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Abstract

Analysis of stream-line-based formulations is exercised to develop a stream-line
based semi-analytical model for the single-well push-pull test, taking into account
natural ground-water drift. The model is employed to calculate the time of break-
through for clean water and the end-time of tracer production in addition to the
overall producing tracer concentration vs. time.

Contradictory to traditional approaches to the problem, natural ground-water
drift is considered important and physical dispersion of the injectant front is con-
sidered negligible.

As a main topic we study injection/production in unconfined homogeneously
stratified aquifers of infinite areal extent, subject to natural groundwater drift. In-
jectant and in situ groundwater are assumed to be miscible, incompressible fluids
with identical fluid properties. Only macroscopic flow is considered, and flow is
assumed to experience no in situ fluid mixing (physical dispersion) so fluid inter-
faces remain sharp.

Analytically obtained results are compared to field study data provided by
Pickens and Grisak, finite difference numerical simulation data obtained by Coats
et al., and stream-line based simulation data from Streamsim Inc.’s 3DSL. The
excellent match to experimental data and close agreement with simulation data
validate the physical dispersion-free method proposed. It is concluded that the
semi-analytical stream-line based solution gives the theoretically true production
profile, and that any disagreement with simulation data is due to numerical dis-
persion and/or a poorly built model, on the simulator side.

Making use of the stream-line based semi-analytical model, it is shown that,
for a given set of boundary values and test-parameters, there exists a theoretical
maximum injection phase duration giving conservative tracer production. The
model is employed to study the tracer production profiles as the injection phase
duration is extended to values larger than this limit. The applicability of the one-
dimensional convection-dispersion equation on calculating apparent dispersivity
Peclet numbers is studied, as the injection phase duration is increased, and it is
shown how it fails to predict the volume of recoverable tracer and how it fails to
fit the measured data. It is also shown how a strongly scale depending apparent
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dispersivity may occur in a model, with no physical dispersion, due to natural drift
only.

Stream-line patterns for a two-well transmission test in a naturally flowing
aquifer is created, and studied as a function of natural ground-water drift direction.
It has been indicated how the natural ground-water drift may have an even bigger
impact on the two-well transmission test than on the single-well push-pull test.
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Preface

This thesis is presented to the Department of Petroleum Technology and Applied
Geophysics at the Faculty of Engineering Science & Technology, the Norwegian
University of Science and Technology, Trondheim, as partial fulfilment of the
requirements for the degree of Philosophiæ Doctor, Ph.D.

The work presented here is mainly based on the extensive experimental work
presented in the classic Water Resources Research paper “Scale-Dependent Dis-
persion in a Stratified Granular Aquifer” of August 1981, by John F. Pickens and
Gerald E. Grisak, and the natural ground-water drift considerations and corre-
sponding numerical simulations presented in the SPE 90390 paper “Modelling
Conformance as Dispersion” of September 2004, by K.H. Coats, C.H. Whitson
and L.K Thomas.

The thesis is built upon three papers prepared for and submitted to the Springer
Verlag journal Transport in Porous Media. The papers, as shown in the List of Pa-
pers below, are attached at the back of the thesis. All three papers are on the topic
“Analytical Treatment of a Push-Pull “Echo” Test”, but they all treat different
aspects of the test and the interpretation of the test.

In Paper I, the general method of the stream-line based “source/sink in a uni-
form stream” approach to the single-well test is described. Mathematical expres-
sions are derived, and a method to trace individual stream-lines and generating a
production profile is outlined. It is, furthermore, shown how neglecting physical
dispersion, introducing natural drift, may give an excellent match to experimental
data, applying the method on a simplified single-layer homogeneous aquifer.

In Paper II, the effects of varying injection/production phase durations are
studied, using the methodology described in Paper I. The applicability of the,
traditionally applied, one-dimensional convection-dispersion equation (1D CD-
EQ) on calculating apparent dispersivities is studied.

In Paper III, the methodology of Paper I is extended to apply to homoge-
neously stratified aquifers. It is shown how an exact match to experimental data
can be achieved, emphasising that the physical dispersion is negligible.

The main body of the thesis consists of three parts and an appendix.
The first part, “Analytical Treatment of a Push-Pull Echo Test”, gives an intro-

duction to the terminology and concepts of the push-pull test as well as the one-
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dimensional convection-dispersion equation and the field experiments performed
by Pickens and Grisak, in Chapter 1. In Chapter 2 a summary of the methodology
developed in Paper I is given. In addition, Chapter 2 contains comments regard-
ing approximations, in Section 2.4, required number of stream-lines, in Section
2.5, and the asymptotic recoverable area, in Section 2.6. These are subjects not
mentioned in the papers, but relevant to the stream-line based analytical model
developed therein.

The second part, “Finite Difference and Stream-line Simulation of a Push-
Pull “Echo” Test”, gives a brief summary of the relevant results obtained by Coats
et al., as well as a report from building an input-deck for the stream-line based
simulator 3DSL, developed by StreamSim Technologies Inc., to model the single-
well push-pull test.

The third part, “Two-Well Transmission Tests”, contains an overview of what
to expect from a stream-line based solution approach to the two-well transmission
test, closely related to the single-well push-pull test, but mathematically more
complex.

Just after Part III, a suggestive list of “things to do” is given along with the
conclusions of the thesis.

In Appendix A the Coats et al. SW2 SENSOR input deck is listed, the final
input deck to 3DSL is cited in Appendix B, the MatLab source code developed to
perform the stream-line based calculations of the thesis is quoted in Appendix C,
and in Appendix D the documentation of the compact disc created to go with the
thesis is presented.
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Single-well push-pull “echo” tests are run literally hundreds of times a year,
all over the world. The tests are used to assess, quantitatively, a variety of phys-
ical, chemical and microbiological reservoir/aquifer properties, [6], ranging from
residual oil saturation, [10], to microbial activity, [5], to regional natural flow, [7],
to mention a few.
Here is given a short introduction to the concept of the push-pull test as well as
what should be of concern regarding the current way of treating natural ground-
water drift and the application of the one-dimensional convection-dispersion equa-
tion to calculate dispersivity.

1.1 The Push-Pull “Echo” Test
The push-pull test is an example of one of the most typical ground-water field tests
conducted hundreds of times a year all over the world, and correct understanding
and interpretation of the concentration profiles are, of course, essential to making
use of the obtained data. Searching the Internet, for the phrase “push pull test”,
reveals a vast amount of literature on the topic.

Push-pull “echo” tests, also known as single-well injection-withdrawal tests,
consist of a controlled injection phase where a prepared test solution is being
“pushed” into an aquifer, and thereafter a production phase where the test so-
lution/in situ fluid mixture is “pulled” from the same location/well. Figure 1.1
displays a schematic of the push-pull test. It can be seen how, during the injection
phase, (a), the injectant is “pushed” into the test-well and flows away from the
well in a roughly cylindrical fashion. The hydraulic head, as a function of the ra-
dius, will behave approximately as ln |r|. During the production phase, (b), fluids
are flowing towards the well and are “pulled” out.

The test solution consists of water containing one or more tracers/solutes. The
type, combination and amount/concentration of tracer/solutes are selected depend-
ing on which aquifer characteristics are monitored.

Usually tracers are added to the injectant in relatively small concentrations to
obtain near ideal tracer behaviour. An ideal tracer is chemically and physically
stable, not interacting with in situ fluids or solids and not naturally present in
the aquifer. Throughout this thesis the notions injectant and tracer will be used
equivalently about the fluid being injected. In situ water containing no tracer will
be referred to as clean water.

The produced mixture injectant concentration will be in the range [0,1], and
the tracer/injectant concentration at time, t, is accordingly the ratio of injectant
volume to the total volume produced in the infinitesimal time interval (t, t +dt).

During the injection phase the injectant flows away from the test well, and it
is assumed, in this thesis, that the interface between the injectant and the in situ
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water remains sharp, i.e. there is no physical dispersion. During the production
phase, the well flow is reversed and the concentration of tracer, solutes and possi-
ble reaction products are measured as a function of time. Injectant concentration
in the produced mixture is calculated. In this work, it is assumed that the tracer
is ideal, so that the fractional relationship between tracer and injectant in the pro-
duced mixture is constant.

1.2 Natural Drift
Traditionally it has been assumed that the presence of natural drift in the aquifer is
of no concern, since the natural drift velocity most often is small compared to the
injection/production induced velocity field. This is, however, only true close to the
test well, and hence, the assumption is only valid for short time-scale experiments.
This assumption was criticised by Coats et al., [3]. It has been shown, in this
thesis, how the natural drift may affect the producing injectant vs. time profile
even though the drift velocity is small. In this thesis, the assumptions are turned
upside down; the physical dispersion is assumed to be zero or negligible and the
natural ground-water drift is taken into account.

1.3 The One-Dimensional Convection-Dispersion Equa-
tion

A common way of interpreting the producing injectant profile is to assume the
natural ground-water drift is negligible and to fit the one-dimensional convection-
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Figure 1.1: Schematic of the push-pull “echo” test, injection and production phases.
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dispersion equation (1D CD-EQ), [1], [2], [8], [9]. Obvious flaws of this way
of interpretation is the fact that the ground-water velocity might not be negligi-
ble, and the fact that the 1D CD-EQ was developed for constant-velocity one-
dimensional flow through a stream-tube. Even if the natural drift is neglected, the
radial flow pattern from the test well is two dimensional indeed, and the injec-
tant velocity decreases as 1/r rather than being constant. A well known problem
typically being the result of such interpretations, is the scale-dependency of the
apparent dispersion several orders of magnitude higher than corresponding labo-
ratory measurements of the physical dispersion. Coats et al., [3], remind us that
the physical dispersion is a rock property, and that no laboratory results show scale
dependency of the physical dispersion.

The Gelhar-Collins, [4], analytical approach applied by Pickens and Grisak is
equivalent to the one-term approximation to the Aronofsky equation, [1], [3].

1.4 The Pickens-Grisak Field Scale Experiment
As an example, we study two push-pull tests performed by Pickens and Grisak,
[9], in 1982. The test wells were not the same, but in the vicinity of each other.
Resulting dispersions, applying the Gelhar-Collins analytical solution, [4], were
3.0cm and 9.0cm from their two single-well field experiments, SW1 and SW2,
respectively, while laboratory experiments on core-samples from the same area
gave approximately 0.035cm.

References
[1] J.S. Aronofsky and J.P. Heller. A diffusion model to explain mixing of flow-

ing miscible fluids in porous media. Trans AIME, 210:345–349, 1957.

