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Abstract 
Risk management has become an integral part of the decision-
making workflow in the oil and gas upstream business. As 
many oil fields reach a mature state, the need for rejuvenation 
and decline mitigation of assets set ground for Improved-Oil 
Recovery (IOR) opportunities. However, the associated 
decision-making process requires incorporating screening, 
reservoir simulation and financial evaluation, demanding 
complex multidisciplinary team efforts. It is important that any 
stage of the analysis, technical, strategic and economically 
sound decisions should be made.  

On one hand, IOR screening, whether based on technical 
grounds or ‘gut feeling’ experience, or better yet on both 
criteria, leaves a number of possible IOR processes available 
for evaluation through simulation. Analytical simulation and 
applicability screening tools are often favored on early stages. 
However, their crude application could mislead the decision 
process if results are not carefully interpreted and combined 
with reservoir engineering expertise and additional evaluation 
criteria.  

We propose to combine IOR screening strategies with 
spatial reservoir information to help to create appropriate 
sector models as starting point for more detailed evaluations. 
For this purpose, we couple an analytical simulator/IOR 
screening tool with a software tool that aids framing the IOR 
decision-making problem effectively, in the form of influence 
diagrams. From these diagrams, it is possible to create 
Tornado Diagrams, Decision Trees and Monte Carlo profiles 
that assist Reservoir Engineers with the task of properly and 
rationally framing the decision process, for example with 
regard to economic risk assessment and NPV analysis 
associated with IOR.  

The coupling between both software solutions is proposed 
in a way that avoids the inflexible monolithic constructions. 

We illustrate advantages of the proposed approach through a 
speedy analysis of a publicly available case. 

 
Introduction 
We define here Improved Oil Recovery (IOR) operation to 
comprise the injection of energy and fluids typical of tertiary 
recovery as well as technologies that enable extension of field 
life via access to reserves, such as special well architectures.  
Some of the IOR methods become viable in the current 
scenario of high oil price. However, IOR projects involve 
higher complexity than traditional E&P operations, not only 
because of the typically high CAPEX and sometimes-high 
OPEX values, but also because of the number of options 
available, with the concomitant more complex decision-
making process. On the other hand, improper choice of IOR 
processes for a given asset or a portfolio could lead to elevated 
risks. IOR projects generally follow a workflow that includes 
screening, preliminary evaluation, detailed appraisal 
simulation and economic evaluation to launch the project, as 
described by Goodyear and Gregory1. Figure 1 summarizes 
this workflow. In their paper, Goodyear and Gregory discuss 
important elements of risk assessment and management of 
IOR projects. Thompson and Goodyear2 elaborate further on 
identification of IOR potential, within the framework of Risk 
Management. Their approach to using financial risk indicators 
such as the risk and reward chart that allows one to compare 
IOR projects with other Exploration & Production projects. 
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Figure 1. Workflow for IOR decision analysis. Stop flags are 
necessary to decide if an IOR process needs further investigating 
(adapted from Goodyear and Gregory1). 
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To manage risk, consistent and rational screening 
procedures are required as a first step in order to diminish the 
number of options for detailed evaluation. Generally, this step 
demands a small set of reservoir and fluid parameters, 
averaged over representative portions of the reservoir in 
question. One could argue that this is a feasibility analysis 
based on applicability limits. A number of options for 
screening are available, starting from comparison with 
applicability intervals in lookup tables3 to more elaborate 
strategies such as Artificial Intelligence (AI) techniques4. In 
the case of the analytical simulator used here, Sword5,6, fuzzy-
logic has been coded for this process. Tables can also be 
obtained through data collation of field experiences, working 
in essence by mining analogue reservoir data in a database. 
This strategy has also been used successfully in a number of 
examples and is also available in the analytical simulator. 
Detailed discussion of this can be found in a number of 
references4,7. 

Once the screening step is completed, a small set of IOR 
methods are left as likely candidates. The next step is to 
determine performance, so that a measure such as additional 
recovery factor or production profile can be used to rank the 
remaining methods. Data mining7 also helps to deal with this 
issue, but simulation is more commonly used for this purpose, 
either analytical or sector-model numerical simulation.  

