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Abstract 
Smart well technology has progressed significantly over the 
last few years.  Earlier research1,2 has concentrated on the 
application of the technology to secondary recovery.  More 
recent studies3,4,16 have aimed to advance the technical 
application to tertiary recovery concentrating on WAG 
processes.  A utility theory approach to valuing information 
and risk attitude is used in this study. 
Incorporating the economics into the decision making process 
and taking into account risk attitude complicates the decision 
making process.  Earlier the goal was optimization of the 
global sweep efficiency under economic constraints through 
the control of the injection size of each slug, the controlled 
injection rate of each well, the injection location along the 
wellbore, and the production rates and locations.  The control 
parameters stay the same but the goal is a risk based 
optimization of the project economics.  Traditional real 
options based approach requires a normal distribution of 
outcomes which was not found to be true in this study.  
Therefore a utility theory approach is used to incorporate risk 
attitude. 
The WAG process is sensitive to reservoir, fluid, and 
economic parameters which justify the need to quantify the 
uncertainty in production economics and associated risk. 
Gradients are determined from the proxy model.  The 
gradients provide optimal control settings for the injection and 
production settings.  This study demonstrates the feasibility of 
creating a response surface proxy model, using experimental 
design and analysis, to facilitate Monte Carlo simulation, 
uncertainty analysis and optimization of the expected value 
utility. The proxy model is orders of magnitude faster allowing 
a statistical analysis of the uncertainty, value of information, 
value of flexibility and associated risk.  Results on this model 
show significant improvements over an uncontrolled WAG 

production and the ability to incorporate risk attitude into the 
optimization process. 
 
Introduction 
Smart well technology involves the measurement and control 
of well bore and reservoir flow.  This paper concentrates on 
the classic quarter 5-spot pattern common in pilot study 
design and pattern flooding.  Smart well applications in the 
current technical environment are viable tools to control or 
minimize production problems. 
Experimental Design applications are used to determine the 
optimal initial settings of the wells and the initial WAG slug 
sizes.  A detailed sensitivity analysis3 was performed to 
determine the sensitivity of production to several reservoir 
parameters.  An optimization without reservoir uncertainty 
was also performed on the model to quantify the scope for 
improvement3.  Two reservoir parameters and five control 
parameters are chosen to test the viability of this approach in a 
smart well WAG environment. 
A d-optimal design is used at the start of the simulation to 
determine the set of runs to perturb the variables and 
determine the uncertainty and gradients for optimization.  A 
proxy model is built and optimized with respect to the 
opening and closing of completions and the slug sizes of 
water and gas. 
Results on this model show significant scope for the 
application of smart well technology to the WAG process.  In 
making a decision as to use smart wells or invest further 
capital, both an expected monetary value (EMV) and utility 
approach provide insight into the decision making process. 
The optimization technique applied requires a simulation 
model that is fast enough for multiple runs and accurate 
enough to produce valid results.  This was achieved by 
performing the study with a commercial simulator on a 
quarter 5-spot pattern. 
 