[2] A. Arya, T.A. Hewett, R.G. Larson, and L.W. Lake. Dispersion and reservoir
heterogeneity. SPERE, 3:139–148, 1988. SPE 14364.

[3] K. H. Coats, C.H. Whitson, and L.K. Thomas. Modelling conformance as
dispersion. SPE Annual Technical Conference and Exhibition, 26-29 Sep-
tember, Houston, Texas, September 2004. SPE 90390.

[4] L.W. Gelhar and M.A. Collins. General analysis of longitudinal dispersion
in nonuniform flow. Water Resources Research, 7(6):1511–1521, 1971.

[5] J. Istok, M. Humphrey, M. Schroth, and K. O’reilly. Single well "push-pull"
test for in situ determination of microbial activities. Ground Water, 35(4),
1997.



42 Part I: Analytical Treatment of a Push-Pull “Echo Test”

[6] Young Kim, Mohammad Azizian, Jonathan Istok, and Lewis Semprini. Field
Push-Pull Test Protocoll for Environmental Security Technology Certifica-
tion Program. Oregon State University, Civil, Construction, and Environ-
mental Engineering Department, Corvallis, OR 97331, April 2005.

[7] D. Leap and P. Kaplan. A single-well tracing method for estimating regional
advective velocity in a confined aquifer: Theory and preliminary laboratory
verification. Water Resources Research, 24(7), 1988.

[8] J. Mahadevan, L.W. Lake, and R.T. Johns. Estimation of true dispersivity in
field scale permeable media. SPE/DOE Improved Oil recovery Symposium,
Tulsa, Oklahoma, USA, April 2002. SPE 75247.

[9] J.F. Pickens and G.E. Grisak. Scale-dependent dispersion in a stratified gran-
ular aquifer. Water Resources Research, 17(4):1191–1211, 1981.

[10] J. Tomich, R.L. Dalton, H. Deans, and L. Shallenberger. Single-well tracer
method to measure resiudal oil saturation. JPT, pages 211–218, February
1973.



CHAPTER 2

Source/Sink in a Uniform Stream
Approach





Chapter 2 45

In this chapter, a brief introduction to the stream-line method, described in
the three papers attached at the back of the thesis, Paper I, Paper II, Paper III,
is given. In addition, a few concepts not discussed in the papers are presented;
approximations, convergence depending on the number of stream-lines used, the
asymptotic recoverable area.

2.1 Introduction
Stream-lines are steady-state particle flow-paths, i.e. the traces a “fluid particle”
would leave if monitored as it moved through a domain. The stream-line is a
line everywhere tangent to the velocity vector at a given instant, and stream-lines
are also the geometrical interpretation of the stream function, ψ , [6]. That is, a
stream-line is a constant ψ contour.
The stream function idea only works if the four terms of the continuity equation,

∂ρ

∂ t
+

∂

∂x
(ρUx)+

∂

∂y
(ρUy)+

∂

∂ z
(ρUz) = 0 , (2.1)

can be reduced to two terms. A common approach is to assume incompressible
two-dimensional flow in the xy-plane1, which has been assumed throughout this
thesis;

∂Ux

∂x
+

∂Uy

∂y
= 0 . (2.2)

This equation is satisfied identically if there exists a function, ψ(x,y), such that

Ux =
∂ψ

∂y
∧ Uy =−∂ψ

∂x
, (2.3)

which becomes, in polar coordinates,

Ur =
1
r

∂ψ

∂θ
∧ Uθ =−∂ψ

∂ r
. (2.4)

There is also a physical interpretation that relates ψ to volume flow. The two-
dimensional rate between two stream-lines, ψ1 and ψ2, are found by integrating
along some path, s, as seen in Figure 2.1,

q =
∫
s

dq , (2.5)

1It is also possible to assume compressible flow, but this will demand redefining of the stream
function.
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where dq is given by
dq = (~u ·~n)ds . (2.6)

The normal vector,~n, to the line segment ds is given by

~n = x̂xx
dy
ds
− ŷyy

dx
ds

. (2.7)

Applying Equation 2.3 , Equation 2.6 and Equation 2.7 to Equation 2.5 we get

q =
∫
s

(Uxdy−Uydx) =

ψ2∫
ψ1

dψ = ψ2−ψ1 . (2.8)

Hence, the numerical stream-line number difference between two arbitrary stream-
lines is a measure of the two-dimensional rate flowing between them. Further-
more, the direction of the flow can be ascertained by noting whether ψ increases
or decreases.

ψ
2

ψ
1

x

y

u

n
ds

s

Figure 2.1: Geometrical interpretation of the stream function; volume flow between two stream-
lines.

2.1.1 Uniform Stream
In a uniform stream, the particle velocity (direction and magnitude) is the same
for all spatial coordinates. For the single-well push-pull test it has been assumed,
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in this thesis, that the uniform stream is in the direction of the positive x-axis,

~uu = Uu · x̂xx . (2.9)

The velocity field satisfies continuity since Equation 2.2 holds, and a stream func-
tion exists. The stream function of the uniform stream is simply

ψuni f orm = Uuy . (2.10)

2.1.2 Source/Sink

A point source/sink in a two-dimensional space or a line source/sink in a three-
dimensional space is treated in the same way, i.e. it is assumed uniform radial
outflow along the length of the line source. Throughout the thesis, test wells are
viewed as vertical, i.e. strictly z directional, line sources/sinks, and the aquifer has
been considered to be flat, i.e. in the xy-plane. We see that for a homogeneous
three-dimensional reservoir, the flow from a source or to a sink is reduced to a
two-dimensional problem.

The “strength” of the source/sink is defined as

Q ≡ q
2πφ

=
q3D

2πφh
. (2.11)

Q is, per definition, positive for injection and negative for production. Assuming
the point source/sink is located in Origo, the velocity field, in polar coordinates,
is given by

Ur =
Q
r

∧ Uθ = 0 , (2.12)

and, in Cartesian coordinates,

Ux =
Qx

x2 + y2 ∧ Uy =
Qy

x2 + y2 , (2.13)

which satisfies the continuity equation, so a stream function exists;

ψsource/sink = Q ·θ = Qarccos

(
x√

x2 + y2

)
. (2.14)

It is also possible to formulate the stream function using the other trigonometric
functions, but using the arccos function has proved, for the push-pull test, to give
the simplest calculations.
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2.1.3 Source/Sink in a Uniform Stream

A superposition of the two previously described solutions, uniform stream and
source/sink, is also a valid stream function solution2, [6]. In this thesis the single-
well push-pull test is viewed as a superposition of an alternating source/sink in a
uniform stream, and the composite stream function of the problem is simply

ψ = ψuni f orm +ψsource/sink

= Uu · r sinθ +Q ·θ (2.15a)

= Uuy+Q · arccos

(
x√

x2 + y2

)
. (2.15b)

The velocity field is of course also a superposition of the two velocity fields.
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Figure 2.2: Source(injection phase)(a) and sink (production phase) (b) in a uniform stream stream-
lines.

2For irrotational flow, i.e. ∇×~u = 0, the stream function is a solution to the linear partial
differential equation ∇2ψ = 0, and all superpositions of valid solutions are also valid solutions.
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In Figure 2.2 it can be seen what the upper half-plane stream-lines look like
for a source and a sink in a uniform stream in a) and b), respectively. The stream-
line pattern is symmetric about the x-axis, and the weighted lines, which are no
cross-flow boundaries and separate injected fluid from in situ fluids (a) and pro-
duced fluid from escaped fluid (b), forms the Rankine half-body.

2.2 Push-Pull “Echo” Test in a Naturally Flowing
Aquifer

Treating the push-pull test as a source/sink in a uniform stream gives the possibil-
ity of tracing the injectant front as it advances outward during the injection phase,
and similarly back during the production phase. Knowing the particle velocity at
all points in space and the flow-paths of a particle leaving the well-bore at a given
radius and angle, it is possible to develop an analytical expression for the injectant
front position, at a specific stream-line, as a function of time.

Likewise, knowing the injectant front position at a given injection phase stream-
line at the end of the injection phase, it is possible to calculate the time of arrival,
at the well-bore, for the injectant particle located at the injectant front. A particle
flow path, back to the producer, is uniquely identified from the particle coordinate
at tp = 0, as is illustrated in Figure 2.3.

ψp

rw
(t=T  ,     )ψiiθ

ψ
i

ψ
ir(t=T  ,     )i

x

y

Figure 2.3: General view of the trace of a fluid particle leaving the wellbore at the radius rw at the
time t = 0. The trace is described by the injection phase stream-line ψi until the particle reaches
it’s maximum radial advancement rmax at the time t = Ti and thereafter by the production phase
stream-line ψp until it is back at the well-bore radius rw.
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2.2.1 Methodology
Due to the symmetry about the x-axis, a solution is found for the upper half-plane,
only. Basically, three problems are solved, for each phase, for polar angles, θ ,
equals π , 0 and all angles in-between. Mathematically, the problem is formulated
as three differential equations for each phase.
For the injection phase;

dr
dt

=
(

Uu +
Qi

r

)
r̂ for θ = π , (2.16a)

dr
dt

=
(
−Uu +

Qi

r

)
r̂ for θ = 0 , (2.16b)

dθ

dt
= −(Uu sinθ)2

ψ −Qiθ
for θ ∈ (0,π) . (2.16c)

For the production phase;

dr
dt

=
(

Uu−
|Qp|

r

)
r̂ for θ = π , (2.17a)

dr
dt

=
(
−Uu−

|Qp|
r

)
r̂ for θ = 0 , (2.17b)

dθ

dt
= −(Uu sinθ)2

ψ + |Qp|θ
for θ ∈ (0,π) . (2.17c)

The radial position is related to the angular position through the stream function,

r =
ψ −Qθ

Uu sinθ
. (2.18)

Appropriate boundary conditions should be picked for the injection phase, and
boundary conditions for the production phase are coordinates at t = Ti from the
injection phase.

Solving these equations is relatively easy, however, we get implicit solutions
for the tracer front position, (r,θ), as a function of time, so a numerical method
is needed to find the position at the end of the injection phase, t = Ti. For the
injection phase we find rmax = r(t = Ti) by solving the equations:

Uu (r− rw)+Qi ln
∣∣∣∣ Qi−Uu · r
Qi−Uu · rw

∣∣∣∣=−U2
u · t , (2.19a)

for the stream-line with constant θ = π ,

Uu (r− rw)−Qi ln
(

Qi +Uur
Qi +Uurw

)
= U2

u t , (2.19b)
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for the stream-line with constant θ = 0, and

r(t = Ti,ψi) =
ψi−Qiθ

Uu sinθ

∣∣∣∣∣
θ=θ(t=Ti,ψi)

, (2.19c)

where θ is given by

(Qiθ −ψi)cotθ −Qi ln |sinθ |=−U2
u t +C (ψi) , (2.20a)

and
C (ψi) = −Uurw cosθ −Qi ln |sinθ |

∣∣∣
θ=θ(t=0,ψi)

, (2.20b)

for the stream-lines with θ ∈ (0,π).

