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DERIVATION OF FLUID FLOW EQUATIONS 
 
Review of basic steps 
Generally speaking, flow equations for flow in porous materials are based on a set of 
mass, momentum and energy conservation equations, and constitutive equations for 
the fluids and the porous material involved. For simplicity, we will in the following 
assume isothermal conditions, so that we not have to involve an energy conservation 
equation. However, in cases of changing reservoir temperature, such as in the case of 
cold water injection into a warmer reservoir, this may be of importance.  
 
Below, equations are initially described for single phase flow in linear, one-
dimensional, horizontal systems, but are later on extended to multi-phase flow in two 
and three dimensions, and to other coordinate systems. 
 
Conservation of mass 
Consider the following one dimensional rod of porous material: 

 
 

Mass conservation may be formulated across a control element of the slab, with one 
fluid of density ρ is flowing through it at a velocity u: 
 

 Δx

u
ρ

 
The mass balance for the control element is then written as: 
 

 

� 

Mass into the
element at  x
⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 
−

Mass out of the
element at  x + Δx
⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

=
Rate of change of mass
inside the element

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

, 

or 

 

� 

uρA{ }x − uρA{ }x+ Δx =
∂
∂t

φAΔxρ{ } . 

 
Dividing by Δx, and taking the limit as Δx approaches zero, we get the conservation of 
mass, or continuity equation: 
 

 

� 

−
∂
∂x

Aρu( ) =
∂
∂t

Aφρ( ) . 

 
For constant cross sectional area, the continuity equation simplifies to: 
 

 

� 

−
∂
∂x

ρu( ) =
∂
∂t

φρ( ) . 

Next, we need to replace the velocity term by an equation relating it to pressure gradient 
and fluid and rock properties, and the density and porosity terms by appropriate pressure 
dependent functions. 
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Conservation of momentum 
Conservation of momentum is goverened by the Navier-Stokes equations, but is 
normally simplified for low velocity flow in porous materials to be described by the 
semi-empirical Darcy's equation, which for single phase, one dimensional, horizontal 
flow is: 

 

� 

u = −
k
µ
∂P
∂x . 

 
Alternative equations are the Forchheimer equation, for high velocity flow: 
 

� 

 

� 

−
∂P
∂x

= u
µ
k

+ βun , 

 
where n was proposed by Muscat to be 2, and the Brinkman equation, which applies to 
both porous and non-porous flow: 
 

 

� 

−
∂P
∂x

= u
µ
k
− µ

∂ 2u
∂x2

. 

 
Brinkman's equation reverts to Darcy's equation for flow in porous media, since the last 
term then normally is negligible,  and to Stoke's equation for channel flow because the 
Darcy part of the equation then may be neglected.  
 
In the following, we assume that Darcy's equation is valid for flow in porous media.  
 
Constitutive equation for porous materials  
To include pressure dependency in the porosity, we use the following definition of rock 
compressibility, which for constant temperature is written: 
 

 

� 

cr = (1
φ
)(∂φ
∂P )T . 

 
Normally, we may assume that the bulk volume of the porous material is constant, i.e. 
the bulk compressibility is zero. This is not always true, as witnessed by the subsidence 
in the Ekofisk area. 
 
Constitutive equation for fluids  
Recall the  familiar fluid compressibility definition, which applies to any fluid at 
constant temperature: 
 

 

� 

c f = −( 1V )(
∂V
∂P )T

. 

Equally familiar is the gas equation, which for an ideal gas is: 
 
 

� 

pV = nRT , 
 
and for a real gas includes the deviation factor, Z: 
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� 

pV = nZRT . 
 
These descriptive equations for the fluids are frequently used in reservoir engineering 
applications. However, for more general purposes, such as in reservoir simulation 
models, we normally use either so-called Black Oil fluid description, or compositional 
fluid description. Below, we will review the Black Oil model. 
 
