t q t q

T T
z z b z z

π φ

τ τ τ τ

)

µ ρβ
σ

+ + − −

+ +

−

= =

−

− ∆

+ +

− − +

− −

×

∫ ∫∫×

+ −
− −

−

+

+

∫

∑∑

[ ]

{ }

1 1

02 01

24 2

01 02 01 02
0

1 1

( )

( , , , , ) ( , ) ( , , , , )

0

( ) ( )k ci k

v v

j

k

t

t t

x iu ju y z

N M

i k

il jl v

U t t db

c z z x

S x x x x S y S z z z z d

t q t

π φ

τ τ τ

− −

−

= =

−

− ∆

+ +

=

+
×

∫∫ ∫∫× ∫

∑∑

τ

 
for 2,...j N= i.e.  equations.  Each equation contains 

 unknowns at each timestep, , which are the 

cumulative fluxes .  We have 
successfully used Newton’s method to solve this system of 
non-linear equations to obtain the set of cumulative fluxes at 
each timestep.  Once they are known then the average well 
pressure can be obtained using the equation: 

1N −
1N − kt

2 3( ), ( ),..., ( )c k c k cN kq t q t q t

 
(33)  

{ }
02 01

23

01 02 01 02
0

1 1

( )
( , , )

( , , , ) ( , ) ( , , , , )

v v

j

k
I

t

t t

x li ui y z

N M
fik

i k

q U t t d

bc z z x
p x y t p

S x x x S y S z z z z d

π φ

τ τ τ
−

= =

∆ −

− ∆
= +

+ +

×

∫ ∫ ∫× ∫

∑∑

τ

 

 
and choosing suitable values of x  and  using the known 
well radius. 

y

 
Development of the Solutions in Laplace Space 
Analytical solutions in Laplace space have been well 
documented in the literature and open up the possibility to 
model wellbore storage, naturally fractured reservoirs, non-
Darcy flow in wells and wells operating under constant 
pressure production.  However, there are severe computational 
problems associated with evaluating analytic Laplace space 
solutions of this nature, as described for example in Ozkan and 
Raghavan18.    
 
Appendix B gives an example of the computational issues 
associated with such solutions by considering the analytic 
solution in Laplace space of the single rate vertical well 
problem.  It is clearly illustrated that calculating the series 
solution is completely impractical and that another approach is 
necessary. 
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Our solution deals with this problem in a simple but elegant 
way and can cope with all time ranges of interest.  Let us 
return to the problem of the single rate vertical well problem 
in equation (11).  We can perform the Laplace transform of 
this equation numerically so that: 
 
(34)  

02 01

22
0 02

( , , ) ( )
v v

t
stI

t

v
qd

abc z z

p
p x y s e f d dt

s π φ
τ τ

∞
−

−
= + ∫ ∫  

 

where { }01 02 01 02( ) ( , ) ( , ) ( , , , , )x y zf S x S y S z z z zτ τ τ ∫ ∫= + + τ  

 
Using standard properties of the Laplace transform, equation 
(34) can be reduced to the form: 
 
(35)  

02 01

22
02

( , , ) ( )
v v

stI
v

t

qd

s abc z z

p
p x y s e f t dt

s π φ

∞
−

−
= + ∫  

 
meaning we now only have to perform one integral over time.  
Equation (35) can then be rewritten in the form: 
 
(36)  

22
02 01

0

2
( , , )

( ) ( )

I

v v

T
st st

T

t
v

qd

s abc z z

p
p x y s

s

e f t dt e f t dt

π φ
∞

− −

−
−

× +
⎛
⎜
⎝

=

∫ ∫

×

⎞
⎟
⎠

 

 
We now use the fact that over the range  (for a 
carefully chosen value of T ) the term 

0 t T< <
ste−  is approximately 

constant and can therefore be brought outside the integral to 
yield: 

 
 
 

 
(37)  

22
02 01

/ 2

0

2
( , , )

( ) ( )

I

v v

T
sT st

T

t
v

qd

s abc z z

p
p x y s

s

e f t dt e f t d

π φ
∞

− −

−
−

× +
⎛ ⎞
⎜ ⎟
⎝ ⎠

∫ ∫ t

×

s

 

 
We find setting  gives good results where  is 
the value of n  used in the Stehfest

( )1/T n= n
15 inversion algorithm 

given by: 
 

(38) 
1

ln 2 ln 2( , , ) , ,
n

v i
i

p x y t V p x y i
t t=

⎛ ⎞= ⎜ ⎟
⎝ ⎠

∑  

 

Finally, we re-write the second integral in equation (37) to 
obtain: 
 
(39)  

22

02 01

/ 2 ( )

0 0

2
( , , )

1
( )

I

v v

T
sT t sT

t

v
qd

s abc z z

p
p x y s

s

t
e f t dt e f T dt

s s

π φ
∞

− − +

−
− ×

× + +
⎛ ⎞⎛ ⎞

⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
∫ ∫

 

 
 Equation (34) gives huge computational gains when re-
written in the form of equation (39).  The fact that the first 
integral is not dependent on  means that previous 
evaluations of the integral for other values of  can be re-
used.   This can be exploited to maximum effect by 
performing the sum in equation (39) from . 

s
s

,....,1i N=
 
The second integral in equation (36) is in a form suitable for 
use with the Gauss-Laguerre integration algorithm19 since the 
integrand decays exponentially over the range of t of interest.  
Given a number of points to use in the integration, the Gauss-
Laguerre algorithm requires the weights used in the 
calculation to be computed just once.  Any subsequent 
integrals to be evaluated can then use these pre-calculated 
weights.  We have found that as few as 15 points are required 
to compute this integral accurately using the Gauss-Laguerre 
algorithm making it an extremely cheap calculation.  
 