Knowing the maximum radial advancement, rmax,ψi , for the injectant front
along each injection phase stream-line, it is easy to find the time of break-through
along each production phase stream-line. We find the time of breakthrough,
TBT,ψp , along each production phase stream-line by inserting the rmax = r(t = Ti),
found by solving the equations above, and r = rw for r into the equations we get
from solving the differential equations 2.17,

Uu (r− rmax)−|Qp| ln
∣∣∣∣ |Qp|+Uu · r
|Qp|+Uu · rmax

∣∣∣∣=−U2
u · t , (2.21a)

for the stream-line with constant θ = π ,

Uu (r− rmax)+ |Qp| ln
(

|Qp|−Uur
|Qp|−Uurmax

)
= U2

u t , (2.21b)

for the stream-line with constant θ = 0, and

−U2
u t +C (ψp) =−(|Qp|θ +ψp)cotθ + |Qp| ln |sinθ | , (2.21c)

where

C (ψp) = −Uurmax cosθ + |Qp| ln |sinθ |
∣∣∣
θ=θ(t=Ti,ψi)

, (2.22a)

for the angles between 0 and π .
θ(rw,ψp) is found from

r =
ψp + |Qp|θ

Uu sinθ
, (2.22b)

and the production phase stream-line numbers are given by

ψp = ψi− (|Qp|+Qi)θ , (2.22c)
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The injectant flowing along the θ = π stream-line has zero angular velocity
and is always located at this angle. This stream-line will be the first to provide the
well-stream with clean water and define the over-all time of break-through, TBT .
The θ = 0 stream-line tracer-front will be the last one to arrive at the well-bore
and define the end-time of injectant production.

Associating an inflow rate to each stream-line, for instance by using the rela-
tion Equation 2.8 , it is now possible to generate a producing injectant concentra-
tion profile. The fundamental assumption is that a production phase stream-line
will provide the producing test well with injectant until the time of break-through
is reached, for that particular stream-line, and thereafter feed the well-stream with
in situ/clean water, only. Thus, each production phase stream-line provides a frac-
tion of the well-stream, so by subtracting the fraction of each stream-line, ψ , with
time of break-through, TBT,ψ , smaller than the current time, tp, it is possible to
generate the production profile. By stepping along the time axis, a histogram can
be generated, and by using enough stream-lines a smooth production profile is
obtained. The calculations are programmed, using MatLab, [5], and the source
code is shown in Appendix C.

2.3 The Shape of the Injectant Covered Area
Following the method prescribed by Bear, on the pages 532 and 533 in chapter
9.5.4 Horizontal Interface Displacement in [2], we can derive a formula for the
shape of the injectant covered area. Solving Equation 2.16c and Equation 2.17c ,
we get

(Qθ −ψ)cotθ −Q ln |sinθ |=−U2
u t +C , (2.23)

where Q = Qi or Q =−|Qp|, and C must be independent of θ . Putting in, for ψ ,
Equation 2.15a , we get

r cosθ +
Q
Uu

ln |sinθ |= Uut +C , (2.24)

which is equivalent to

x+
Q
Uu

ln

∣∣∣∣∣ y√
x2 + y2

∣∣∣∣∣= Uut +C . (2.25)

If doing as Bear, assuming x = y = 0 for ti = 0, we get C ≡ 0, and the analytical
expression for the advancing injectant front, during the injection phase, becomes√

1+
x2

y2 = exp
[
−Uu

Qi
(Uuti + x)

]
. (2.26)
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Requiring r = rw for ti = 0, however, yields

C = x+
Qi

Uu

√
1− x2

r2
w

, (2.27)

which has no solution, since the right hand side is not constant with respect to θ ,
and an analytical expression for the advancing injectant front cannot be found.

For tp = 0, the production phase injectant covered area takes the shape

rmax cosθ −
|Qp|
Uu

ln |sinθ |= C , (2.28)

where rmax can be expressed by putting in ti = Ti in Equation 2.26 , if we accept
that rw ' 0,

rmax cosθ +
Qi

Uu
ln |sinθ |= UuTi . (2.29)

We now get

C = UuTi−
Qi + |Qp|

Uu
ln |sinθ | . (2.30)

Since the right hand side is not constant, with respect to θ , it is not possible to
find an analytical expression for the shape of the withdrawing injectant front.

2.4 Approximations

As in any physical system, there are sources of error in the conduction of and the
measuring of the single-well push-pull test, and test results may be uncertain to
higher or lower degrees. Developing the mathematical expressions, in this the-
sis, a series of simplifying assumptions and approximations have been done, e.g.
assuming homogeneity, assuming zero viscosity, assuming the injectant to be an
ideal tracer, assuming zero dispersivity, etc. Due to these facts, it may be ar-
gued that model results are already so uncertain, that the positive effects of more
simplification may overshadow the added uncertainty. Here are proposed and
studied two ways of simplifying the mathematical expressions developed for the
single-well push-pull test, which may if applied correctly speed up calculations
significantly.
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2.4.1 Neglecting the Natural Drift
As shown in Paper I, the no-drift radial advancement, as a function of time, is
given by

r(t ≤ Ti) =
√

r2
w +2Qiti , (2.31a)

r(Ti < t ≤ Ti +Tp) =
√

r2
max−2|Qp|tp . (2.31b)

From Equation 2.31 , it is obvious that a free-of-physical-dispersion production
curve should drop from one to zero instantaneously, as there is angular symmetry
around the test well, and all stream-lines should obtain break-through at the same
time. The traditional assumtion is that the natural drift is negligible, and that any
smearing of the step function production profile is due to physical dispersion of
the injectant front. In a zero-dispersivity system we see, in Figure 2.4, that only
for a very short injection phase can the no-drift assumtion be expected to predict
the up-gradient tracer front position within an acceptable uncertainty. In Figure
2.4 the theoretical no-drift injection phase r(t) is compared to the with-drift up-
gradient injectant front r(t).
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Figure 2.4: Comparison of the exact maximum up-gradient radial advancement vs. time, from
the analytical model, with the no drift radial advancement and Taylor expansion results. Test
parameters from the Pickens-Grisak SW2 field test were used, [3].

2.4.2 Taylor Expansions
The expressions developed for the maximum up-stream radial advancement, Equa-
tion 2.19a , and the maximum down-stream radial advancement, Equation 2.19b
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, are implicit expressions for r(t), and considerable effort may be required to find
r(t), depending on the other variables and parameters. Substituting the left-hand
side of the equations with their corresponding Taylor expansions, [1], will give
implicit polynomial expressions for r(t).
Choosing a second-order polynomial, the expressions may be inverted and explicit
expressions for the approximated r(t), can be found, however, picking the points
around which the expressions are expanded, should be given careful considera-
tion, since these will significantly affect the accuracy of the approximations.

As an example, the expansion of the up-stream expression, Equation 2.19a ,
around r = rw becomes

r(t ≤ Ti) '
Uur2

w +
√

U2
u r4

w +2tQ3
i −4tQ2

i Uurw +Q2
i r2

w−2QiUur3
w +2QiU2

u r2
w

Qi

=
Uur2

w +
√

(Qi− rwUu)2(r2
w +2Qit)

Qi
, (2.32)

which for dominating injection rates, Uurw << Qi, becomes

r(t ≤ Ti) ' rw ·O
(

Uurw

Qi

)
+

√
r2

w

[
1+O

(
Uurw

Qi

)]
+2Qit

[
1+O

(
Uurw

Qi

)]

'
√

r2
w +2Qit , (2.33)

which is exactly the no-drift solution. That is, for dominating injection rates, the
no-drift solution is equivalent to the second-order Taylor expansion around rw. As
can be seen in Figure 2.4 , this is the case for the Pickens-Grisak SW2 field test
parameters,[3].
This statement does also imply that the no-drift approximation, even for domi-
nating injection rates, is only valid for small radial advancements/injection phase
durations.

Expanding around the no-drift rmax ' r∗m ≡
√

2QiTi may give a more accurate
approximation for larger values of r;

r(t ≤Ti)=
r∗m

2 +
√[

2r∗m
2U2

u +2UuQi(r∗m− rw)+2Q2
i ln
(

1− Uur∗m
Qi

)]
(−Qi +Uur∗m)2

QiUu
,

(2.34)
but at some point, r(t) becomes a complex number, and the real part of the r(t)
becomes irrelevant, as can be seen in Figure 2.4 . In this case, another point should
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be chosen. In Figure 2.4 an expansion around the point 0.75 ·Qi/Uu
3 is shown, also.

2.5 Number of Stream-lines Convergence Study

2.5.1 SW2 Test Parameters
To study the effect of varying the number of stream-lines traced in the developed
MatLab code, the model was run with N=10 000, 1000, 50, 10 and 3 stream-lines.
The resulting injectant production profiles, using single-layer SW2 test parame-
ters, can be seen in Figure 2.5.
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Figure 2.5: Resulting SW2 injectant production profiles from the analytical stream-line based
model, tracing 10 000, 1000, 50, 10 and 3 stream-lines.

There is no visible difference between the 10 000 and the 1000 stream-line pro-
files, so it can be concluded that a 1000 stream-lines is sufficient to model the
SW2 test.
The 50 stream-line production profile is a good approximation to the converged
curves, so a lower number than 1000 might also be sufficient. This could, how-
ever change if more demanding experimental set-ups were employed, for instance
if the injection phase duration was extended beyond the critical time, Tc. When
injecting for a period of time longer than Tc, some stream-lines will transport in-
jectant beyond the production phase no cross-flow boundary, as seen in Figure 2.2
, and the MatLab code deals with this simply by discarding these stream-lines,
and the total number of stream-lines decrease.

3(x,y) = (−Qi/Uu,0) is the injection phase stagnation point, the theoretical absolute maximum
up-gradient radial advancement.
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The 10 and 3 stream-line production profiles are too far from the converged curves
to be considered as good approximations. It should be noted, however, that the 3
stream-line model time outputs are of some value.
Three stream-lines is the minimum number the model will allow, and the n=1
streamline is the down-gradient stream-line with constant θ = 0 and the n=3
stream-line is the up-gradient stream-line with constant θ = π . These two in-
dividual stream-lines’ break-through times are the over-all end-time of injectant
production and the time of clean water break-through, respectively. Hence, run-
ning the model with three stream-lines, only, is a “quick and dirty” way of getting
these two points in time, although the corresponding producing injectant concen-
trations are of no value. The end-time of injectant production, can of course only
be found when Ti < Tc.