Water Alternating Gas (WAG) Technique 
Water-alternating-gas (WAG) injection is a tertiary oil 
recovery process that has been growing in popularity since it 
was first introduced in the 1950’s.  Christensen, Stenby and 
Skauge10 provided a review of 60 fields where WAG has been 
applied.  The study identifies the use of WAG in several 
formation types with differing injectant gases and drive 
mechanisms.  A commonality is that several of the projects 
reported channeling problems and / or reduced injectivity.  
Smart well flow allocation has the potential to mitigate these 
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two primary problems and increase the recovery from a WAG 
project. 
The first WAG process reported in literature was in Canada 
1957.  As the process is approaching half a century old, much 
of the fundamentals require more understanding through 
research. The majority of published literature discussing field 
cases does not provide details of the simulation model used or 
the decision analysis by management. Therefore the process of 
WAG is not well understood yet. In addition, there always 
exists uncertainty in the reservoir model even though 
technology has advanced significantly. The uncertainty in the 
reservoir model is attributed to the ambiguity in the reservoir 
and geological parameters. 
The tertiary recovery process known as WAG is a 
combination of the two secondary recovery processes of water 
flooding and gas injection.  The WAG process was proposed 
originally to aim for the ideal system of oil recovery: 
improvements in macroscopic and microscopic sweep 
efficiency at the same time.  The water is used to control the 
mobility of the gas as can be seen in equations 1 and 2.  The 
cyclic nature of the WAG process causes an increase in water 
saturation during the water injection half cycle and a decrease 
of water saturation during the gas injection half cycle. This 
process of inducing cycles of imbibition and drainage causes 
the residual oil saturation to WAG to be typically lower than 
that of water flooding and similar to those of gas flooding. 
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The oil recovery factor can be described by two factors that 
are the macroscopic sweep efficiency and the microscopic 
sweep efficiency.  Further more the macroscopic sweep 
efficiency is defined by the horizontal and the vertical sweep 
efficiencies.  This can be formulated as: 
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The horizontal sweep efficiency is related to the mobility ratio 
(Eq.4) and the vertical sweep efficiency depends on viscous to 
gravity forces ratio (Eq.5):  
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Gas injection alone decreases the residual oil saturation in the 
reservoir significantly. Gas has lower density and higher 
mobility thereby it could easily sweep the oil trapped in the 
attic and cellar parts of the reservoir. However, gas injection is 
expensive and there are some major problems associated with 
that like early breakthrough and fingering. Hence using only 
gas injection leads to low macroscopic sweep efficiency. On 
the other hand, water flooding generally leaves a large portion 
of oil unswept in the reservoir. Hence it delivers low 
microscopic sweep efficiency. However, in water injection, 
flooding front is more stable than that of gas injection, hence; 

it leads to better macroscopic sweep efficiency. Moreover, 
water injection process is relatively cheap. By injecting water 
and gas alternatively, it is possible to reduce the residual oil 
saturation significantly. Furthermore, water cycles attempt to 
stabilize the flooding front. In fact in the WAG technique, 
both water and gas cycles contribute to production increment. 
Gas cycle drains the oil that exists in the attic part of the 
reservoir to the place where the subsequent water cycle 
displaces it towards the production wells.  
Literature on the WAG process10,11,14,15 typically discusses two 
major management parameters that affect the economics of a 
WAG project.  These operational aspects are the half-cycle 
slug sizes and the WAG ratio.  The two major problems faced 
are early breakthrough and injectivity losses.  It is therefore 
proposed that the third parameter to be studied is the operation 
of the smart wells. 
The two most common distinctions in the classification of the 
WAG process are miscible WAG injection and immiscible 
WAG injection.  Miscible WAG injection occurs when the 
reservoir is above the minimum miscibility pressure (MMP) 
and is immiscible when below the MMP.  In this study the 
initial reservoir pressure is just above the MMP and therefore 
often moves in and out of miscibility in part or all of the 
reservoir. 
 
Reservoir Model 
The reservoir model is 1,320 by 1,320 by 144 feet, modeled 
using 19 by 19 grid blocks aerially and 4 in the vertical.  A 
standard quarter 5-spot pattern with an injector and producer is 
used with all sides bounded by no flow boundaries. The 
reservoir model is implemented in a commercial reservoir 
simulator to model the WAG process.  A detailed fluid 
description with 7 pseudo components describes the oil and 
gas.   
An initial WAG ratio of 1:1 is used with 3 months per 
injection phase.  For testing the influence of the WAG process 
two additional choices were implemented in the model.  A 
ratio of 1:3 with 1 months and 3 months, and 3:1 with 3 
months water and 1 month gas are implemented along with the 
original WAG setting. 
The reservoir model was extracted from the statistics of a giant 
reservoir model with the size of 20x30 km aerially and 
roughly 40 m vertically. The average grid block size for the 
base reservoir was too large (300x300 m) to allow a detailed 
pattern flood analysis.  Additionally the run time for the full 
field model was in the order of a week. Therefore, based on 
geo-statistical information derived from the full field model, 
an area in the flank of the reservoir was considered and a 
sector model was constructed.  
Described in the WAG introduction, two primary problems 
faced in WAG processes are early breakthrough and loss of 
injectivity.  The economic constraints placed on the wells are a 
maximum water cut of 0.5 stb/stb and a maximum GOR of 5 
Mscf/stb at which point the well is shut-in.  The wells are also 
tested every 100 days and connections can be reopened if the 
test shows the well can operate below the GOR and water cut 
constraints.  This initial model with a 7% HCPV slug size and 
conventional wells experienced major breakthrough problems 
forcing the wells to be shut in, resulting in lost production. 
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The wells perforate all 4 grid blocks.  The smart well, similar 
to that is Figure 1 has completion zones that may be 
controlled.  Both the injector and the producer are set up as 
smart wells. 
 