Our method therefore offers very fast calculation of well 
pressures in Laplace space over all time ranges of interest.  
There have been other attempts in the literature to obtain well 
pressures in Laplace space by numerically transforming the 
real time well pressures such as in Thompson et al14.  
However, this method relies on pre-calculated tables of the 
real time well pressure, whereas our method requires no such 
a-priori knowledge without the speed of the calculation being 
compromised. 
 
Problems involving wellbore storage, constant pressure 
production, non-Darcy flow and that of naturally fractured 
mediums can now be easily computed as outlined in Ozkan & 
Raghavan18 or Sabet15.  For example, van Everdingen and 
Hurst20 showed that the pressure response of a well with 
wellbore storage coefficient can be written in the form: C
 

(40) 2( , , )
1

ur
v

ur

pp x y s q
s Cp

=
+

 

 
where urp is the Laplace transform of the unit rate pressure 
response of a well without wellbore storage and is defined: 
 
(41)  

2
02 01

2
02

( , , ) ( )
t v v

st
ur

d
s abc z z

p x y s e f t dt
π φ

∞
−

−
= ∫  
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As already outlined, equation (39) can be used to calculate the 
pressure response in Laplace space for a well producing at 
constant rate .  If we allow a series of Heaviside step 
function based rates to be used for the rate history of the well, 
as in equation (12), then our Laplace space solution will be 
written: 

q t∀

 
(42)  

 

22
02 01

0 0

2
( , , )

( )j

v v

I
v

t

N
st st

j
j

d

s abc z z

pp x y s
s

q e e f t dt

π φ
∞

− −

=

−
= +

⎧ ⎫
× ∆⎨ ⎬
⎩ ⎭
∑ ∫

×

 

 
There are problems associated with using the Stehfest21 
inversion algorithm on equation (42) due to the discontinuous 
nature of the rate history.  The solution, as outlined in a very 
elegant approach by Chen & Raghavan22, is to 
superpose different Laplace space functions, each function 
having its own Laplace variable .  The Stehfest algorithm 
can then be used to invert each Laplace function individually 
to obtain a set of real time pressure responses which can 
simply be added to obtain the total real time pressure response 
of the well.  Chen & Raghavan’s method can be used to write 
the Laplace space pressure response due to the entire rate 
history of the well as: 

N
js

N

(43) 
1 1

( , , ) ( , , )
N

I
j j

j j
ur

p tp x y s q
s t t

p x y s
= −

= + ∆
−∑  

where  is the th Laplace variable, based on the elapsed 

time .   
js j

1jt t −−
 
 

Validation and Application 
The algorithms were validated against special cases of the 
solution of the diffusivity equation for a single well. All well 
test interpretation software packages have these solutions; we 
used Weltest 200*.  Subsequently, for multiple well situations 
with long pressure production history, numerical simulation 
results were used. We used the ECLIPSE* reservoir simulator 
to build our numerical models.  

 
A comprehensive sets of tests were carried out. We present a 
few examples to demonstrate the speed and accuracy of our 
algorithms. Figures 3 and 4 present pressure and log-log 
pressure derivative plots respectively corresponding to a well 
test. It can be seen that our generalized solution reduces to the 
specific channel sand solution.  
  

                                                           
* Mark of Schlumberger  

 
Figure 3: Pressure response in channel 

 
Figure 4: Log-log plot for pressure response in channel 

 
In order to provide a solid test of our semi-analytic model for a 
finite conductivity fracture we used a fracture with a very low 
dimensionless conductivity, .  
This ensures that the pressure derivative response is 
significantly affected by the flow in the fracture itself.  We 
have found agreement with the conclusions of Guppy

/ 0.004fD f f fk b kxσ = =

17 in that 
for low dimensionless fracture conductivities we need about 
30 fracture segments to yield accurate results.  In Figure 5 we 
show a log-log plot of our results compared to that of Weltest 
200*. 
  

 
Figure 5: Log-log plot for pressure response in 
hydraulically fractured well 

Figure 6 shows the effect of non-Darcy flow in a fracture. 
Please note how the pressure drop increases with an increase 
in mesh size.  The beta factor, which quantifies the degree of 
non-Darcy flow, is related to the mesh size by the formula of 
Cooke23.  
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Figure 6: Effect of non-Darcy flow on pressure response 
for a fractured well 

 
Figure 7 shows a numerical simulation model of a rectangular 
reservoir with 25 wells. 12 of the wells are fractured and an 
observation well is placed at the centre of the reservoir. 
 

 
Figure 7: Unstructured grid for the simulation model 

 
As can be seen in the bottom hole pressure plot of the 
observation well (Figure 8), an excellent match is obtained 
between our algorithm and the numerical model. The 
execution time for our model was less than 20 seconds 
compared to more than 1.7 hours (6277 secs) for the numerical 
model – a gain of a factor of more than 300. Please note that 
the fractures were explicitly modeled in the numerical model. 
 