2.6 The Asymptotic Recoverable Area
For an infinite injection phase duration, the Rankine half-body of the “source/sink
in a uniform stream” problem will be completely covered with injectant. Just
a finite fraction, however, of the total amount of injectant is recoverable. The
recoverable injectant is found in the intersection area of the injection phase and
the production phase Rankine half-bodies, as can be seen in Figure 2.6. The point

X , [m]

Y
,
[m

]

Arec

ψ
p
=

0ψ
i
=
Q

i
π

−20 −15 −10 −5 0 5 10 15
0

5

10

15

20

25

30

Figure 2.6: Recoverable area bound by the injection phase and the production phase Rankine
half-bodies (upper half-plane only).

at which the two boundary stream-lines cross is given by the coordinates rb and
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θb, and

ψi = Qiπ = Uurb sinθb +Qiθb , (2.35)

ψp = 0 = Uurb sinθb−|Qp|θb . (2.36)

The area Arec, can now be calculated by integration.

Arec =−
θb∫

π

1
2

r2(θ ,ψi = Qiπ)dθ +
θb∫

0

1
2

r2(θ ,ψp = 0)dθ . (2.37)

Inserting for, r = ψ−Qθ

Uu sinθ
, we get the integral of r2,

∫
r2(θ ,ψ)dθ =

∫ (
ψ −Qθ

Uu sinθ

)2

dθ =
∫

ψ2−2ψQθ +Q2θ 2

U2
u sin2

θ
dθ

=
1

U2
u

[
−ψ

2 cotθ +C1 +2ψQ
(
θ cotθ − ln |C2 sinθ |

)
+
∫ Q2θ 2

sin2
θ

dθ

]
, (2.38)

where C1 and C2 are arbitrary integration constants. Since this is a half-plane cal-
culation, the Arec has to be multiplied by two to get the total recoverable injectant
covered area. The area may be calculated using for instance Maplesoft’s Maple,
[4], as seen in Subsection 2.6.1. Notice also that Arec is an asymptotic injectant
covered area, being the limit as Ti → ∞.

2.6.1 Maple Worksheet
This subsection shows a Maple worksheet used to calculate and plot the recover-
able area as a function of f = qi,3D/|qp,3D|, using the SW2 qi,3D = 62.12m3/day. The
θb is also calculated and plotted as a function of f = qi,3D/|qp,3D|. The output data
generated is not shown, except for the figures. The figures show how the recover-
able area and the angle of intersection, between the injection phase and production
phase no-flow boundaries, vary as functions of the ratio Qp/Qi, respectively.

> with(plots);

Number of data points
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> N:=100;

Define arrays
> f:=array(1..N);
> thetabmat:=array(1..N);
> A:=array(1..N);

Define variables
> for i from 1 to N do
> f[i]:=i*0.05;
> end do;

> Qi:=62.12;
> Uu:=0.17;

Start loop, calculate the Area for each instance of f
> for i from 1 by 1 to N do

Production rate
> Qp:=-f[i]*Qi;

Polar angle coordinate of intersection point
> thetab:=evalf(Qi*Pi/(Qi+abs(Qp)));

Calculate areas
> A1:=-Qi^2/(2*Uu^2)*int(((Pi-theta)/(sin(theta)))^2,
> theta=Pi..thetab);
> A2:=Qp^2/(2*Uu^2)*int(((theta)/(sin(theta)))^2, theta=0..thetab);
> Arec:=A1+A2;
> thetabmat[i]:=[f[i],thetab];
> A[i]:=[f[i],2*Re(Arec)];
> end do;

> plot(A, labels=["f=-Qp/Qi","Recoverable Area"]);
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> plot(thetabmat,labels=["f=-Qp/Qi","thetab"]);
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3.1 Introduction
In 2004, at the SPE annual technical conference and exhibition in Houston, USA,
the paper Modelling Conformance as Dispersion, SPE 90390 by Coats, Whitson
and Thomas, [2], was presented by dr. Keith Coats. In the paper they presented
a single-layer radial 1000x25 r− θ SENSOR model, where the radial spacing
was 999 equal-volume blocks from r = rw = 0.17 f t to r = 20 f t and one block
from r = 20 f t to r = 1405 f t. Angular spacing was uniform with ∆θ = 7.2◦.
Injection and production wells on BHP contstraint were put in cells (1000,25)
and (1000,1), respectively, to give a nearly uniform constant pressure gradient of
∼ 0.0023psi/ f t within the 40 ft diameter of the test well region. The test well
was located in the centre of the grid. Employing the presented SENSOR model,
simulations were run putting in the Pickens-Grisak, [4], field test parameters. It
was shown that the model was free of grid-related numerical dispersion, as grids
500x25 and 1000x50 gave identical results. In Appendix A the SENSOR input
file of Coats et al. is cited.

3.2 The Coats et al. Simulation Results
The Coats et al. SW1 and SW2 results are shown in Figure 3.1 a and b, re-
spectively, along with the Pickens-Grisak field test data and theoretical data from
the semi-analytical stream-line based model. The results obtained from SENSOR
must be considered strong evidence that the natural ground-water drift has sig-
nificant impact on the tracer flow-back behaviour. It “stretches” the the injectant
plume and the injectant production profile, implying a non-physically large effec-
tive dispersivity, that cannot be explained from the rock properties. Coats et al.
also showed that the apparent dispersivity is strongly affected by the test parame-
ters.
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Figure 3.1: Coats et al. SENSOR results compared to the Pickens-Grisak field data and the semi-
analytical solution.
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In the litterature, [1], [3], the apparent dispersivity is commonly reported to
be dependent of the length travelled. Coats et al. showed that their SENSOR
model apparent dispersivity is not only a function of the length travelled, but also
the injection/production rates and the time scale of the experiment, comparing
two simulation runs with equal travel lengths, 3 days at SW1-rate and 6 days at
half-SW1-rate.
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5-spot”
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4.1 Introduction
“3DSL is a three-dimensional black-oil reservoir simulator that uses a stream-
line grid to transport fluids along. The methodology is similiar to a conventional
IMPES-type code, except that fluids are moved along stream-lines, rather than
between discrete grid blocks. 3DSL extends the basic stream-line formulation
to three-phase, compressible black-oil models.” (Chapter 2.1 in the 3DSL User
Manual -Version 2.30, [4])

“Streamline simulation is a novel approach particularly suitable for simulating
large, heterogeneous reservoirs.” (Preface of the 3DSL User Manual -Version
2.30, [4]). 3DSL has previously proved itself to be an extremely effective and
accurate tool for particular simulation tasks, especially where high grid resolution
is needed, [7]. Simulation run-times an order of magnitude less than the run-
time of equivalent finite difference models, have been demonstrated, [2], and for
the quarter of a 5-spot problem an exact match to the Morel-Seytoux analytical
solution, [3], has been shown, [5].
For details on the 3DSL formalism and terminology see the 3DSL user manual,
[4].

4.2 A Quarter of a 5-spot
The 5-spot pattern is a repeating pattern of injectors surrounded by four produc-
ers, similiar to the number 5 on a dice. In a homogeneous reservoir, there will
exist no-flow boundaries sectioning the 5-spot pattern into identical squares with
an injector and a producer located in the opposite diagonal corners. Since all
the squares are identical, assuming homogeneity, it suffices to study one of these
squares to get an understanding of the reservoir productivity. Morel-Seytoux de-
veloped an analytical expression for the injectant production profile as a function
of time, for a 5-spot, [3].

Provided from Streamsim, [5], at their Internet web page, there are several
example input decks to their stream-line based simulator 3DSL. One of these is
a 50x50 grid-block single-layer “quarter of a 5-spot” model, “q5spt”. Each grid-
block is 2x2x1m3 of size and the total model dimensions are 100x100x1m3. The
porosity is set to a 100% and the permeability to a 100mD. The 3DSL TRACER
type model was used1.

The injector is located in grid-block (i, j,k) = (1,1,1) and the producer is

1“The model is implemented as a three-phase immiscible system with each phase having iden-
tical PVT properties of the oil phase. All phases have straight-line relative permeabilities with
no residual saturations. The tracer model can be viewed as a limiting case of the more general,
immiscible, three-phase problem”,[4]
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located in grid-block (i, j,k) = (50,50,1). The injector is operated at a constant
injection rate of 20m3/day for a total of a 1000days using 27 time-steps of equal
size, and the producer is operated at a constant bottom-hole pressure of 2500psi.
The time-steps from the start until 340days were calculated by 3DSL from the
restraint DPVMAX=0.10, meaning that no more than 0.10 pore-volumes can be
injected per time-step. The remaining 660days were split into 20 equal steps.

From the Morel-Seytoux solution, injectant break-through at about 0.7 pore-
volumes injected is expected, corresponding to 350 days of injection.

As can be seen in Figure 4.1, the 3DSL simulation injectant production pro-
file matches perfectly the analytical solution by Morel-Seytoux, although lack
of detailed data around the injectant time of break-through hides any dispersed
break-through behaviour2.
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Figure 4.1: 3DSL quarter of a 5-spot 50x50x1 and 500x500x1 grid simulation runs, using 27
time-steps, compared to the Morel-Seytoux’s analytical solution.

To assess the effect of refining the simulation grid, the Streamsim example was
refined to a 500x500x1 grid-block model, changing no other model parameters,
except the grid-block dimensions. The grid-block size was now, 0.2x0.2x1m3.
Although, as can be seen in Figure 4.2, the dispersion of the injectant front, at
0.7 pore volumes injected, was significantly reduced in the refined model, the
refinement did not, however, affect the production profile much, as can be seen in
Figure 4.1 .

To get a more detailed view of the production profile at the time of break-
through, better time-step resolution was introduced. Both the 50x50x1 and the

2Note that the 3DSL rate data written out at the end of a time-step is really the average over
that time-step. To compare with the analytical solution, the 3DSL data are plotted with a time-shift
of −∆T

2 , where ∆T is the length of the time-step, which may vary from time-step to time-step, [6].
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Figure 4.2: 3DSL quarter of a 5-spot in situ fluid saturation profile for 27 time-steps 50x50x1 and
500x500x1 models, respectively, at 0.7 PV injected.

500x500x1 models were run using a 107 time-steps. The same approach as in the
original model was used, the time interval from 340 days to 1000 days was split
into a 100 equal steps.