To go beyond preliminary economic evaluations, it is 
necessary to estimate project performance of a given IOR 
process, and not only prospective simulations. For this 
purpose, full-field reservoir models are usually developed and 
numerical reservoir simulation is used to determine process 
performance. However, mature or brown fields may lack 
enough reservoir characterization data as to build a detailed 
model or time represents a constraint for the evaluation. 
Expected performance may not be enough to justify further 
data gathering through reservoir re-characterization and 
review of legacy data. A strategy based on analytical 
simulation has been proposed to attend this simulation need8,9. 
To facilitate risk management and automate the evaluation 
process, we have exploited the ability of the analytical 
simulator to be linked with other Windows application 
through a COM interface10,11. 

We briefly describe the simulation strategy based on 
analytical models in the following section.  Then, a relevant 
summary on tools for framing a decision-making process and 
carrying out risk analysis is presented, followed by an 
explanation of the linkage between decision-making and risk 
management software with the analytical simulator. Closing 
remarks are provided in the conclusions section. 
  
Analytical Simulation 
The proposed simulation strategy relies on using a number of 
sector models, each of which is representative of a reservoir 
section. Figure 2 illustrates the idea behind this. Each of the 
well patterns is representative of a distinct sector of the 
reservoir and its corresponding volume. The way the reservoir 
is split depends on the information available, but in most 
cases, interpreted faults from Geophysical surveys, description 
of depositional environments, net/gross maps and other 
characteristics of the reservoir and its fluids can be used for 
the purpose. The choice of sectors may depend on the 

particular type of IOR methods. In the case of chemical 
floods, clay content and water salinity may need to be 
considered. 

The steps for the proposed procedure go as follows: 
1. Definition of clear objectives. As indicated by 

several authors12,13, this step applies to any 
decision-making exercise. As Coopersmith et al.13 
explain, “Stating the decision problem is the first 
step to focusing a team’s framing effort and shout 
not be overlooked; it is critical”. This step guides 
the next steps, because here the problem is clearly 
framed and the important question is formulated. 
This is not necessarily the entry place for a team 
to declare the problem, since the givens have to 
be provided by decision makers before a team 
works on uncertainties and decisions already 
framed. 

2. Data collation. There are several sources of data 
that need be consulted, but some essential ones 
are pay continuity and stratification 
charazteristics, plus trap structure. Pay continuity 
can be used to penalize net thickness in analytical 
models as interwell spacing increases. This way, 
the recovery factor will be correctly estimated. 

3. Screening of IOR methods. This is the beginning 
of the flowchart in Figure 1. This step can be 
automated by using more local reservoir property 
values, instead of representative average values. 
However, this was not studied here, but it is being 
investigated. 

4. Critical Project Parameters (CPP). Among the 
list of tools in decision-making analysis, it is the 
Tornado Diagram the one that is perhaps the most 
appropriate to assist this step. Automation of this 
step leads to speedy evaluations. No operational 
or local restrictions are included in this step. 

5. Sectioning of the Reservoir. One of the examples 
previously analyzed9 illustrates this clearly. A 
distribution of CPP’s on the reservoir map could 
serve for this purpose8.  

6. Local history match. This step focused on fitting 
pilot area results, which usually are more 
intensively characterized. However, this is not a 
necessary step, although it allows diminishing 
some of the uncertainty. If the decision problem 
at hand does not accommodate or need this step, 
it can be skipped altogether. 

7. Sensitivity analysis. Once the intervals for 
uncertainty are more clearly defined and the 
project is evaluated on field-based cases, then a 
full-field sensitivity analysis can be carried. As 
previous step, this one is a function of how the 
decision-making problem is framed. 

8. Decision analysis. The results of the full-field 
analysis can be used to feed a decision-analysis 
tool such as an Influence Diagram or a 
Decision.Tree12. Monte Carlo simulations can be 
performed by sampling the parameter space of 
important uncertainties (once the CPP’s have 
been obtained). 
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Figure 2. Sketch of a hypothetical reservoir map and 
representative well patterns for 3 reservoir sections. 