 
Figure 8: Pressure response at the observation well 

In order to perform automatic history match history we 
incorporated a gradient-based optimization routine into our 
software. In order to test our approach we obtained synthetic 
well bottom hole pressure and rate response from a numerical 

simulation model containing 3 wells. Thus we had a-priori 
knowledge of the values of the history matching parameters. 
The parameters in this case were , , and well skins.   
We perturbed the values of these parameters in our model, 
used the synthetic simulation result as observed data and ran 
the model through a regression loop. A very good match was 
obtained for each of the wells. Figure 9 shows the match for 
one of the wells. The matched parameters were within 1 
percent of the model parameters used to generate the data.  

xk yk zk
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Figure 9: Bottom hole pressure match for Well2. 

Our method has been implemented in the form of a software 
library with a well-defined API.  We see a number of 
applications that could use this library. Firstly, it can be used 
as a proxy simulator. This includes integration with a pipeline 
network simulator for asset management particularly in the 
case of gas reservoirs. Moreover, simplicity and speed makes 
the software useful for real-time application. Real-time well 
diagnostics using permanent downhole gauges is an ideal 
application. On a different note, a production engineer could 
use it to quickly evaluate hydrocarbon reservoirs, perhaps as a 
precursor to detailed full-field numerical simulation. Finally, 
one may use the library in a well test interpretation package as 
a generalized well test model allowing, among others, 
interference tests and wireline formations tests.  
 
Conclusions 
In this paper we have outlined the mathematics of a 
generalized single layer analytical model that models multi-
well (horizontal and vertical) single layer reservoir problems.  
The following results were outlined: 
 

• Derivation of a solution to the diffusivity equation for 
problems with a large variety of boundary and initial 
conditions.  We showed an example of a solution 
where Neumann (flux) boundary conditions were 
specified on each side of our single layer reservoir.  
However, the integral transform technique of 
Thambynayagam7 can be used to solve problems 
where any permutation of the Neumann (flux), 
Dirichlet (pressure) and Robin (flux+pressure) 
conditions are specified over the 6 boundaries.    
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• A mathematical model for both infinite conductivity 
(uniform flux) and finite conductivity fractures with 
non-Darcy flow in the context of our multi-well 
closed box reservoir.   

• A methodology for efficiently computing Laplace 
solutions.  This enabled us to model physical effects 
such as constant pressure production and wellbore 
storage.   

• The algorithm achieves excellent accuracy with 
massive speed gains over numerical finite difference 
based simulators.   

• Combined with a gradient-based optimizer algorithm 
it also proves a powerful tool for performing very fast 
history matching studies.     

 
We see a number of possible use of our algorithm. It 
could be used for production evaluation, as a proxy to 
numerical simulator and as a generalized well test model. 

 
Nomenclature  
a = reservoir length 
b = reservoir width 

fb = fracture thickness 

C = wellbore storage coefficient 

oc = fluid compressibility 

Rc = rock compressibility 

tc = total formation (fluid + rock) compressibility 

d = reservoir height 

xk = permeability in the x -direction 

yk = permeability in the -direction y

zk = permeability in the -direction z

fk = fracture permeability 

Ip = initial well/reservoir pressure 

( , )fp x t = fracture pressure as a function of position and time 

( , , )vp x y t = average pressure of a vertical well at point 

( , )x y  at time t 

( , , )vp x y s = Laplace transform of the average pressure of a 

vertical well at point ( , )x y  

( , )cq x t = cumulative fluid flow rate passing point x at time t 

( )cjq t =cumulative fluid flow rate across the interface 

between fracture segment  and  j 1j −

fjkq = flow rate into fracture segment j at time interval k 

jq∆ = difference between the flow rate at time  and  j 1j −
s = Laplace variable corresponding to elapsed time t  

js = Laplace variable corresponding to elapsed time  jt t−

0 px = x  coordinate of a point source 

fx = fracture half-length 

01hx = lower x  coordinate of a horizontal well 

02hx = upper x  coordinate of a horizontal well 

0vx = x  coordinate of a vertical well 

0vy =  coordinate of a vertical well y

0hy =  coordinate of a horizontal well y

0 py =  coordinate of a point source y

0hz =  coordinate of a horizontal well z

01vz = lower  coordinate of a vertical well z

02vz = upper  coordinate of a vertical well z

0 pz =  coordinate of a point source z
β = non-Darcy Beta factor  
µ = fluid viscosity 
φ = porosity 

fφ = fracture porosity 

( , , )x y zϕ = initial reservoir pressure as a function of position 

xη = diffusivity constant in the x direction 

yη = diffusivity constant in the direction y

zη = diffusivity constant in the direction z

fσ = fracture conductivity 

fDσ = dimensionless fracture conductivity 
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Appendix A   
Solution of the Diffusivity Equation 
 
In this appendix we outline the derivation of the solution of the diffusivity equation for a single, partially penetrating, vertical well.  
We start by considering the case of a point source at 0 0 0( , ,p p p )x y z  which produces a quantity of fluid Q at .  The resulting 
pressure response in the reservoir will satisfy the diffusivity equation: 

0t t=

 

(42) 
2 2 2

2 2 2 0 0( ) ( ) (x y z
t

p p
p p p p

x x y y z z
t x y z c

Q
η η η δ δ δ

φ
∂ ∂ ∂ ∂

= + + + − − −
∂ ∂ ∂ ∂ 0 )p  

 
where /x x tk cη φ µ= /y y tk c, η φ µ= /z z tk c, η φ µ=  and are the diffusivity constants in the x , , directions respectively.  