It has to be kept in mind that, using stream-line based simulators, identical
models, using different numbers of time-steps, are not automatically comparable,
since increasing the number of time-steps means increasing the numerical dis-
persion. This is due to the mapping back and forth, from the stream-lines to the
underlying grid, which happens for every time-step. Every time fluids are mapped
from a stream-line to a grid-block, artificial mixing may occur. Either because one
fluid is transported to a grid-block originally containing another fluid, because two
stream-lines, carrying different kinds of fluids, deliver to the same grid-block or
because of a combination of the two.

In Figure 4.3 it can be seen that the 107 time-step simulations both gave ex-
cellent matches to the theoretical Morel-Seytoux profile. We see that the coarse
model give a less accurate description of the production profile around the time of
break-through than the refined model. Note that the numerical dispersion around
the time of break-through should be about the same in the 27 time-step models
and the 107 time-steps models, as the number of time-steps done prior to the time
of break-through is approximately the same.

4.3 Conclusions

It has been seen that the grid refinement may play an important role regarding
the injectant front dispersion. However, even in the coarse model, the injectant
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Figure 4.3: 3DSL quarter of a 5-spot 50x50x1 and 500x500x1 grid simulation runs, using a 107
time-steps, compared to the Morel-Seytoux’s analytical solution.

front remains sharp compared to what one would expect from conventional finite
difference simulators such as Eclipse, [1].
For the particular case of generating injectant production profiles for a quarter of
a 5-spot, the grid refinement is not that important. Both the coarse and the re-
fined model reproduced the Morel-Seytoux analytical solution accurately, except
around the time of break-through, where the coarse model performed worse than
the refined one.
Even though a higher degree of numerical dispersion was expected for the high-
number-of-time-steps models, this was not observed.
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5.1 Introduction

When conducting the study of this thesis, Coats et al. had allready shown how
their SENSOR model, [2], performed and was able to reproduce experimental
data from the Pickens-Grisak field tests, SW1 and SW2, [3], quite accurately. As
the good results from the stream-line based semi-analytical model were obtained,
the idea occurred, to set up a model for a commercial stream-line based simulator.
It would be interesting to see how such a model would compare to the Coats et
al. model as well as the semi-analytical model described in Chapter 2 and Paper
I. Since it was allready shown how the stream-line based semi-analytical model
outperformed a finite difference approach, it was quite natural to assume that this
would also be the case for a commercial stream-line based simulator. Limiting
the study to the use of one simulator only, Streamsim’s 3DSL, [6], was chosen to
represent the class of available commercial stream-line based simulators.
In Appendix B, the final 3DSL input deck is printed, and in this chapter a descrip-
tion of the building process of the model and of the the final model itself is given.
In addition some general considerations and conclusions to the 3DSL modelling,
are presented.
For details on the 3DSL formalism and terminology see the 3DSL user manual,
[5].

5.2 Building the Model

5.2.1 Base-Case

To create a 3DSL model as accurate as possible, a coarse model. expected to per-
form poorly, was picked as a starting point. The base-case model was a regular
(I,J,K) 201x201x1 active grid cell model with cell dimensions 4.6x4.6x8.2m3, ap-
proximating the model dimensions of the Coats et al. model, [2]. The cell height,
8,2m, was taken from the Pickens-Grisak test site description, [3], as was the per-
meability and fractional porosity, 14.8darcy and 0.38, respectively. The 3DSL
TRACER functionality was applied, so that the three possible phases, gas, oil
and water, were miscible, yet all phases had the same properties as the oil phase.
Hence, the only difference between the phases are their names, and it is possible
to model tracer injection, keeping track of amounts and saturations of each phase.
The reservoir model was initiated with “water” as the in situ fluid, and the test
well injected “oil”. Generating production profiles, the injectant concentration in
the producing fluid was simply the rate of “oil” to the total rate produced.
Since it was desired to model the effect of naturally flowing ground-water, on the
push-pull test injectant production profile, horizontal wells in the columns I=1
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and I=201, were set to a constant BHP of 173.92kPa and 126.08kPa, respectively.
Thus, the mean reservoir pressure of 150kPa was maintained1 and a natural, uni-
form, pressure gradient of 0.052kPa/m, was established.
The test well was located in the middle of the model, at (I,J,K)=(101,101,1). The
Pickens-Grisak SW2 field test data were put into the model, injection at a rate
of 62.12m3/day for a period of 3.93 days and thereafter producing at a rate of
52.36m3/day for a period of 14 days.
Due to the coarse gridding, and the extreme smearing of the injectant saturation
profile, as can be seen in Figure 5.1, it is not surprising that the base-case pro-
duction profile, as shown in Figure 5.2, is a poor approximation to the theoret-
ical analytical dispersion free profile. Comparing the injection phase base-case
stream-line pattern with the theoretical “source in a uniform stream” stream-lines,
as can be seen in Figure 5.3, it can be seen that despite some disagreement, the
base-case stream-line pattern is not that far off.
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Figure 5.1: 3DSL Base case injectant saturation profile at the end of the injection phase.

1150kPa is approximately one and a half atmospheric pressure, being the assumed pressure at
five metres depth of water.
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test result and the theoretical dispersion-free model result.
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Figure 5.3: Comparing SW2 theoretical injection-phase stream-lines (grey) with the 3DSL Base
case stream-lines (black from the natural ground water flow and red from the injection well).
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5.2.2 Global Grid Refinement
Realising the need for grid refinement, due to the highly dispersed injectant front
seen in Figure 5.1 , a global refinement of the grid was attempted. Four differ-
ent refinement schemes were investigated, 401x401x1, 801x801x1, 1201x1201x1,
1501x1501x1. The reservoir scale was maintained, such that the grid cell size of
the 401x401x1 model was one fourth of the base-case grid cell size. It can be
seen in Figure 5.4, how the production profile approaches some limit, as the grid
gets finer. The profiles seems to come close to the theoretical profile, but the lack
of data points generated make it impossible to assess the details of the production
profile, especially at the time of break-through. There are, however, enough points
to make out that the end-time-of tracer production is not matched very well, even
by the very refined 1501x1501x1 model.
In Figure 5.5 it can be seen how the injectant saturation front at the end of the
injection phase gets less dispersed as the grid gets finer.
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Figure 5.4: Comparing the theoretical dispersion-free model data and the 3DSL Base case with
globally refined grid simulations. The grid cells are down-scaled as the number of grid cells is
increased, such that the overall model dimensions are kept constant.

5.2.3 Local Grid Refinement
Although, the 1501x1501x1 grid contains more than two million grid cells, it is
still no problem to run the simulation in a fairly short time on a common desktop
computer, even if it would take long time with a traditional finite difference sim-
ulator. Simulation cost, measured in time, however, should always be minimised,
and there is evidence that the refinement of the 1501x1501x1 model is not even
enough. It might be more efficient and more clever to locally refine the model,
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Figure 5.5: 3DSL injectant saturation profiles, at the end of the injection phase, for the various
globally refined models.

around the test well.
Refinement is important where sharp fluid fronts are important and where the
stream-line curvatures are strong, where the linearly varying velocity assumption
is far from the truth2. Thus, it suffices to refine the grid around the test well, since
there are no fluid fronts of particular interest far from the well and that the stream-
lines far from the test well are close to linear.
By trial and error, it was found that the stagnation points of the source/sink in
a uniform stream problem should be inside the refined area, so for the SW2 test
parameters, an area of 40×40m2 around the test well was refined. That is, 9 rows
and columns in the base-case model were refined.

2“The underlying assumption is that the velocity field in each coordinate direction varies lin-
early and is independent of the velocities in the other directions”, [1](Chapter 3.5), [4].
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Two different local refinement models were investigated, 401x401x1 and 601x601x1,
where for instance the 401x401x1 model consisted of 192 cells of width 4.6m and
209 cells of width 9·4.6m

209 = 0.198m, in the I direction, and similarly in the J direc-
tion .

In Figure 5.6 it can be seen how the locally refined models perform just as
well as the globally refined 1501x1501x1 model. Using local grid refinement, it
is possible to get an even finer grid (0.1×0.1×8.2m3 cell sizes in the 601x601x1
model), and sharper fluid fronts, than in the 1501x1501x1 globally refined grid
(0.6×0.6×8.2m3 cell sizes), in the relevant study area, as well as a much lower
simulation run-time.
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Figure 5.6: 40x40m2 local grid refinement around the test well injectant production profiles.

5.2.4 Grid Dimensions
It has been assumed that the reservoir model should be wide and long to avoid
the model boundaries affecting the stream-line pattern in a non-physical way. In
the semi-analytical model, the reservoir has been assumed to be of infinite areal
extent. It was assumed, for the base-case model, that the Coats et al. model di-
mensions were sufficiently large.
Investigating the effect of shrinking the model, however, does not give conclu-
sive proof that the width is of great importance, although it is obvious that ex-
tremely narrow models, for instance narrower than the Rankine half-body, will
affect the model stream-lines in very non-physical ways. Keeping the cell sizes
constant, the number of grid-cells in the 401x401x1 (2.3×2.3×8.2m3 cell sizes)
and the 801x801x1 (1.15×1.15×8.2m3 cell sizes) globally refined models were
altered, both decreased and increased. Dividing the number of grid cells by four
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involved dividing the model area by four, as well. The pressure gradient was kept
at 0.052kPa/m and the test well was kept in the middle of the grid.
As can be seen in Figure 5.7 and Figure 5.8, even shrinking the model area
greatly, by a factor 16 for the 401x401x1 model and a factor 64 for the 801x801x1
model, did not affect the production profiles much.
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Figure 5.7: Injectant production profiles from 2.3x2.3m2 grid-block area models with different
number of grid-blocks.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Dimensionless Time, Vp/Vi,TOT

C
on

ce
nt

ra
tio

n,
 C

Analytical Stream-line Based SW2 Model

Globally refined 801x801

1601x1601

401x401

201x201

101x101

Figure 5.8: Injectant production profiles from 1.15x1.15m2 grid-block area models with different
number of grid-blocks.