The standard Black Oil model includes Formation Volume Factor, B, for each fluid, and 
Solution Gas-Oil Ratio, Rso, for the gas dissolved in oil, in addition to viscosity and 
density for each fluid. A modified model may also include oil dispersed in gas, rs, and 
gas dissolved in water, Rsw. The definitions of formation volume factors and solution 
gas-oil ratio are: 
 

 

� 

B =
volume at reservoir conditions
volume at standard conditions

 

 

 

� 

Rso =
volume of gas evolved from oil at standard conditions

volume of oil at standard conditions
 

 
The density of oil at reservoir conditions is then, in terms of these parameters and the 
densities of oil and gas,  defined as: 
 

 

� 

ρo =
ρoS + ρgsRso

Bo
. 

 
Typical pressure dependencies of the standard Black Oil parameters are: 
 

 

P P P

P P P

B w B g Bo Rso

µ w µ g µ o

P

 
 
Simple form of the flow equation and analytical solutions 
In the following, we will briefly review the derivation of single phase, one 
dimensional, horizontal flow equation, based on continuity equation, Darcy's 
equation, and compressibility definitions for rock and fluid, assuming constant 
permeability and viscosity. 
 
Let us substitute Darcy´s equation into the continuity equation derived above: 
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� 

∂
∂x

ρ
k
µ
∂P
∂x

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ =

∂
∂t

ρφ( )  

 
The right hand side (RHS) of the equation may be expanded as: 
 

 

� 

∂
∂t ρφ( ) = ρ

∂
∂t φ( ) +φ

∂
∂t ρ( )  

 
Since porosity and density both are functions of pressure only (assuming temperature 
to be constant), we may write: 
 

 

� 

∂
∂t φ( ) =

dφ
dP

∂P
∂t

 

and 

 

� 

∂
∂t ρ( ) =

dρ
dP

∂P
∂t

. 

 
From the compressibility expressions we may obtain the following relationships: 
 

 

� 

dρ
dP = ρcf  and 

� 

dφ
dP = φcr . 

 
By substituting these expressions into the equation, we obtain the following form of 
the right hand side of the flow equation: 
 

 

� 

∂
∂t ρφ( ) = φρ c f + cr( )∂P∂t . 

 
The left hand side of the flow equation may be expanded as follows: 
 

 

� 

∂
∂x

ρ
k
µ
∂P
∂x

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ = ρ

∂
∂x

k
µ
∂P
∂x

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ +

k
µ
∂P
∂x

∂
∂x

ρ( ) = ρ
∂
∂x

k
µ
∂P
∂x

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ +

k
µ
∂P
∂x

dρ
dP

∂P
∂x  

 
For now, let us assume that k=constant and µ=constant. Let us also substitute for 

� 

dρ
dP = ρcf . The LHS may now be written as: 

 

� 

∂
∂x

ρ
k
µ
∂P
∂x

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ =

ρk
µ

∂ 2P
∂x2

+ c f
∂P
∂x

⎛ 
⎝ 

⎞ 
⎠ 

2⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

. 

Since 

� 

c f is small, at least for liquids, and the pressure gradient is small for the low 
velocity flow we normally have in reservoirs, we make the following assumption: 
 

 

� 

c f
∂P
∂x

⎛ 
⎝ 

⎞ 
⎠ 

2

<<
∂ 2P
∂x2 . 

 
Then, our LHS simplifies to: 
 



TPG4150 Reservoir Recovery Techniques 2017 
Fluid Flow Equations 
 

Norwegian University of Science and Technology  Professor Jon Kleppe 
Department of Geoscience and Petroleum 

5 

 

� 

∂
∂x

ρ
k
µ
∂P
∂x

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ =

ρk
µ

∂ 2P
∂x2 . 

 
The complete partial differential flow equation (PDE) for this simple rock-fluid 
system then becomes: 
 

 

� 

∂ 2P
∂x2

= (φµc
k
)∂P
∂t

, 

 
where c is the sum of the rock and fluid compressibilities. 
 