Our single layer (box) reservoir has length , width  and height d  with porosity 

y z
a b φ  and permeabilities , ,  in the xk yk zk x ,  

and directions respectively.  In this particular example we impose flux or Neumann-type boundary conditions on each of the six 
boundaries of the reservoir so that: 

y
z

 

(43) 
0

( 0 , , , )
( , , )y z

x

p y z t
y z t

x k

µ
ψ

∂
= −

∂

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

(44) 
( , , , )

( , , )a y z

x

p a y z t
y z t

x k

µ
ψ

∂
= −

∂

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

(45) 
0

( , 0 , , )
( , , )x z

y

p x z t
x z t

y k

µ
ψ

∂
= −

∂

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

(46) ( , , , )
( , , )x b z

y

p x b z t
x z t

y k

µ
ψ

∂
= −

∂

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

(47) 
0

( , , 0 , )
( , , )x y

z

p x y t
x y t

z k

µ
ψ

∂
= −

∂

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

(48) 
( , , , )

( , , )x y d

z

p x y d t
x y t

z k

µ
ψ

∂
= −

∂

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

where for instance 0 ( , , )yz y z tψ  is the flux as a function of position across the ( ,  plane at .   )y z 0x =
 
We note that the Laplace transform of a function, ( )f s  is defined as:  

(49) 
0

( ) ( ) e s tf s f t d
∞

−= ∫ t  

We apply the Laplace transform to equation (42) which gives us an expression in terms of ( , , , )p x y z s  in the form: 
 

(50) 
2 2 2

0
2 2 2 0 0 0( ) ( ) ( ) ( , , )s t

x y z
t

p p px x y y z z e
x y z c

p p p Qs p x y zη η η δ δ δ
φ

ϕ−∂ ∂ ∂
+ + − − −

∂ ∂ ∂
− = − −  

 
where ( , , )x y zϕ  is the initial pressure of the reservoir.  We also note that the finite cosine Fourier transform of a function, ( )f s , is 
defined as: 

(51) 
0

( 2 1)( ) ( ) c o s
2

a n xf n f x d
a

π−⎛ ⎞= ⎜ ⎟
⎝ ⎠∫ x  

with its inversion formula by: 
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(52) 
1

1 2( ) ( 0 ) ( ) c o s
n

n xf x f f n
a a a

π∞

=

⎛ ⎞= + ⎜ ⎟
⎝ ⎠

∑  

 
We now apply successive Fourier transforms with respect to the x ,  and  variables respectively to obtain an expression for y z

( , , , )v vp p n m l s=  in the form: 
 
(53)  

{ }00 0 0
1

0

2 2 2 2 2 2

1

c o s c o s c o s ( 1) ( , , ) ( , , )

( 1) ( ,

s tp p p
n

y z

t x y z t x y z

m

x b z

a y z
v

n x m y l z
Q e m l s m l sa b d

p
n m l n m l

c s c
a b d a b d

n l

π π π

π π π π π π
φ η η η φ η η η

ψ ψ

ψ

−
+

+

− +
= −

+ + + + + +

−
−

−

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

⎧ ⎫ ⎧⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎨ ⎬ ⎨⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩ ⎭ ⎩
s
⎫
⎬
⎭

{ } { }1

0 0

2 2 2 2 2 2

0

, ) ( , , ) ( 1) ( , , ) ( , , )

( , , ) c o s c o s c o s

l

x z x y d x y

t x y z t x y z
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c s c s

a b d a b d

n u m v l w
u v w d u d v d w

a b d

π π π π π π
φ η η η φ η η η

π π π
ϕ

ψ ψ ψ++ − +
− +

+ + + + + +

+

⎧ ⎫ ⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎨ ⎬ ⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩ ⎭ ⎩ ⎭

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠0 0

2 2 2

a b d

x y z

n m l
s

a b d

π π π
η η η+ + +

⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩ ⎭

∫ ∫ ∫

 

where the functions ( , , )ayz m l sψ , ( , , )ayz m l sψ , etc. involve Fourier transforms of the various boundary flux functions and are 
defined in appendix C.  We then apply successive inverse Fourier transforms and an inverse Laplace transform to obtain a solution for 
the pressure at any point in the reservoir, ( , , , )p x y z t  in the form: 
 
(54)  

{ }

{ }

{ }

0
0

0 0 0
0

0

0 0 0

( )
( , ) ( , ) ( , )

8

( , , , ) ( , , , ) ( , , , )

( , , , ) , , ,

4

1 ( , , ) ( , ) ( , ) ( , )
8

t t

p p p
t

t

t

a b d

x y z

x y z

x y z

U t t Q
S x x S y y S z z

a b d c

B x y z B x y z B x y z

p x y z t d

d
c a b d

u v w I u x I v y I w z d u d v d w
a b d

τ τ τ
φ

τ τ τ

τ

τ
φ

ϕ

−−

+ +

= +

+ +

+

∫

∫

∫ ∫ ∫

 

 
where ( , , ) ( , , , 0)x y z p x y zϕ =  and describes the initial pressure of the reservoir.  We refer to the first term as the source term which 
describes the pressure contribution from the point source.  The second term we call the boundary term since it describes the pressure 
contribution due to the fluid flow across the boundaries.  Finally, the third term is the initial term which dictates the pressure 
contribution due to the initial conditions of the reservoir. The source functions, , , , 

boundary functions,
0( , , )x pS x x τ 0( , , )y pS y y τ 0( , , )z pS z z τ

( , )xB x τ , ( , )yB y τ , ( , )zB z τ and initial functions, ( , )xI u x , ( , )yI v y , ( , )zI w z are defined in Appendix C. 
 