86 Part II: Push-Pull Test Modelling in Streamsim’s 3DSL

5.2.5 3DSL Model Boundaries
One of the features of 3DSL is the BOUNDARIES section, [5], where open-flow
boundaries may be defined.
“Open boundaries are useful for incompressible problems where total field pro-
duction/injection volume will typically not be equal throughout the field life.
Boundaries can also be used to model constant pressure aquifers”, [5].
Open-flow boundaries are similiar to the boundary wells that can be defined in the
RECURRENT section along with injection and production wells, but where the
boundary wells can only be perforated in one cell each, the open-flow boundaries
can span multiple cells. The open-flow boundary cell pressures are set to the ini-
tial pressure defined in the cell, and is assumed fixed throughout the simulation
run. The boundary cell will act as an injector/producer depending on the pressure
of the neighbouring cells. When injecting, the boundary cell will inject fluids as
specified in the input deck.
A study was done to evaluate the use of open-flow boundaries, longitudinally,
compared to the natural drift direction, to avoid no-flow boundaries affecting the
stream-line pattern, and transversally to ensure the natural pressure gradient (in-
stead of the horizontal wells of the base-case model). For the longitudinal open-
flow boundaries, there was no significant effect on the production profile, but sim-
ulation run-time was affected negatively. For transversal open-flow boundaries,
there was a negative effect on the production profile, resulting in a more dispersed
curve.
Due to these observations, the BOUNDARIES feature of 3DSL was not made use
of in the final model presented here.

5.3 Problems to be Considered
Here is listed the main concerns and problems experienced during the model
building:

1. One of the assets of 3DSL is that there is no limit to the length of time-steps,
in principle. Contradictory to the intuition developed through traditional
finite difference simulation, the numerical dispersion of 3DSL actually in-
creases as the number of time-steps is increased. This is due to the mapping
and re-mapping of fluid saturations to the underlying grid. Every time out-
put data are generated and a new time-step is begun, the saturation data in
the underlying grid is updated, and artificial mixing may occur. Hence, gen-
erating as little output data as possible is desired. In Figure 5.9 saturation
profiles at a selection of points in time are compared, for the 401x401x1
locally refined model using 11 and 51 time-steps. It can clearly be seen how
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the saturation profile is (1) the more dispersed the later in the simulation we
get and (2) more dispersed for the 51 time-step run than for the 11 time-step
run.
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Figure 5.9: 3DSL injectant saturation profiles at a selection of points in time, for the 401x401
locally refined model using 11 (first and third rows) and 51 (second and fourth rows) time-steps,
respectively .
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On the other hand, scarce output data gives poorly detailed production pro-
files, and the output rates are actually an average rate over the time-step,
and they might be way off, if the time-step is long and the rate is varying.
A balance must be found, between acceptable inaccuracy due to numerical
dispersion, on one hand, and acceptable inaccuracy due to averaging and
lack of detail on the other hand.
These arguments alone, is enough to realise that a dispersion-free, detailed,
exact match to the theoretical production profile cannot generally be found.

2. Even though the solving of the flow equations, one-dimensionally, along
the stream-lines can be very accurate, the finite difference aspect of the
underlying grid is haunting the simulator. Both saturations and pressures
are discretized and piecewise constant over each grid cell, and the velocity
field inside each grid cell, used to find the stream-line patterns, is assumed
to be piecewise linear, across the grid cells, [4]. Inter cell velocity fields are
calculated from the grid cell interface Darcy velocities, [1]. Hence, a coarse
grid is unfit for modelling velocity fields varying rapidly in space and for
models where a sharp fluid front is crucial.

3. Both the Coats et al. model as well as the semi-analytical stream-line based
model are concerned with the upper half-plane only, due to the symme-
try of the problem. This saves, in both models, computation time, saving
grid cells in the numerical model and saving stream-lines in the stream-line
based model. An attempt was done, using 3DSL, also, to model the upper
half-plane only. The results were not good. A good match to the expected
values were obtained for time of break-through and end-time of tracer pro-
duction, but the intermediate production profile gave a very poor match to
the theoretical semi-analytical results.
No further study regarding this topic was done, but it is believed that the
problem is related to the fact that the well is located at the centre of a grid-
cell and that stream-lines will emerge from the well at all angles, not only
for θ ∈ [0,π]. This leads to an unnatural high density of “forced” stream-
lines along the model boundary closest to the well.

5.4 The Best Model
Based on the study reported from and described in this chapter, the 601x601x1
locally refined model, using no-flow boundaries and horizontal wells to assure the
natural pressure gradient has come to be regarded as the best model. The locally
refined area includes both the injection phase and production phase stagnation
points, and the full injectant plume.
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No conclusion is drawn regarding the time-stepping question, except that the in-
jection phase should be finished in one time-step only, and that one time-step only,
should be taken from the end of the injection phase until the time of break-through.
Other than that, the number of time-steps should be chosen to satisfy the demand
for production profile detail and accuracy. In Appendix B the 3DSL input deck of
the final model is cited.
As can be seen in Figure 5.10 and Figure 5.11, 19 time-step solutions, using the

final model, give very good intermediate matches to the theoretical dispersion-free
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Figure 5.10: Comparing the 19 time-step 40x40m2 locally refined 601x601x1 grid block SW2
model with the theoretically expected SW2 injectant production profile.
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Figure 5.11: Comparing the 19 time-step 40x40m2 locally refined 601x601x1 grid block SW1
model with the theoretically expected SW1 injectant production profile.
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production profiles, but pre-break-through and at the end of tracer production, the
profile is smeared3.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Dimensionless Time, Vp/Vi,TOT

C
on

ce
nt

ra
tio

n,
 C

Analytical Stream-line Based SW2 Model

3DSL 601x601 grid

3DSL 1001x1001 grid
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block SW2 models results with the theoretically dispersion-free solution.
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Figure 5.13: Comparing 19 time-step 40x40m2 locally refined 601x601x1 and 1001x1001x1 grid
block SW1 models results with the theoretically dispersion-free solution.

3Note that if exchanging the SW2 test parameters in the Appendix B input deck with SW1 test
parameters, the grid should also be changed so that the SW1 stagnation points are included in the
refined ares, for instance by altering the grid dimensions 0.1m → 0.12m, to get the most accurate
results.
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To assess the degree of convergence of the 601x601x1 model, the model was
refined even more, to a 1001x1001x1 model, where the locally refined grid-blocks
were divided by four. As can be seen in Figure 5.12 and Figure 5.13, there is no
great difference between the 601x601x1 and the 1001x1001x1 model results, so
it can be concluded; grid-related numerical dispersion has negligible effect on the
601x601x1 model results.

5.5 Conclusions

It has been seen through the 3DSL study, that the refinement of the grid is es-
sential; the sharp fluid interfaces needed to model a dispersion-free push-pull test
accurately, requires a fine grid. The solution is local refinement, and it has been
shown that it suffices to refine an area around the test well, including the stagna-
tion points, larger than the maximum injectant covered area.

Close attention should be paid to the number of time-steps taken, as this will
affect the numerical dispersion as well as the accuracy and the detail of the pro-
duction profile. A high level of detail will require a lot of time-steps, as output
data, from 3DSL, is only generated at the end of a time-step, leading to an increase
in the numerical dispersion. Vice versa, a small numerical dispersion will require
few time-steps and will lead to a low level of production profile detail. In addition,
the rate data output are averages over the time-steps and may be way off, for long
time-steps and varying rates.

It has been seen that the 3DSL model developed here matches the produc-
tion profile accuracy of the SENSOR model developed by Coats et al, but devi-
ates somewhat from the theoretical dispersion-free model results. It is also worth
noticing that the 3DSL simulations finished faster than the SENSOR simulations,
run on the same computer.

Based on this study and correspondences with Marco Thiele at Streamsim
Technologies Inc., [6], it has to be concluded that the stream-line based semi-
analytical model developed in this thesis presently is the most accurate model
and that available commercial simulators, finite difference or stream-line based,
cannot readily be used to model push-pull tests accurately.
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6.1 Introduction
In addition to single-well tests, two-well tests are commonly run all over the
world. The two-well test is closely related to the single-well push-pull test, but as
the name implies, the test involves the use of two test wells some distance apart.
One of the wells act as an injector and the other as a producer. As in the push-pull
test, the injectant is a mixture of water and tracer/solutes, and the concentration
versus time, of injectant, is calculated from the measured tracer/solute content in
the produced fluid. The two wells may, in principle, inject/produce at different
rates. In the paper by Pickens and Grisak, [2], where the single-well push-pull
test data were collected, there is also reported from a two-well test, and in their
paper from 2001 Coats et al., [1], also report from a two-well transmission test
simulation model, using SENSOR, [3].

6.2 Source Plus Sink in a Uniform Stream
In Figure 6.1 a schematic of a general two-well transmission test setup can be
seen. The two test wells are located, symmetrically on either side of the y-axis,
on the x-axis, with an inter-well distance of 2a. The natural, uniform stream flows
at angle, α , to the positive x-axis. The reformulated two-dimensional injection
and production rates are Qi and Qp, respectively, as for the push-pull test, and
the production rate is per definition negative. The mathematical formulation of
the “source plus sink in a uniform stream” is similar to that of the “sink/source
in a uniform stream”, which is treated in Chapter 2 and Paper I. The stream-line
numbers, ψ , of the system is simply the super-position of the stream-line numbers
from each component, the uniform stream, the source and the sink, [4];

ψ = ψuni f orm +ψsource +ψsink

= Uu (−xsinα + ycosα)+Qi arctan
y

x+a
−|Qp|arctan

y
x−a

. (6.1)

Here, the arctan function has been used, but the arccos or the arcsin functions may
also be chosen, adjusting the argument. Note that the choice of functions might
ease or complicate the problem, mathematically and graphically. Transformations
to other coordinate systems have not been studied.

In Figure 6.2 it can be seen how the injection/production rate ratio affects the
stream-line picture and also how the injection/production “strength” compared to
the natural drift is of importance. The injector and the producer are denoted by
I and P, respectively, and the natural drift velocity direction is indicated with an
arrow. Test parameters from the Pickens-Grisak two-well transmission test, [2],
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y

x
I P

(−a,0) (a,0)

α

Uu

Figure 6.1: Schematic of a two-well transmission test setup in a uniform stream.

has been used as default; Qi = |Qp|= 1.99m2/s, a = 4m, Uu = 0.17m/day.
Due to the formulation of the stream-line number, ψ , in Equation 6.1 , there are
asymptotes in x =−a and x = a. These asymptotes show up as y-directional lines
in the stream-line plots, but represent, really, non-physical stream-line effects due
to the mathematical formulation. The over-all picture, however, is correct. The
problem may be mended by switching from arctan to arccos or arcsin, but other
graphical artifacts will occur as the natural drift angle is varied.
In Figure 6.2 (a) and (b) the production rate is half and double the injection rate,
respectively, and it can be seen, in a), that injectant easily escapes the production
well while, in b), the production well “swallows” all the injectant and in addition
some in situ water.
In Figure 6.2 (c) the injection and production rates are equal, but both rates have
been reduced by 90 % from the Pickens-Grisak values. In addition the natural
drift direction is set to α = π/4. As can be seen, the two wells are connected by
very few stream-lines, hence, the communication between the test wells is poor.
Monitoring the pressure in the wells, will reveal the presence of the other well, but
no or very little injectant can be recovered. Hence, without a good understanding
of the natural drift regime, unfortunate test set-ups may be designed, where the
two test wells do not communicate.