Assumptions made in the derivation of the above PDE: 

1. One dimensional flow 
2. Linear flow 
3. Horizontal flow 
4. One phase flow 
5. Darcy´s equation applies 
6. Small fluid compressibility (liquid) 
7. Permeability and viscosity are constants 

 
Initial and boundary conditions 
In order to solve the above equation, we need to specity one initial and two boundary 
conditions. The initial condition will normally specify a constant initial pressure, while 
the boundary conditions will either specify pressures or flow rates at two positions of 
the system. For our simple horizontal rod of porous material, these conditions may be 
specified as: 

 x=0

x=L

 
Initial condition (IC): 
 
 

� 

P(x,t = 0) = Pi  
 
Normally, the initial pressure of a horizontal system  such as the one above is constant, 
but in principle it could be a function of position (x). 
Boundary conditions (BC´s): 
Pressure conditions (Dirichlet conditions) would typically be specified as: 
 
 

� 

P(x = 0,t) = PL  
 

� 

P(x = L,t) = PR  
The other commonly used BC´s are rate specifications (Neumann conditions). Using 
Darcy´s equation, flow rates would typically be specified as: 
 

 

� 

qL = −
kA
µ

∂P
∂x

⎛ 
⎝ 

⎞ 
⎠ 
x= 0

 



TPG4150 Reservoir Recovery Techniques 2017 
Fluid Flow Equations 
 

Norwegian University of Science and Technology  Professor Jon Kleppe 
Department of Geoscience and Petroleum 

6 

 

� 

qR = −
kA

µ
∂P
∂x

⎛ 
⎝ 

⎞ 
⎠ 
x=L

 

 
Analytical solution to the simple, linear PDE 
Using the following set of initial and boundary conditions: 
 
 

� 

P(x,t = 0) = Pi , 

� 

P(x = 0,t) = PL  and 

� 

P(x = L,t) = PR , 
 
we may obtain the following analytical solution of the transient pressure development in 
the porous rod above: 
 

 

� 

P(x,t) = PL + (PR − PL)
x
L

+
2
π

1
n
exp(−

n2π 2

L2
k

φµc
t)sin(

nπx
L
)

n =1

∞
∑

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥  

 
This solution is depicted graphically in the figure below. 
 

 
Transient vs. steady state flow 
The partial differential equation above includes time dependency through the right hand 
side term. Thus, it can describe transient, or time dependent flow. In the figure 
illustrating the solution, the system will first have a time dependent, or transient, period, 
where the pressure will gradually penetrate the porous material. Then, after some time, 
the flow reaches a state where it is no longer time dependent, and the pressure 
distribution is described by the straight line denoted steady state solution. 
 
We could have reduced the partial differential equation directly to a steady state 
equation by setting the time dependent term on the right hand side to zero. Then the 
equation becomes an ordinary differential equation (ODE): 
 

 

� 

d2P
dx2

= 0  

 
By integrating this equation twice, and using the two boundary conditions to 
determine the integration constants, we obtain the steady state solution: 
 

 

� 

P(x,t) = PL + (PR − PL)
x
L

. 

P

x

Left side
pressure

Initial and
right side
pressure

Steady state
solution

Transient
solution
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which is a straight line connecting the two end pressures. As can be seen, the transient 
solution will reduce to this steady state expression as time becomes large.  
 
General form of the one-phase, one-dimensional, horizontal PDE 
Above we derived and solved the simplest forms of the PDE, using fluid 
compressibility definition as a constitutive fluid equation, and assuming constant 
viscosity and permeability. Generally, the Black Oil form of the fluid model is used, 
and the two parameters are not constants. Recall the Black Oil definition of oil 
density: 

 

� 

ρo =
ρoS + ρgsRso

Bo
. 

 
For undersaturated oil, the solution gas-oil ratio, 

� 

Rso, is constant. Thus, the oil density 
may be written: 
 

 

� 

ρo =
constant

Bo
. 