 
Part of the power of equation (54) is that each of the source, boundary and initial terms can be integrated multiple times depending on 
the problem involved.  To describe a vertical well producing at rate  for  we integrate the source terms over the appropriate 

time interval and integrate the term  over from , the bottom end of the perforated vertical well, to , the top 

end.  We then set 

( )q t 0t t>

0( , , )zS z z τ 0 pz 01vz 02vz

0 0v px x=  and , since the0 0vy y= p x and  positions of our line source will remain the same as that of the 

original point source.  This yields: 

y
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{ }
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φ
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−

+

+ +

−
=

−

+ +
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− − ∫

∫

∫
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1 0 2 τ

)

 
 

where  is also defined in Appendix C.  Given that the pressure of a partially penetrating well will vary across the 
well itself we have found it most useful for practical applications to calculate the average well pressure.  This is obtained by 
integrating equation (55) over the spatial interval of the well and then dividing by the well length yielding an expression for the 
average well pressure of our vertical well, which we will also denote 

01 02( , , ,v vzS z z z τ∫

( , , )vp x y t : 
 
(56)  

{ }
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22
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z z

z z

z z

τ τ τ

τ τ τ τ
π φ
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φ

π

−
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+

∫ ∫
−
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−

−

∫

∫ τ

{ }0 1 0 2

0 0 00 1

( , , ) ( , ) ( , ) ( , , )v v

a b d

x y z
v

u v w I u x I v y I w z z d u d v d wϕ ∫∫ ∫ ∫
 
 

We again refer the reader to Appendix C for definitions of the terms , , 

, and 

01 02 01 02( , , , , )z v v v vS z z z z τ∫ ∫
01 02( , , , , )x v vB x y z z τ∫

v01 02( , , , , )y v vB x y z z τ∫
01 02( , , , , )z v vB x y z z τ∫

01 02( , , )z vI w z z∫ . 
 
 
Appendix B  
Convergence Analysis of Analytic Laplace Space Solutions 
 
In this appendix we investigate the convergence problems of analytic solutions in Laplace space.  Our example is based on the single, 
partially penetrating, vertical well problem addressed by equation (13) in the main text.  Taking the Laplace transform of this equation 
yields: 
 
(57)  

{ }

( ) ( )

2

0 02 01 0

22
0 0 202 01

0 0

csc2
( , , ) sin sin cos cos

cosh cosh

j

N
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m l xj
j x v v

m lt x v v
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x

v x v x

x x
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h ad q e

l z l z m y m y
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d d b bs b c z z s
l

s s
a x x a x x

β
η π π π π

π φ η
β

η

β β
η η

−

∞ ∞
=

= =

∋ ∋ +

= −
−

+

× − − + + − − +

⎧ ⎫⎧ ⎫ ⎨ ⎬⎨ ⎬
⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎩ ⎭ ⎩ ⎭
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

⎡ ⎧ ⎫ ⎧ ⎫
⎨ ⎬ ⎨ ⎬
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∑
∑∑

⎤
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⎣ ⎦

v ×

 

where: 
 

(55)
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(58)  
2 2

y z
x

x x

m l
b d

η π η πβ
η η

⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 
We set  and 0m = x yη η=  in equation (57) in order to investigate the convergence of the sum in l .  The exponential behaviour of the 

sum in is then: l
 

(59) { }0
0c o s h c o s hx

x

x xs
x x l

b
β π

η
−

− − + = −
⎧ ⎫
⎨ ⎬
⎩ ⎭

 

which will control the convergence of the series in l . For the sake of illustration we choose some parameter values by setting the layer 
width, , and well radius, 410b = m 0 0.1x x− = m . We also define convergence to be the value of  where the exponential term is 

of its value when .  Plugging these values in we find we need  

l

610− 0l =
4 610 ln10

439761
0.1

l
π

= =  terms to achieve convergence.  

Given that we in fact have a double sum to perform in equation (57) it is clear that there are severe computations issues with this 
approach.  Although Ozkan and Raghavan18 do address many of these computational issues they do not satisfactorily address all of 
them, the main issue being their approximation for the long time behaviour of solutions like that in equation (57), which they admit is 
slow.   
 
Appendix C  
Function Definitions 
 

(60)  0

1
( )

0
U t t

⎫
− = ⎬

⎭

0

0

t t
t t

>
<

 

(61) 
2

0

2( )
x

ue r f x e
π

−= ∫ d u  

 

(62) 

2 2

3 0 3 0( ) , ( ) ,
2 2

( , )
x xa a

x x x e x x e
a a

S x
π πη τ ηπ πτ

⎛ ⎞ ⎛ ⎞− −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛
⎜ ⎟ ⎜Θ − Θ +
⎜ ⎟ ⎜
⎝ ⎠ ⎝

= +
τ ⎞
⎟
⎟
⎠

 

 

(63) 

2 2

3 0 3 0( , ) ( ) , ( ) ,
2 2

y yb b
yS y y y e y y e

b b

π πη τ ηπ πτ
⎛ ⎞ ⎛ ⎞− −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛
⎜ ⎟ ⎜= Θ − + Θ +
⎜ ⎟ ⎜
⎝ ⎠ ⎝

τ ⎞
⎟
⎟
⎠

 

 

(64) 