In Figure 6.3 it can be seen how the direction of the natural drift affects the
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stream-line picture, maintaining the Pickens-Grisak test parameters, varying the
natural drift direction, α , only. Although it is not emphasised, we can see how
the Rankine oval, [4], separates injected fluid from the in situ fluid1. As is seen,
for these test parameters, only in the α = 0 are all injection well stream-lines
connected to the production well.
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(c) |Qp|= Qi but reduced by 90%, α = π/4

Figure 6.2: Two-well transmission test stream-line patterns. The impact of the injec-
tion/production rate ratio as well as the injection/production “strength” compared to the natural
drift. The vertical lines are due to the asymptotic behaviour of the arctan parts of Equation 6.1
and represent non-physical stream-line effects. This is also the cause of the “broken” stream-lines.

1Some in situ fluid initially located inside the Rankine oval, will be produced before injectant
break-through occurs.
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6.3 Conclusions
It has been seen, studying stream-line patterns, that two-well transmission tests
might be sensitive to natural drift. In addition to the injector/producer strength
ratio, the direction of the drift, in relation to the axis on which the test wells lie, is
of great importance for the interpretation of the test results. Only for a natural drift
going in the injector-producer direction, and only for Qi ≤ |Qp|, are all injector
stream-lines connected to the producer, and all the injectant may be recovered.

Before a two-well transmission test is designed one should fully understand
the flow regime, else a test where the injector and the producer are not connected
by any stream-lines at all can accidentally be designed, and no injectant will be
recovered, whatsoever.

The mathematics of the two-well transmission test stream-line based problem
is more complex than that of the single-well push-pull test, and it might not be
possible finding an analytical solution to the problem. The problem may, however,
be solved numerically by applying the same ideas as for the single-well push-pull
test, tracing the injectant fronts along each stream-line. For the two-well test, in
addition to a time of clean water break-through, a time of injectant break-through
must be calculated for each stream-line, relating the problem to the single-well
test problem where a drift/residence phase is included in-between the injection
and production phases.
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• In some cases of push-pull tests, it might be desireable to include a drift
phase between the injection and production phases, where the injectant
plume is allowed to drift naturally with the in situ water without being af-
fected by any induced pressure gradient, [1]. This to increase the residence
time of the test solution in the aquifer and allow more time for reactions to
proceed. The program code developed along with this thesis does presently
not allow for this option. It should, however, not be too difficult implement-
ing this possibility, by letting the stream-line end-points move linearly with
the natural drift for some time, before tracing them back to the test well.
Similarly, it should be possible to introduce the possibility of varying injec-
tion/production rates.
Both ideas would require a kind of “rubber band” geometry of the injectant
front. The “rubber band” should not be broken, or the methodology will
not work, since this implies more advanced flow regimes. It should also be
taken care to keep the test well inside the “rubber band”. If the test-well is
allowed outside of the injectant covered area,as is actually the case for the
two-well test, more advanced approaches must be applied, as there will also
be a time of injectant break-through.

• Presently the possibility of modelling deterioration of the injectant tracer
content, by radioactive decay, adsorption, chemical or physical reaction, or
by any other mechanism, is not included. The tracer is assumed to be ideal,
but adding this possibility in the program could prove useful.

• Throughout this work, the physical dispersion and diffusion has been as-
sumed negligible, and there is no possibility of modelling these effects in
the present model. By applying the one-dimensional convection-dispersion
equation along each stream-line, however, it might be possible to model this
as well.

• Two-well transmission tests are also common field tests conducted all over
the world. These tests are also readily visualised and modeled using stream-
lines, superposing a source and a sink some distance apart, in a uniform flow
field, [2]. The mathematics of the front-tracking part, however, becomes
significantly more complicated than in the single-well test case, and no great
effort has been put into this problem during this study. As for the single-well
test, including a drift phase, a time for injectant break-through, in addition
to a time of clean water break-through, will be required for each stream-
line. The equations developed, but not solved in this thesis, could possibly
be solved applying numerical mathematical techniques.
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Introducing scale-dependency, velocity dependency, etc., just to cling to the
current explanation model, seems like desperation not uncommon in the history
of science. Based on the arguments given in this thesis, however, it is believed we
need to think again. It is time for a change of paradigm in the well-testing science.
The current use of the one-dimensional convection-dispersion equation should
be discarded, and well-testing engineers and scientists should consider natural
ground-water drift as more important than physical dispersion.

The method of considering ground-water drift will not only explain, in a better
way, the current single-well and two-well tests being performed, but it can also be
used to assess the ground-water drift in an aquifer. This can prove interesting in
many study areas, such as CO2 sequestration in saline aquifers and transport of
contamination, by the ground-water, e.g. salt-water intrusion in fresh-water sup-
plies or transport of environmentally hazardous substances. An important applica-
tion, for the oil industry, is predicting tilted water-oil-contacts, as a consequence
of dynamic aquifers below the oil-zone. Neglecting a tilted WOC may result in
an inaccurate estimate of the amount of initial oil in place. Knowing, or assum-
ing, the natural drift velocity, the method proposed may be employed to assess the
permeability and/or the porosity of the aquifer, as well.

The main conclusions, related to single-well push-pull tests, from the study
reported in this thesis, are:

Paper I
1. In an entirely dispersion free model, it has been shown that real experimen-

tal data may be matched well even though apparent dispersivity is large.

2. It has been shown analytically, in an over-simplified reservoir model, that
natural drift alone may cause a big part of the apparent dispersivity reported
by Pickens and Grisak.

3. The analytically calculated times for clean water break-through and end
time of tracer production and the semi-analytical calculations in-between
show good agreement with results from numerical simulations run by Coats
et al, and stream-line based simulation results obtained from Streamsim’s
3DSL.

Paper II
1. For injection phase durations, Ti, larger than some critical time, Tc, the tracer

production is not conservative, and the Convection-Dispersion equation will
no longer fit the tracer producing concentration profile well.
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2. For Ti < Tc, the Peclet number plots linearly vs. Ti in a log-log diagram,
using the SW1 and SW2 test parameters.

3. A strong scale dependency of the apparent dispersivity has been found even
though the physical dispersivity of the model per definition is zero.

4. The apparent dispersivity resulting from fitting the one-dimensional convection-
dispersion equation cannot be expected to be a measure of the physical dis-
persivity.

Paper III
1. Time of break-through is not affected by layering in an aquifer with no

natural drift.

2. Both time of clean water break-through and end-time of tracer production
is affected by layering in the presence of natural groundwater drift.

3. Introducing layering and applying the layering data reported by Pickens
and Grisak, it is possible to get an exact match to the experimental data,
including the characteristic oscillating behaviour of the production profile.
Thus it may be concluded that the oscillations are effects of the stratification
of the test-site in combination with the natural drift.

4. In a model free of physical dispersion, it is shown that a model combining
groundwater drift and layering heterogeneity may yield a perfect match to
production profiles showing large apparent dispersivity.

Chapter 2
1. For injection rates dominating over the natural drift, the no-drift approxima-

tion is equivalent to doing a Taylor expansion of the second order, around
the well-radius, of the exact up-gradient radial advancement expression,
thus being valid for small radial advancements only.

2. For the Pickens-Grisak SW2 test parameters, a thousand stream-lines is suf-
ficient to get an effectively converged production profile.

Chapter 3 - 5
1. Even though numerical dispersion related to the grid refinement, in the

Coats et al. radial SENSOR model, was minimised and effectively removed,
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the model results show some unaccounted-for dispersion compared to the
dispersion-free analytical model results.

2. Single-well push-pull “echo” tests are not readily modeled using available
commercial simulators, from Coats Engineering, Sensor (FD) and, from
Streamsim, 3DSL (SL).

Chapter 6
1. It has been seen, studying stream-line patterns, that two-well transmission

tests are sensitive to natural drift, also.

2. In addition to the injector/producer strength ratio, the direction of the drift,
in relation to the axis on which the test wells lie, is of great importance for
the interpretation of the test results.

3. Only for a natural drift going in the injector-producer direction, and only
for Qi ≤ |Qp|, are all injector stream-lines connected to the producer.

4. Unless the natural flow regime is understood, a test where the injector and
the producer are not connected by any stream-lines at all can accidentally
be designed, and no injectant will be recovered, whatsoever.
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A.1 Introduction
In [1], Coats et al. showed, using the finite difference simulator SENSOR, [2],
that the apparent dispersivity in single-well push-pull tests may to a large extent
be caused by natural drift of the ground-water. The SW2 SENSOR input deck
employed by Coats et al. is cited below.
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A.2 Input Deck
TITLE
sw2.dat

SW2 hydraulic gradient r-theta dp/dx=.00232 psi/ft
1000x25x1

ENDTITLE

GRID 1000 25 1

RADIAL
5
.17 20. 1405.
25*7.2

ILU 2 1 1
MAPSPRINT 1 P TRACER KX PV TX TY
MAPSFORM 4 P
CPU

C Bwi cw denw visw cr pref
MISC 1. 3.e-6 62.4 1. 4.e-6 5000

SWINIT CON
1

http://www.coatsengineering.com
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TRACEREXPL 1 ! TREAT WELL TERMS EXPLICITLY IN TRACER CONCENTRATIONS
!(DEFAULT IS IMPLICIT)

TRACER
2 WATR

C DEFAULT INITIAL TRACER FRACTIONS ARE 0 1

PVTBO 1
C #/cuft stoil #/scf gas
DENSITY 53.00 .0624
PRESSURES 1 2 ! nsat ntot
300. 6000. ! psia

PSAT P BO VISO
300. 300. 1.0000 .5

6000. 1.0000 .5

KRANALYTICAL
.2 .2 .2 0. ! Swc Sorw Sorg Sgc
1. 1. 1. ! krwro krgro krocw
2 2 2 2 ! nw now ng nog

THICKNESS CON
1.

DEPTH CON
5000

KX CON
14800.