 
It is step 8 the one that more clearly illustrates the need for 

automation of the data flow among different applications. 
While it should be apparent that an analytical simulator is well 
suited for a large number of different simulations, the 
evaluation of each scenario or case would become a tedious 
process. This in turn defeats the fast simulation time of the 
simulator. A possibility already implemented in the suite of 
the Department of Energy (DOE) Simulators is a direct 
economic evaluation or even a Monte Carlo simulation for 
Risk Analysis pruposes14. DOE analytical simulators 
represented great progress, but the lack of flexibility in this 
monolithic programming style does not allow to adequate the 
simulator to the frame of certain decision-making processes. 
This motivated a more flexible concatenation among different 
software tools. We will describe this scheme in the following 
section. 

A word of caution in regards to the use of analytic 
solutions is necessary. In order to make sense of the decision-
making analysis, the analytic solution should be physically 
meaningful to capture the recovery mechanisms. In this sense, 
for instance, compressibility effects are not captured by 
analytic solutions in Sword (except for a Cyclic Water 
Injection module). Well patterns are limited to either a set of 
one injector and one producer in a 2D section or a 5-spot 
model in 3D (an approximate extension by using a 
correlation). The reservoir is layer-cake type, with analytic 
solutions provided for either Dykstra-Parson (DP) or Vertical 
Equilibrium (VE) approximations. These two approximations 
can be used as limiting cases for either no vertical 
communication, and therefore no gravitational segregation, or 
complete vertical communication. Now, during execution of 
steps 4 and 6, validation runs should be carried out to choose 
the better approximation.  

Figure 3 depicts the cumulative oil recovery (or recovery 
factor) as a function of time for a waterflooding (WF) case. 
The simulation was carried out for several values of the oil 
viscosity (1, 10 and 50 cp from top figure to the bottom one) 
and several IOR processes, although only WF results are 
presented. A total of 10 layers were defined for the model 
simulated, but a number of cases for up to 25 layers were 
evaluated. A Dykstra-Parson coefficient of V=0.1 was used to 
distribute the values of the horizontal permeability (the data 

were taken from a heavy-oil reservoir study). A Kv/Kh value 
of 0.5 was used, which is consistent with the known 
information of the unconsolidated sandy reservoir. UTCHEM 
9.82, the University of Texas Chemical Simulator15, was used 
to numerically simulate the waterflood in incompressible 
mode. An equivalent model was simulated using Sword for 
both DP and VE solutions.  Notice that although both 
approximations seem adequate an oil viscosity value of 1 cp, it 
is the VE approximation the one that better predicts the 
recovery factor as well as production rate and water cut (not 
shown). 

One more point to consider is that no injectivity restriction 
is being considered in rate-controlled analytical simulations. 
However, injector-to-procuder pressure-drop boundary 
conditions can be used out to estimate how realistic the rates 
are for given reservoir characteristics. 

Finally, pay continuity should be used to adjust available 
net pay to be consistent with the interwell connectivity. A 
smooth decaying function, C(d), with d the interwell distance, 
can be defined on the basis of geologic information 
(sedimentary environment and prior experience in the field or 
analogue reservoirs).  

 
 

 
 

 
 

Figure 3. Recovery factor (cumulative oil recovery) as a function 
of time for a waterflood in a 5-spot pattern. Oil viscosity changes 
from 1cp (Top), 10 cp (middle) to 50cp (bottom).  
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Computer-assisted decision-making 
In this section, we explain how we proceeded to link a 
decision and risk analysis tool and the analytical simulator. 
There are several software tools that allow users to assist 
decision-making. In this instance, we recurred to DPL, a 
program developed by Syncopation software. The choice was 
made becomes of the intimate link between DPL and Excel, as 
well as for the possibility of using Influence Diagrams and 
then directly generate all other results (decision trees, tornado 
diagrams, risk profiles, etc.) from the Influence Diagram. 