2 2

3 0 3 0( ) , ( ) ,
2 2

( , )
z zd d

z z z e z z e
d d

S z
π πη τ ηπ πτ

⎛ ⎞ ⎛ ⎞− −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛
⎜ ⎟ ⎜Θ − Θ +
⎜ ⎟ ⎜
⎝ ⎠ ⎝

= +
τ ⎞
⎟
⎟
⎠

 

 
(65)  

2 2

2 2

0 1 0 2 3 0 1 3 0 2

3 0 2 3 0 1

( ) , ( ) ,
2 2

( ) , ( ) ,
2 2

( , , , )
z z

z z

d d
z

d d

z z e z z e
d d

z z e z z e
d d

S z z z
π πη τ η

π πη τ η τ

π π

π π

τ
⎛ ⎞ ⎛ ⎞− −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞− −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛
∫ ∫ ∫⎜ ⎟ ⎜Θ − Θ +

⎜ ⎟ ⎜
⎝ ⎠ ⎝
⎛ ⎞ ⎛

∫ ∫⎜ ⎟ ⎜− Θ − − Θ +
⎜ ⎟ ⎜
⎝ ⎠ ⎝

= +
τ ⎞
⎟
⎟
⎠
⎞
⎟
⎟
⎠

 



SPE 99288  17 

 
(66)  

2 2

2 2

0 1 0 2 0 3 0 4 3 0 4 0 1 3 0 4 0 2

3 0 4 0 2 3 0 4 0 1

3 0 3 0 1

( ) , ( ) ,
2 2

( ) , ( ) ,
2 2

( ) ,
2

( , , , , )
x x

x x

a a
x

a a

a

x x e x x e
a a

x x e x x e
a a

x x e
a

S x x x x
π πη τ η

π π

τ

η τ η

π

π π

π π

π

τ
⎛ ⎞ ⎛ ⎞− −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞− −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

−

⎛ ⎞ ⎛
∫ ∫ ∫ ∫⎜ ⎟ ⎜Θ − Θ +

⎜ ⎟ ⎜
⎝ ⎠ ⎝
⎛ ⎞ ⎛

∫ ∫⎜ ⎟ ⎜− Θ − − Θ +
⎜ ⎟ ⎜
⎝ ⎠ ⎝

∫− Θ −

= +

τ

⎞
⎟
⎟
⎠
⎞
⎟
⎟
⎠

2 2

2 2

3 0 3 0 2

3 0 3 0 2 3 0 3 0 1

( ) ,
2

( ) , ( ) ,
2 2

x x

x x

a

a a

x x e
a

x x e x x e
a a

πη τ η τ

π πη τ η

π

π π

⎛ ⎞ ⎛ ⎞−⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞− −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛
∫⎜ ⎟ ⎜− Θ +

⎜ ⎟ ⎜
⎝ ⎠ ⎝
⎛ ⎞ ⎛

∫ ∫⎜ ⎟ ⎜+ Θ − + Θ +
⎜ ⎟ ⎜
⎝ ⎠ ⎝

τ

⎞
⎟
⎟
⎠
⎞
⎟
⎟
⎠

 

 
(67)  

2 2

2 2

0 1 0 2 0 3 0 4 3 0 4 0 1 3 0 4 0 2

3 0 4 0 2 3 0 4 0 1

3 0 3 0 1

( ) , ( ) ,
2 2

( ) , ( ) ,
2 2

( ) ,
2

( , , , , )
z z

z z

d d
z

d d

d

z z e z z e
d d

z z e z z e
d d

z z e
d

S z z z z
π πη τ η

π π

τ

η τ η

π

π π

π π

π

τ
⎛ ⎞ ⎛ ⎞− −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞− −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

−

⎛ ⎞ ⎛
∫ ∫ ∫ ∫⎜ ⎟ ⎜Θ − Θ +

⎜ ⎟ ⎜
⎝ ⎠ ⎝
⎛ ⎞ ⎛

∫ ∫⎜ ⎟ ⎜− Θ − − Θ +
⎜ ⎟ ⎜
⎝ ⎠ ⎝

∫− Θ −

= +

τ

⎞
⎟
⎟
⎠
⎞
⎟
⎟
⎠

2 2

2 2

3 0 3 0 2

3 0 3 0 2 3 0 3 0 1

( ) ,
2

( ) , ( ) ,
2 2

z z

z z

d

d d

z z e
d

z z e z z e
d d

πη τ η

π π

τ

η τ η

π

π π

⎛ ⎞ ⎛ ⎞−⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞− −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛
∫⎜ ⎟ ⎜− Θ +

⎜ ⎟ ⎜
⎝ ⎠ ⎝
⎛ ⎞ ⎛

∫ ∫⎜ ⎟ ⎜+ Θ − + Θ +
⎜ ⎟ ⎜
⎝ ⎠ ⎝

τ

⎞
⎟
⎟
⎠
⎞
⎟
⎟
⎠

 

 
(68)  

2 2

0 0

2 2
( ) ( )

0 3 4

( )

c o s c o s

( , , ) , ( , , ) ,
2 2

( , , , )
y z

m l
m l

t tx xa a
y z a y z

m l t
b d

x
m y l z

b d

x x
m l e m l e

a a

B x y z e

π π
η τ η τ

π πη η τπ π

π π
ψ τ ψ τ

τ
∞ ∞

= =

− − − −

⎧ ⎫⎪ ⎪⎛ ⎞ ⎛ ⎞+ −⎨ ⎬⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∋ ∋

× Θ − Θ

⎛ ⎞ ⎛ ⎞= ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪⎜ ⎟ ⎜ ⎟⎨ ⎬⎜ ⎟ ⎜ ⎟⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭

∑ ∑
 

 
(69)  

2 2
( )

0 0

2 2
( ) ( )

0 3 4

c o s c o s

( , , ) , ( , , ) ,
2 2

( , , , )
n l

tx za d

n l
n l

t ty yb b
x z x b z

y
n x l z

e
a d

y y
n l e n l e

b b

B x y z
π π

η η τ

π π
η τ η τ

π π

π πψ τ ψ τ

τ
+ −∞ ∞

= =

− − − −

⎧ ⎫⎪ ⎪⎛ ⎞ ⎛ ⎞
⎨ ⎬⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∋ ∋

× Θ − Θ

⎛ ⎞ ⎛ ⎞= ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪⎜ ⎟ ⎜ ⎟⎨ ⎬⎜ ⎟ ⎜ ⎟⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭

∑ ∑
 



18  SPE 99288 

 
(70)  

2 2
( )

0 0

2 2
( ) ( )

0 3 4

c o s c o s

( , , ) , ( , , ) ,
2 2

( , , , )
n m

tx ya b

n m
n m

t tz zd d
x y x y d

z
n x m y

e
a b

z z
n m e n m e

d d

B x y z
π π

η η τ

π π
η τ η τ

π π

π πψ τ ψ τ

τ
+ −∞ ∞

= =

− − − −

⎧ ⎫⎪ ⎪⎛ ⎞ ⎛ ⎞
⎨ ⎬⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∋ ∋

× Θ − Θ

⎛ ⎞ ⎛ ⎞= ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪⎜ ⎟ ⎜ ⎟⎨ ⎬⎜ ⎟ ⎜ ⎟⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭

∑ ∑
 

 
 

(71)  
2 2

0 0

2
( )

0 3 4

( )
0 2 0 1

0 1 0 2 c o s

( , , ) , ( , , ) ,
2 2

( , , , , ) s in s in
y z

m l
m l

txa a
y z a y z

m l t
b d

x
l z l zm y

b d d

x x
m l e m l e

a a

dB x y z z e
l

π π
η τ

π πη η τπ ππ

π π
ψ τ ψ τ

τ
π

∞ ∞

= =

− − −

⎧ ⎫⎪ ⎪⎛ ⎞ ⎛ ⎞+ −⎨ ⎬⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜
⎝ ⎠ ⎝ ⎠

∋ ∋

× Θ − Θ

⎡ ⎤⎛ ⎞ ⎛ ⎞⎛ ⎞∫ = −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

∑ ∑
2

( )txη τ−⎟⎧ ⎫⎛ ⎞⎪ ⎪⎜ ⎟⎨ ⎬⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭
 
(72)  

2 2
( )

0 0

2
( )

0 3 4

0 2 0 1
0 1 0 2 c o s

( , , ) , ( , , ) ,
2 2

( , , , , ) s in s in
n l

tx za d

n l
n l

tyb b
x z x b z

y
l z l zn x

e
a d d

y y
n l e n l e

b b

dB x y z z
l

π π
η η τ

π π
η τ

π ππ

π π
ψ τ ψ τ

τ
π

+ −∞ ∞

= =

− − −

⎧ ⎫⎪ ⎪⎛ ⎞ ⎛ ⎞
⎨ ⎬⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜
⎝ ⎠ ⎝ ⎠

∋ ∋

× Θ − Θ

⎡ ⎤⎛ ⎞ ⎛ ⎞⎛ ⎞∫ = −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

∑ ∑
2

( )tyη τ−⎟⎧ ⎫⎛ ⎞⎪ ⎪⎜ ⎟⎨ ⎬⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭
 
(73)  

2 2
( )

0 0

2 2
( ) ( )

0

0 1 0 2 c o s c o s

( , , ) , ( , , ) ,
2 2

2( , , , , )
n m

tx ya b
n m

n m

t tz zd d
x y x y d

z

z z

n x m y
e

a b

z z
n m e n m e

d d

dB x y z z
π π

η η τ

π π
η τ η τ

π π

π πψ τ ψ τ

τ
π

+ −∞ ∞

= =

− − − −

⎧ ⎫⎪ ⎪⎛ ⎞ ⎛ ⎞
⎨ ⎬⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∋ ∋

× Θ − Θ

⎛ ⎞ ⎛ ⎞∫ = ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎧ ⎛ ⎞ ⎛ ⎞⎪ ∫ ∫⎜ ⎟ ⎜ ⎟⎨ ⎜ ⎟ ⎜ ⎟⎪ ⎝ ⎠ ⎝ ⎠⎩

∑ ∑
⎫⎪
⎬
⎪⎭

 

(74) 

2 2

3 3( , ) ( ) , ( ) ,
2 2

x xt t
a a

xI u x x u e x u e
a a

π πη ηπ π⎛ ⎞ ⎛ ⎞− −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛
⎜ ⎟ ⎜= Θ − + Θ +
⎜ ⎟ ⎜
⎝ ⎠ ⎝

⎞
⎟
⎟
⎠

 

 

(75) 