Methods Theory 
Design of Experiment5,6,12 
Many applications of Experimental design have been reported 
in literature in many areas of petroleum engineering including 
sensitivity analysis, upscaling, performance prediction, 
uncertainty modeling and optimization. For example, 
Narayanan23 used the design of experiment and the response 
surface method in order to study a model with water flooding. 
White24 employed experimental design for estimating 
parameters and assessing uncertainty. Friedmann25 applied 
experimental design methodology to quantify uncertainty in 
production forecasts for a population of deep-water 
channelized sandstone reservoirs. They obtained a simplified 
proxy to the simulation model. 
A large number of numerical simulations are required to 
investigate the sensitivity of production with respect to many 
geologic, fluid and engineering parameters in a reservoir 
model. Technically, implementing all of these simulations in a 
reservoir simulator is time-consuming and expensive. 
Therefore, the need for a method, which can reduce this high 
amount of simulation runs to a reasonable number with 
adequate accuracy, is crucial especially, where sensitivity of 
many parameters should be studied.  
Experimental design (DOE) and related response surface 
model (RSM) deliver tools to select efficiently a reasonable 
number of runs, which give maximum information from the 
design space. Design of experiment is defined as a structured 
and organized method, based on statistical principles that can 
be used to identify the impact of different parameters affecting 
a process. The objective of using DOE is to achieve the most 
reliable results with optimal use of time and money. 
Experimental design, in fact, changes different parameters 
systematically and simultaneously within a limited number of 
experiments to give an overall view of the process.  
To evaluate a full 3-level factorial design, 3K (K: number of 
factors) experiments are needed. An experiment is defined as 
the combination of these factors. Obviously, as the number of 
factors increases, the number of experiments becomes more 
unmanageable and impossible to implement in a reservoir 
simulator as seen in Table 1. 
The first step to construct a design is to identify those factors 
that are expected to have a large influence on the response 
(cumulative oil production). Afterwards, the factor ranges are 
usually scaled to lie between “-1” and “1” to represent factor’s 
maximum (1), minimum (-1) and mean (0) values. Factor 
ranges should be chosen carefully to avoid dominance of 
experimental error on response (small ranges) and to decrease 
the possibility of construction of a complicated response 
model (large range). Then a design depending on time and 
computer power can be constructed. The combination of 
factors derived from DOE is used to feed into a simulator or to 
implement experiments. 
Table 2 shows a sample screening design.  This 2 level design 
allows for a fast assessment of the ranking of the parameters.  

For the detailed study performed a 3 level optimal design as 
seen in Table 3 is used in creation of the proxy model.  Each 
table only shows a few of the runs required. 
The proxy model to simulation is denoted as:  
y=Xβ + ε         (6) 
where X is the design matrix with the row dimension equal to 
the number of experiments and column dimension equal to the 
number of terms in the model (regressors). The design matrix 
depends on both regression model (linear, quadratic, cubic, 
etc) and the design of experiment type (among classical or 
optimal). ‘y’ is the vector of simulation or experimental result. 
‘ε’ denotes a random vector with distribution of N (0, σ2), 
which represents the error. ‘ β̂ ’, given by: 

1 'ˆ ( ' )X X X yβ −=         (7) 
is the least square estimate of β which delivers the best set of 
coefficients by minimizing the error (ε). It has the covariance 
matrix of (X’X)-1σ2 where X’ is the transpose of the design 
matrix (X).  
 

Plackett-Burman screening design 
Initially a large number of factors must be screened at each 
time step.  These are the status of each valve for each well at 
the time step being optimized.  To screen a large number of 
parameters the interaction terms are confounded with the new 
main effects.  These new saturated designs would then have 2k 
runs.  Plackett and Burman12 provided a new way to 
fractionalize the full factorial yielding designs where the 
numbers of runs are 4*k rather than 2k. 