 
Similar expressions may be written for single phase gas and single phase water. 
Substitution of this fluid model into the continuity equation with Darcy´s equation 
yields a general Black Oil form of the single phase, one-dimensional, horizontal flow 
equation: 
 

 

� 

∂
∂x

k
µB

∂P
∂x

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ =

∂
∂t

φ
B

⎛ 
⎝ 

⎞ 
⎠ . 

 
Multiphase flow 
A continuity equation may be written for each fluid phase flowing: 
 

 

� 

−
∂
∂x

ρlul( ) =
∂
∂t

φρlSl( ), l = o,w,g , 

 
and the corresponding Darcy equations for each phase are: 
 

 

� 

ul = −
kkrl

µ l

∂Pl
∂x
, l = o,w,g , 

where  
 

� 

Pcow = Po − Pw   
 

� 

Pcog = Pg − Po  
 

� 

Sl =1
l=o,w,g
∑ . 

 
The continuity equation for gas has to be modified to include solution gas as well as free 
gas, and the one for oil to include dispersed oil in gas, if any.  
 
Non-horizontal flow 
For one-dimensional, inclined flow, as shown in the following figure: 
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x

αu

D

 
the Darcy equation becomes: 
 

 

� 

u = −
k
µ

∂P
∂x

− ρg
dD
dx

⎛ 
⎝ 

⎞ 
⎠ , 

 
or, in terms of dip angle, α, and hydrostatic gradient: 
 

 

� 

u = −
k
µ

∂P
∂x

−γ sin α( )⎛ 
⎝ 

⎞ 
⎠ , 

 
where 

� 

γ = ρg  is the hydrostatic gradient of the fluid. 
 
Multidimensional flow 
The continuity equation for one-phase, three-dimensional flow in cartesian coordinates, 
is: 

 

� 

−
∂
∂x

ρux( ) − ∂
∂y

ρuy( ) − ∂
∂z

ρuz( ) =
∂
∂t

φρ( ) , 

 
and the corresponding Darcy equations are: 
 

 

� 

ux = −
kx
µ

∂P
∂x

− γ
dD
dx

⎛ 
⎝ 

⎞ 
⎠  

 

� 

uy = −
ky
µ

∂P
∂y − γ

∂D
∂y

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟  

 

� 

uz = −
kz
µ

∂P
∂z − γ

∂D
∂z

⎛ 
⎝ 

⎞ 
⎠ . 

 
Coordinate systems 
Normally, we use either a rectangular coordinate system, or a cylindrical coordinate 
system in reservoir engineering 

 
In operator form, the continuity and the Darcy equations for one-phase flow may be 
written: 

z

x

y

Rectangular coordinates
z

r

Cylindrical coordinates

θ

r

Spherical coordinates

θ
ϕ
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� 

−∇ ⋅ ρ
! u ( ) =

∂
∂t φρ( )  

 
  

� 

! u = −
K
µ

∇P − γ∇D( ) , 

 
where the operators are defined as: 
 
rectangular coordinates 
 

 

� 

∇⋅ ( ) =
∂
∂x

( ) +
∂
∂y

( ) +
∂
∂z

( )   (divergence) 

 

� 

∇( ) = ˆ i ∂
∂x

( ) + ˆ j ∂
∂y

( ) + ˆ k 
∂
∂z

( )  (gradient) 

 
cylindrical coordinates 
 

 

� 

∇⋅ ( ) =
1
r
∂
∂r r( )( ) +

1
r
∂
∂θ

( ) +
∂
∂z ( )  

 

� 

∇( ) = ˆ i ∂
∂r ( ) + ˆ j ∂

∂θ
( ) + ˆ k ∂

∂z ( )  

 
spherical coordinates 
 

 

� 

∇⋅ ( ) =
1
r 2

∂
∂r r 2( )( ) +

1
rsinθ

∂
∂θ

( )sinθ( ) +
1

rsinθ
∂
∂ϕ

( )  

 

� 

∇( ) = ˆ i ∂
∂r ( ) + ˆ j ∂

∂θ
( ) + ˆ k ∂

∂ϕ
( )  

 