2 2

3 3( , ) ( ) , ( ) ,
2 2

y yt t
b b

yI v y y v e y v e
b b

π πη ηπ π⎛ ⎞ ⎛ ⎞− −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛
⎜ ⎟ ⎜= Θ − + Θ +
⎜ ⎟ ⎜
⎝ ⎠ ⎝

⎞
⎟
⎟
⎠

 

 

(76) 

2 2

3 3( , ) ( ) , ( ) ,
2 2

z zt t
d d

zI w z z w e z w e
d d

π πη ηπ π⎛ ⎞ ⎛ ⎞− −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛
⎜ ⎟ ⎜= Θ − + Θ +
⎜ ⎟ ⎜
⎝ ⎠ ⎝

⎞
⎟
⎟
⎠

 

 



SPE 99288  19 

(77)  
 

2 2

2 2

0 1 0 2 3 0 2 3 0 2

3 0 1 3 0 1

( , , ) ( ) , ( ) ,
2 2

( ) , ( ) ,
2 2

z z

z z

t t
d d

z

t t
d d

I w z z z w e z w e
d d

z w e z w e
d d

π πη η

π πη η

π π

π π

⎛ ⎞ ⎛ ⎞− −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞− −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛
∫ ⎜ ⎟ ⎜= Θ − + Θ +

⎜ ⎟ ⎜
⎝ ⎠ ⎝
⎛ ⎞ ⎛
⎜ ⎟ ⎜− Θ − − Θ +
⎜ ⎟ ⎜
⎝ ⎠ ⎝

⎞
⎟
⎟
⎠
⎞
⎟
⎟
⎠

 

 
 

(78) 0 0
0 0

( , , ) ( , , ) c o s c o sy z

b d

y zm l
l z m yy z d z d y

d b
ψ τ π πψ τ= ⎛ ⎞ ⎛ ⎞

⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠∫ ∫  

 

(79) 
0 0

( , , ) ( , , ) c o s c o sa y z

b d

a y zm l
l z m yy z d z d y

d b
ψ τ π πψ τ= ⎛ ⎞ ⎛ ⎞

⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠∫ ∫  

 

(80) 0 0
0 0

( , , ) ( , , ) c o s c o sx z

a d

x zn l
l z n xx z d

d a
ψ τ π πψ τ= ⎛ ⎞ ⎛ ⎞

⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠∫ ∫ z d x  

 

(81) 
0 0

( , , ) ( , , ) c o s c o sx b z

a d

x b zn l
l z n xx z d

d a
ψ τ π πψ τ= ⎛ ⎞ ⎛ ⎞

⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠∫ ∫ z d x  

 

(82) 0 0
0 0

( , , ) ( , , ) c o s c o sx y

a b

x yn m
m y n xx y d y d x

b a
ψ τ π πψ τ= ⎛ ⎞ ⎛ ⎞

⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠∫ ∫  

 

(83) 
0 0

( , , ) ( , , ) c o s c o sx y d

a b

x y dn m
m y n xx y d y d x

b a
ψ τ π πψ τ= ⎛ ⎞ ⎛ ⎞

⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠∫ ∫  

 

(84) 0 0
0 0 0

( , , ) ( , , ) c o s c o sy z

b d
s

y zm l s
l z m yy z e d d z d y

d b
τψ π πψ τ τ

∞
−= ⎛ ⎞ ⎛ ⎞

⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠∫ ∫ ∫  

 

(85) 
0 0 0

( , , ) ( , , ) c o s c o sa y z

b d
s

a y zm l s
l z m yy z e d d z d y

d b
τψ π πψ τ τ

∞
−= ⎛ ⎞ ⎛ ⎞

⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠∫ ∫ ∫  

 

(86) 0 0
0 0 0

( , , ) ( , , ) c o s c o sx z

a d
s

x zn l s
l z n xx z e

d a
τψ π πψ τ τ

∞
−= ⎛ ⎞ ⎛ ⎞

⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠∫ ∫ ∫ d d z d x  

 

(87) 
0 0 0

( , , ) ( , , ) c o s c o sx b z

a d
s

x b zn l s
l z n xx z e

d a
τψ π πψ τ τ

∞
−= ⎛ ⎞ ⎛ ⎞

⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠∫ ∫ ∫ d d z d x  

 

(88) 0 0
0 0 0

( , , ) ( , , ) c o s c o sx y

a b
s

x yn m s
m y n xx y e d d y d x

b a
τψ π πψ τ τ

∞
−= ⎛ ⎞ ⎛ ⎞

⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠∫ ∫ ∫  

 



20  SPE 99288 

(89) 
0 0 0

( , , ) ( , , ) c o s c o sx y d

a b
s

x y dn m s
m y n xx y e d d y d x

b a
τψ π πψ τ τ

∞
−= ⎛ ⎞ ⎛ ⎞

⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠∫ ∫ ∫  

 

(90) 
0 0 0 0

( , , , ) ( , , , ) c o s c o s c o s
a b d

sp n m l s
l z m y n xp x y z t e d d z d y d x

d b a
τπ π π τ

∞
−= ⎛ ⎞ ⎛ ⎞ ⎛ ⎞

⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠∫ ∫ ∫ ∫  

 
 
 
Many of the analytical solutions we present in this paper use elliptical theta functions.  We define the basic elliptical theta functions as 
in Abramowitz & Stegun24, although the reader should be aware that there are alternative definitions e.g. Spanier & Oldham25.  
Despite these functions consisting of infinite sums they converge very rapidly indeed for all parameter input ranges.  Our definitions 
are as follows: 
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