 
D-Optimal Design 

A D-optimal design attempts to minimize the average size of 
the variance matrix by minimizing the average eigen-value.  A 
maximization of D-efficiency results in finding a design where 
the factor effects are maximally independent. 
D-efficiency = 100 * (|X'X|1/p/n)     (8) 
Where X is the regression matrix, p is the number of 
parameters in the model, and n is the number of observation 
point or simulations. 
Optimal designs offer significant advantages over classic 
experimental designs.  A D-optimal design can be modified to 
allow the number of simulation the experimenter wants.  
Classic designs typically are not as flexible in allowing the 
experimenter to control the parameters.  The design can also 
be augmented to add additional runs if the experimenter feels 
they are necessary.  This is done while maintaining the 
optimality given the set of runs already performed therefore 
maximizing the additional information gained.  Additionally 
the design is optimized for the response surface model the data 
will be fit to. 
 

Response Surface Model (RSM) 
The response surface model (RSM) is finally used to fit the 
simulation or experimental results to a model. Response 
surfaces are 3D visualizations of the response surface model.  
These surfaces allow a visualization of two of the parameters 
effects on the observation. Usually the model being fit is a 
polynomial function, which considers the linear, second order 
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and interaction terms. Equation (9) shows a general form of 
this quadratic polynomial model.  
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The correlation coefficient and the R2-adjust (Eq.10) is a 
measure of how well the model fits data. 

2
2
adj

(1 - R )(n - 1)R  = 1 - 
(n - p)

   (10) 

n: number of observations 
p: number of terms 
R2: correlation coefficient squared 
R2 or 2

AdjR of much less than 1 represents poor fit. 
  
Significance testing of the models is performed in order to 
validate the results.  Standard R2 regression analysis is 
performed on the resulting model.  This provides the fit of the 
model to the input data to the training set.  Additionally, an 
adjusted R2 taking into account the number of terms in the 
model is calculated. 
 
Oil Prices 
Oil price forecasting is far from an exact science.  Companies 
and countries take different approaches to integrating oil 
prices into their decision making process.  Most tend to use a 
single price, usually on the conservative side due to the natural 
risk averse nature of corporations and governments, and not a 
range of possibilities or a stochastic price model. 
The oil price has a significant on the Net Present Value (NPV) 
of the project as defined by: 
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This allowing for the assignment of positive and negative 
revenue and to give a time value to the cash flow.  This cash 
flow is all discounted to time zero using the discount rate b for 
comparison.  The capital cost is subtracted from this to get the 
project NPV as discussed later 
In December 2003 a survey of 27 oil analysts by Bloomberg 
showed an average estimate of a 13% decline in oil prices for 
2004.  In actuality oil prices were about 45% higher in 2004 
than in 2003 and oil companies had a very profitable year due 
to the high oil prices.  The analysts were not “wrong” 
inasmuch as world wide economic factors did not react as 
anticipated. 
Historical price data8 shows that this is true on several 
different scales due to different reasons.  Figure 2 shows 
inflation adjusted average annual oil prices from 1865 to 1998.  
Several things occurred during that time but a few can be 
highlighted to see how unforeseen events affect the oil prices.  
1945 is primarily due to post war reconstruction, 1974 the 
OPEC oil embargo, 1979/80 the Iranian revolution, 1990 the 
Gulf War and the 1998 Asian economic crisis. 
The past century has shown times of relative stability like the 
50’s and 60’s to extremely volatile times like the 80’s.  
Developing a 5 or 10 year production plan based on a single 
estimated oil price could cause some potential problems. 

For the purposes of this paper oil prices are set at 50$/bbl in 
NPV calculation unless otherwise stated. 
 
Decision & Risk Analysis 
Risk and reward are ever present in the decision making 
process.  This paper will qualitatively describe some of the 
additional benefits of smart wells.  The fast proxy model 
allows the study of the distribution of NPV due to the 
distribution of the input parameters.  A comparison of an 
EMV approach to a utility theory approach will be presented 
in brief. 
The history of the incorporation of risk and uncertainty in 
economics has a relatively brief history.  Utility can be loosely 
defined as a measure of happiness and therefore a utility 
function has a higher value for preferred choices.  The 
translation of an economic value such as NPV into utility can 
therefore take into account the risk attitude of the decision 
maker. 
The concept of marginal utility was first introduced by Daniel 
Bernoulli20 in his 1738 solution to the St. Petersburg Paradox22 
posed by his cousin Nicholas Bernoulli in 1713.  The two 
concepts arising from this was that people’s utility from 
wealth is not linearly related to wealth and that the associated 
value of a risky venture is not the EMV but the expected 
utility. 
The formal incorporation of utility theory17 came in 1944.  
This formally incorporated choice based on preferences of 
distributions of outcomes. 
By Bernoulli's logic, in order to value a risky venture the 
expected utility is: 