Figure 4 depicts an influence diagram (top right pane) and 
the corresponding default decision tree (bottom pane). The 
influence diagram is comprised of value (rounded squares), 
uncertainty (ovals) and decision (squares) nodes and arcs to 
represent influences. The diagram is built from right to left, 
and the number of details of the model increases in the same 
direction. The basic decision model is represented with this 
construct. The rightmost node is the objective function, in this 
case represented by the Net Present Value (NPV). The 
simplest cash flow or economic model requires the Capital 
Expenditure (CAPEX) and the Operational Expenditure 
(OPEX), plus sales or positive cash flow. In practice, tax and 
royalties have to be taken into account, but the financial model 
of a particular project is of no importance for the discussion. 
As the diagram indicates, the essential contributor to positive 
cash flow is the hydrocarbon production profile as it is the 
main source of sales, which in turn is calculated from the 
reservoir simulation. Once important elements of the decision 
model have been incorporated, the model can be run to 
determine which of the options considered the most profitable 
(highest NPV) is. Values can be linked to an Excel workbook, 
so that the values are calculated in Excel. 
 

 
 

Figure 4. Snapshot of a DPL project. Upper right pane shows an 
influence diagram, while bottom pane contains the corresponding 
decision tree. 
 

Figure 5 shows a datasheet for the analytical simulation. 
Each time some of the parameters need be changed to consider 
a new scenario, the simulation has to be run manually and the 
results have to be saved. One example of this is the evaluation 
of the impact of uncertainties on NPV, if that is the objective 
function, or recovery factor or some other quantity. Going 

back to the influence diagram in Figure 4, the uncertainties 
associated with the reservoir properties could be the values of 
the horizontal permeability for each layer, net pay value, end-
point relative permeabilities among other parameters. 
However, the data do not need to be transcribed manually, 
because the simulator can be linked to Microsoft Windows 
applications such as Excel through COM interface. Calls of 
Visual Basic Script code (VBA) to Sword can transfer data to 
the simulator and recall results back to Excel, after execution 
of a given scenario. In principle, any number of calls can be 
easily programmed via VBA and a number of IOR methods 
can be evaluated, depending on the needs of the decision-
making framework. 

 

 
 

Figure 5. Snapshot of Sword datasheet for simulations.  Gas and 
water data are provided in other datasheet (not shown). 
 

What the last aforementioned connection through VBA 
calls implies is that because of the ability to intimately link 
influence diagrams with Excel, and likewise with Sword, then 
it turned out to be relatively easy to read out information from 
multiple simulations and several sector models to recreate a 
variety of decision problems using analytical results.  

Figure 6 shows a possible scheme to develop a computer-
assisted decision-making process that carries out automatic 
calls to the simulator. This would apply to a case for which an 
influence diagram was already prepared by an asset team. This 
linkage would require loading worksheets with each sector-
model data set. However, the process can start directly from 
the workbook and the use the calculation links in worksheets 
to create the appropriate influence diagram. This option is 
already available in the software package tested here and is 
certainly operative in risk management tools running in Excel. 
Once the basic influence diagram is generated, one can work 
directly with the nodes. For instance, value nodes that define 
input variables can be changed to uncertainty nodes, whether 
continuous or discrete, so uncertainty propagation can be 
analyzed. This way, the process is steered from the Decision 
and Risk Management tool, which allows one to update the 
worksheets containing the models. The automated scheme can 
be further facilitated by using spreadsheet templates that 
contain the necessary VBA scripts. 
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Figure 6. Automation diagram linking Influence diagrams to 
analytical simulator through VBA applications. 

 
Conclusions 
The ideas proposed and tested here allowed us to automate a 
simulation results processing for a variety of decision-making 
and risk analysis strategies through linkage between 
applications. The programming structure of the software tools 
used here facilitates tasks such as running a decision analysis 
or assisting risk analysis evaluations through VBA 
programming. Enough flexibility is built in for the scheme to 
adapt to a variety of decision and risk analysis problems in 
IOR 

The full-field simulation scheme is not intended to replace 
numerical reservoir simulation, except in situations when time 
constraints or lack of data limit the development of the 
necessary reservoir model.  This idea was originally conceived 
to deal with a portfolio of similar assets for which frequent 
reviewed can only be accomplished with fast simulation 
techniques. 

We are currently developing a real-reservoir case to be 
presented elsewhere. The focus of the research is to apply the 
methodology to evaluation of chemical methods such as 
polymer, surfactant or alkaline-surfactant-polymer floods.  An 
interesting development to pursue is the possibility to 
automate the creation of applicability maps based on screening 
criteria. This possibility is not currently available. 
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