E(u | p, X) = ∑ x∈ X p(x)u(x)   (12) 

where X is the set of possible outcomes, p(x) is the probability 
of a particular outcome x ∈ X and u: X → R is a utility 
function over outcomes.  This implies if u(x) > u(y) then x is 
preferred to y. 
Although there are several criticisms of the theory I wish to 
point out the one major difficulty.  This difficulty is in creating 
the utility function as it can take several additional forms as 
seen in Figure 3 this study will only use the logarithmic 
approach such that: 
U(x) = alog(x)     (13) 
Where x is the NPV. 
The approach used to quantify the uncertainty in the NPV 
calculations is Monte Carlo simulation.  NPV can then be 
directly converted into utility to facilitate the decision making 
process.  The speed and accuracy of the proxy model allows 
this to be done. 

 
WAG 
The problem being addressed is the optimal recovery of oil 
under the economic constraints imposed on the wells.  The 
problem of uncertainty in reservoir and fluid parameters is 
added to the mix to further compound the decision making 
process.  In one case the oil price is varied to show the 
consequences of taking into account economics and not just 
recovery. 
The first step taken in addressing the issue looks at sensitivity 
issues of the WAG process.  This phase of the study used the 
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initial WAG parameters and well settings without 
optimization to study the uncertainty of several reservoir 
properties.  This work was performed on the same model used 
in this study.  Gas breakthrough problems occurred in all the 
simulation runs and loss of water injectivity occurred in a 
significant number of the runs.  Very few of these scenarios 
suffered major water production problems due to the 
injectivity abnormalities.  Several reservoir parameters were 
studied to examine the sensitivity of the oil recovery3 . 
The first step in the optimization was reducing the scope of 
the study for the purposes of testing this methodology of 
optimizing under uncertainty.  The problem was reduced to 
two uncertainty parameters by nondimentionalizing the 
relative permeability and viscosity parameters into a single 
mobility term and studying the effect of uncertainty in the 
absolute permeability.  The ranges used in the study are 
provided in Table 4 along with the control setting. 
A primary reason for choosing the absolute permeability is so 
that the range covers different flank sectors of the reservoir 
that the model was derived from.  This has the added benefit 
of applying the technique to different sectors using different 
probability distribution functions (PDF) in the Monte Carlo 
analysis of the results. 
The next step is deciding the control parameters available for 
optimization of the oil recovery.  To maintain a reasonable 
number of simulations to test the process and validate the 
results the number of control parameters was reduced to five.  
An initial WAG ratio of 1:1 is used with 3 months per 
injection phase and two additional options with a ratio of 1:3 
with 1 month water and 3 months gas, and 3:1 with 3 months 
water and 1 month gas are implemented along with the 
original WAG setting.  Additionally the producer and injector 
have two completion intervals than can each be closed or open 
to flow. 
The initial goal is determining the optimum WAG parameters 
at the start of the project with only a reactive control scheme.  
This is done by setting up a design with three parameters that 
include the permeability, mobility, WAG slug size, and well 
type.  For ease of analysis two separate proxy models were 
generated, one for each well type.  A single model with well 
type as a forth parameter was tested and it worked, but this 
would not be convenient for the next stage of the 
optimization.  All production wells are placed on a reactive 
control mode at this time.  The optimum WAG parameters 
determined at this stage remain constant throughout the 
simulation.  To calculate NPV and asses the value of the smart 
well, a cost of $200,000 is taken for the conventional wells 
and $500,000 for the smart wells. 
The parameters are coded and scaled such that the low value 
is coded to -1, the median to 0 and the maximum value to +1.  
The ranges for the WAG parameters and reservoir uncertainty 
parameters and their corresponding coded values can be seen 
in Table 4.  There are then some assumptions made that all 
runs can be performed at any combination of these settings.  If 
this is not true the design is modified with constraints.  In this 
case closing all connections can be simulated but provides no 
useful results for the optimization process.  These runs would 
also populate the data set with results that would pollute the 
proxy model fit. 

Oil prices are incorporated in the post processing of the 
simulation data.  A decision is made on the valve setting at the 
current time step and then the simulation moves forward.  
This process is repeated till the end of the 10 year simulation.   
 
Results and Discussion 
Monte Carlo Analysis 
The average simulation time was between 10 and 20 minutes 
while the proxy model to determine the oil recovery takes 
approximately one second.  The multiple order of magnitude 
increase in speed has facilitated the performing of Monte 
Carlo simulations to provide a reasonable PDF for the base 
and optimized oil recovery, the NPV, and the utility of the 
project under reservoir uncertainty. Figure 4 shows the 
assessment of recovery distribution for the conventional well 
and optimized smart well.  Figure 5 shows the assessment of 
the NPV distribution for the conventional and optimized smart 
well.  Figure 6 shows the assessment of the utility distribution 
for the conventional and optimized smart well.   
Ultimately a properly optimized flood is robust enough to 
increase the ultimate recovery significantly and reduce the 
uncertainty in the recovery. 
 
WAG Flood 
An experimental design and response surface proxy model 
based approach integrates the optimization with the model 
sensitivities.  This approach treats the well operations as a 
parameter in the design space rather than a secondary control 
parameter.  Therefore the well status becomes a term in the 
proxy model.  Secondly this integrated approach optimizes 
simultaneously over the entire design space to provide a robust 
control algorithm. 
The reservoir simulation model was run for 10 years with the 
recovery and NPV at 10 years modeled by proxy models.  The 
optimization routine initially was aimed at maximizing the 
ultimate recovery of the pattern flood.  The same approach 
using proxy models for NPV was applied to optimize the 
NPV. 
In order to visualize the process 2 contour maps are shown in 
Figure 7 and Figure 8.  Figure 7 comes from the beginning 
of the conventional well run prior to any optimization.  As this 
is not a smart well there is only one control parameter, the 
WAG ratio.  This figure clearly shows that a WAG ratio of 
“1” is best and referring to Table 4 this corresponds to a 3:1 
WAG. 
Figure 8 comes from a late time in the simulation of the smart 
well.  It clearly indicated the valve should be opened at this 
time but may not be true.  This figure is plotted with the 
remaining parameters set at a mid level.  The goal of this 
exercise is to optimize all 5 control parameters under the 
reservoir uncertainty.  All these decisions are made from the 
proxy model but are somewhat more difficult.  All 5 control 
parameters must be simultaneously optimized. 
The results of the analysis at $50/stb are summarized in Table 
5.  The base model provided an average recovery of about 
15% after 10 years.  The results of the complete optimization 
of recovery provided much better results.  Taking advantage of 
the derivatives provided by the proxy model optimizing 
injection and production as well as the WAG, results in an 
increase in the mean recovery to 39%.  This provides an 
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increase in the expected recovery and an increased value in the 
optimization. 
The oil recovery uncertainties for the conventional and 
optimized smart well are shown in Figure 4.  To represent the 
recovery over the entire design space the Monte Carlo 
Simulation drew samples of the reservoir properties 
distributed evenly over the entire design space. 
In the period between World War I and the Gulf War inflation 
adjusted average annual oil prices in year 2000 dollars ranged 
from under $9.00 in the Early 1930’s to over $60.00 during 
the height of the Iranian revolution of the early 1980’s.  Even 
the 1980’s showed a range of under $20.00 to over $60.00.  
The base price of $50.00/stb was used in all previous 
calculations.  To assess the risk of spending extra capital on 
the project under uncertain economic conditions two different 
oil price scenarios were used.   

“I don't think it's going to go to 100 us$ but if it does 
the crash is going to be even more spectacular…It 
will make the hi-tech bubble look like a picnic … this 
thing is not going to last.” Steve Forbes 

An optimistic price of $100 and a pessimistic price of $10 are 
used to compare risk attitudes. 
An interesting observation can be made comparing the $10 
and $50 results for the 2 simulations.  The NPV after 
subtracting capital costs was positive for all 4 cases with mean 
NPV values of 1.23 MM$ and 7.78 MM$ for the conventional 
well and 13.51 MM$ and 21.35 mm$ for the smart well. 
Initially these all seem very profitable and good returns on 
investment of $400,000 and $1,000,000 respectively.  The 
utility approach tells a very different story 
In a risk averse world a 50% chance of winning or losing $1 
may have an expected monetary value of $0 but in truth has a 
negative utility.  This means no one would choose this venture 
unless of course they are in Las Vegas. 
Cost overruns were not a part of the data presented above.  To 
illustrate the point above for one example, the low oil price 
conventional well, additional costs were added after the fact.  
The project with $1,000,000 in cost overruns had a large 
negative utility even though the NPV remained marginally 
positive. 
 
Conclusions 

“The meek shall inherit the earth, but not the mineral 
rights.” J. Paul Getty 
“No one can possibly achieve any real and lasting 
success or “get rich” in business by being a 
conformist.” J. Paul Getty 
“Oil is like a wild animal. Whoever captures it has 
it.” J. Paul Getty 

 
• Risk and uncertainty are ever present and must be 
incorporated into the decision making process.  Although not 
gambling in the sense of risk prone we are gambling risk 
averse. 
• The decision making process of determining a single 
robust injection / production strategy across the entire 
uncertainty range in the WAG flood models proved to be 
difficult but attainable. 

• Generated proxy models were able to adequately 
represent the oil recovery, NPV, and utility of the WAG 
process.  The proxy model allowed the WAG process to be 
optimized even under uncertainty. 
• Smart well technology offers various benefits over 
conventional wells when appropriate robust control algorithms 
are applied.  The WAG process showed significant 
improvements in NPV. 
• Optimizing over the entire design space using the 
response surface proxy model proved to be robust.  Before 
breakthrough the method is extremely robust and post 
breakthrough works though is more challenging. 
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Tables 

Number 
Parameters 

Regression 
Parameters 

3-level full 
factorial 

4 15 81 
5 21 243 

6 28 729 

8 45 6561 

10 66 59049 
Table 1: Growth in simulation requirements for full factorial 
design. 
 
 

  Scaled Setting 
  A B C 

run 1 1 1 1 

run 2 1 1 -1 

run 3 1 -1 1 

run 4 1 -1 -1 

run 5 -1 1 1 
run 6 -1 1 -1 

run 7 -1 -1 1 
run 8 -1 -1 -1 

Table 2: A sample coded 2 level 3 parameter full factorial 
screening design. 

 
 

  Scaled Setting 
  A B C 

run 1 1 0 1 

run 2 0 1 -1 

run 3 1 -1 1 

run 4 1 0 -1 

run 5 -1 1 0 
run 6 -1 1 -1 

run 7 0 -1 0 
run 8 -1 -1 0 

Table 3: A part of the 3 level optimum design. 
 

Relative Range Low Medium High 
Coded Value -1 0 1 
WAG Ratio 1:3 3:3 3:1 

Arial Perm. Multiplier 2 4 6 
Mobility Oil 0.9 1.0 1.1 

Well Completion i prod  shut   open 
Well Completion i inj shut  open 
Table 4: Coded parameters with values used in the WAG pattern 
flood simulations. 
 
 

Means Fully 
Optimized 

Opt. 
Comp 

Opt. 
WAG 

Conv. 
Well 

Recovery 0.39 0.35 0.30 0.15 

NPV MM$ 21.35 16.78 13.51 7.78 

Utility 1.33 1.22 1.12 0.89 
Table 5: Results of the analysis. 
 
Figures 
 

 
Figure 1: − Schematic of a smart well producing from 2 zones. 
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Figure 2: Historic Oil Prices. 

 
Figure 3: Sketches of various types of utility functions. Shape (a) 
is bounded on the downside by an asset position or other 
exposure limit. (b) does not imply a limit in the range of money 
shown. (c) represents a conservative, or risk averse attitude for 
taking risk. (d) is conservative about negative amounts yet risk-
seeking for positive outcomes. (e) represents a step up in value 
when a profits target is reached. (f) is a utility curve for a risk-
neutral decision maker, i.e., an EMV decision policy. 
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  Figure 4: Recovery distribution 
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  Figure 5: NPV distribution 
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  Figure 6: Utility distribution 
 
 
 
 

 
Figure 7: Contour map of  recovery for WAG setting and the 
permeability at an early time step. (only conventional well) 

 

 
Figure 8: Contour map of  recovery for WAG setting and the lower 
completion interval of the producer at an early time step. 
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