KY EQUALS KX
KZ EQUALS KX
POROS CON
.38

INITIAL
PINIT 5000
ZINIT 5000.5

ENDINIT ! end of Initial Data

WELL
I J K

WINJ ! wellname
1 1 1
1 2 1
1 3 1
1 4 1
1 5 1
1 6 1
1 7 1
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1 8 1
1 9 1
1 10 1
1 11 1
1 12 1
1 13 1
1 14 1
1 15 1
1 16 1
1 17 1
1 18 1
1 19 1
1 20 1
1 21 1
1 22 1
1 23 1
1 24 1
1 25 1
PROD
1 1 1
1 2 1
1 3 1
1 4 1
1 5 1
1 6 1
1 7 1
1 8 1
1 9 1
1 10 1
1 11 1
1 12 1
1 13 1
1 14 1
1 15 1
1 16 1
1 17 1
1 18 1
1 19 1
1 20 1
1 21 1
1 22 1
1 23 1
1 24 1
1 25 1

WINJA
1000 25 1

PRODA
1000 1 1

WELLTYPE
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WINJ STBWATINJ
PROD STBLIQ
WINJA STBWATINJ
PRODA STBLIQ

BHP
WINJA 5001.05
PRODA 4998.95

RATE
WINJ 7.25
WINJA 1.E20
PRODA 1.E20

CFL 1.

MAPSFREQ 100
STEPFREQ 10
WELLFREQ 10

WELLTRACER
WINJ WATR

1 0 ! inject tracer fraction 1
WINJA WATR

0 1

TIME 3.93
RATE
WINJ -1
PROD 6.1105

TIME 8.5929
TIME 13.256
END

TITLE
500x25x6

ENDTITLE

GRID 500 25 6

RADIAL
5
.17 26. 1405.
25*7.2

ILU 2 1 1
MAPSPRINT 1 P TRACER KX PV TX TY DEPTH
MAPSFORM 4 P
CPU
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C Bwi cw denw visw cr pref
MISC 1. 3.e-6 62.4 1. 4.e-6 5000

SWINIT CON
1

TRACEREXPL 1 ! TREAT WELL TERMS EXPLICITLY IN TRACER CONCENTRATIONS
!(DEFAULT IS IMPLICIT)

TRACER
2 WATR

C DEFAULT INITIAL TRACER FRACTIONS ARE 0 1

PVTBO 1
C #/cuft stoil #/scf gas
DENSITY 53.00 .0624
PRESSURES 1 2 ! nsat ntot
300. 6000. ! psia

PSAT P BO VISO
300. 300. 1.0000 .5

6000. 1.0000 .5

KRANALYTICAL
.2 .2 .2 0. ! Swc Sorw Sorg Sgc
1. 1. 1. ! krwro krgro krocw
2 2 2 2 ! nw now ng nog

THICKNESS ZVAR
.389 .1667 .1111 .1111 .0556 .1667

KX ZVAR
.453 .865 .7485 1. .943 .612
MOD
1 500 1 25 1 6 * 22119.

DEPTH CON
5000

KY EQUALS KX
KZ CON

0.
POROS CON
.38

INITIAL
PINIT 5000
ZINIT 5000.5

ENDINIT ! end of Initial Data

MODIFY DEPTH
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1 500 1 25 1 6 = 5000.5
WELL

I J K1 K2
WINJ ! wellname
1 1 1 6
1 2 1 6
1 3 1 6
1 4 1 6
1 5 1 6
1 6 1 6
1 7 1 6
1 8 1 6
1 9 1 6
1 10 1 6
1 11 1 6
1 12 1 6
1 13 1 6
1 14 1 6
1 15 1 6
1 16 1 6
1 17 1 6
1 18 1 6
1 19 1 6
1 20 1 6
1 21 1 6
1 22 1 6
1 23 1 6
1 24 1 6
1 25 1 6
PROD
1 1 1 6
1 2 1 6
1 3 1 6
1 4 1 6
1 5 1 6
1 6 1 6
1 7 1 6
1 8 1 6
1 9 1 6
1 10 1 6
1 11 1 6
1 12 1 6
1 13 1 6
1 14 1 6
1 15 1 6
1 16 1 6
1 17 1 6
1 18 1 6
1 19 1 6
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1 20 1 6
1 21 1 6
1 22 1 6
1 23 1 6
1 24 1 6
1 25 1 6

WINJA
500 25 1 6

PRODA
500 1 1 6

WELLTYPE
WINJ STBWATINJ
PROD STBLIQ
WINJA STBWATINJ
PRODA STBLIQ

BHP
WINJA 5001.28
PRODA 4998.72

RATE
WINJ 7.25
WINJA 1.E20
PRODA 1.E20

DT -.005512 ! CFL 1

MAPSFREQ 100
STEPFREQ 10
WELLFREQ 10

WELLTRACER
WINJ WATR

1 0 ! inject tracer fraction 1
WINJA WATR

0 1

TIME 3.93
RATE
WINJ -1
PROD 6.1105

TIME 8.5929
TIME 13.256
END
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B.1 Introduction
In Chapter 4, the search for a single-well push-pull test model, using Streamsim’s,
[2], stream-line based commercial simulator, 3DSL, [1], was described. Here is
presented the 3DSL input deck representing the best solution that could be found.

References
[1] Streamsim Technologies, Inc. 3DSL User Manual - ver. 2.30, December 2005.

Available at:
http://www.streamsim.com.

[2] The Streamsim web page.
http://www.streamsim.com, 2006.

B.2 Input Deck

- -----------------------------------------------------------
- Single-well push-pull test in a naturally flowing aquifer.
- -----------------------------------------------------------
-
- A (I,J,K) 601x601x1 grid with no-flow boundaries and no inactive cells
- is initiated with a homogeneous fractional porosity of 0.38,
- and a permeability of 14.8 darcy, at 150 kPa uniform pressure,
- and the in situ fluid is "water".
- The grid is based on a 201x201 homogeneous cell size grid of
- 4.6x4.6x8.2 m3.
- Local refinement of the center of the grid has been done,
- such that the grid cells have dimensions 0.1x0.1x8.2 m3.
- Horisontal wells at I=1 and I=601, spanning the width of
- the reservoir, J=1-601, on BHP control ensures a natural
- pressure gradient of ~0.052 kPa/m. The inecting well is
- injecting the in situ fluid, "water".
- In the middle of the model, I=301, J=301, a test well is located.
- The test well, on rate control, injects "oil" for a certain period,
- then the well starts producing.
- Using the TRACER option, the only difference beween the different
- fluid phases, are their names. All PVT properties are
- identical.

RUNOPTIONS
TITLE=’Single-well push-pull test in a naturally flowing aquifer.’

http://www.streamsim.com
http://www.streamsim.com
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UNITS=METRIC !input and output data in metric units
MODEL=TRACER !oil, gas and water phases have identical properties

END RUNOPTIONS

GRID
NX=601 !number of grid cells in the x-direction (I)
NY=601 !number of grid cells in the y-direction (J)
NZ=1 !number of grid cells in the z-direction (K)

POROSITY
0.38 / !fractional porosity

PERMX
14800 / !x-directional permeability, [mD]

PERMY=PERMX
PERMZ=PERMX

DXV
96*4.6 409*0.1 96*4.6/ !grid cell x-directional size, [m]

DYV
96*4.6 409*0.1 96*4.6/ !grid cell y-directional size, [m]

DZV
8.2 / !grid cell z-directional size, [m]

END GRID

PVT
SCDENSITIES

1.0 1.0 1.0 / !oil, gas and water densities @ SC, [kg/m3]
CVISCOSITIES

1.0 1.0 1.0 / !oil, gas and water viscosity @ SC, [cp]
END PVT

INITIALCOND
ZINIT

0 0 1 / !initial oil, gas and water saturation
PINIT

150 / !initial reservoir pressure
END INITIALCOND

OUTPUT
3DSLFMT= on !3DSL ASCII output on
sat=1 !output grid saturation data at every time-step
slines=-1 !output stream-line grid coordinates at every

!explicit TIME key-word.
slfreq=1 !output data for every stream-line
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END OUTPUT

RECURRENT
WELLS !define well name, type, direction, location, diameter

NAME=TOP TYPE=I DIR=Y I=1 J=1-601 K=1
NAME=BOTTOM TYPE=P DIR=Y I=601 J=1-601 K=1
NAME=INJ TYPE=I DIR=Z I=301 J=301 K=1 DIA=0.001
NAME=PROD TYPE=P DIR=Z I=301 J=301 K=1 DIA=0.001

/

TUNING3D !3D level simulation run tuning
DVOLMAX=1 DPVMAX=0.5 DTMAX=500

END

TUNING1D !1D level simulation run tuning
CFL=0.99 NODESMAX=100000

END

-Start the injection phase
TIME=0

-horizontal well performance, inject "water"
NAME=TOP BHP=173.907 ZWAT=1.0
NAME=BOTTOM BHP=126.093

-Test well performance, inject "oil"
NAME=INJ RTRAT=62.12 ZOIL=1.0 ![sm3/day]

-Start the production phase
TIME=3.93 NT=30 !do NT time-steps before next TIME key-word

-Test well performance
NAME=INJ SHUT
NAME=PROD RTRAT=52.36 ![sm3/day]

-End of test
TIME=13

END
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C.1 Introduction

The following sections include the basis of the MatLab source-codes used to gen-
erate the plots presented in this thesis.
“MATLAB is a high-level language and interactive environment that enables you
to perform computationally intensive tasks faster than with traditional program-
ming languages such as C, C++, and Fortran.” (The MathWorks homepage,[1]).
The program was developed on a Microsoft Windows XP sp2 operating system,
using MatLab version 7.1.0.246 (R14) sp3. For details, see the compact disc doc-
umentation in Appendix C, and the MathWorks homepage, [1].

The source-codes consist of the PushPullTestModel.m file, being the main
body of the program, and several function files that should be located in the rela-
tive path /Functions/. In addition, the main.m file can be used to generate output
tables for the MatLab user interface.

References
[1] The MathWorks web page.

http://www.mathworks.com, 2006.

C.2 main.m
This file should be run to generate output tables for the MatLab user interface,
from the PushPullTestModel.m file.

1 %calls the Push-Pull Test production profile solver.
2 %ATTENTION:
3 %appropriate changes must be applied to the beginning of the
4 %PushPullTestModel.m file.
5
6 %over all production profile is stored in the vectors
7 %ResTBTvecSorted and ResHistvec.
8 %Individual layer production profiles are stored in the matrices
9 %TBTmatrix and Histmatrix.

10
11 [TBTmatrix,Histmatrix,ResTBTvecSorted,ResHistvec] = PushPullTestModel;

http://www.mathworks.com


134 MatLab Source-codes

C.3 PushPullTestModel.m
Main body of the model calculations.

1 %#function ReadInput, calcProdProfile, MakeFile, MakePlots, rm1, rmN,
2 thetaI, thetam, SW1TestParam, SW2TestParam, TstTestParam
3 %function [TBTmatrix,Histmatrix,ResTBTvecSorted,ResHistvec] = PushPullTestM
4 odel
5 %function PushPullTestModel
6 clear all; %clean slate
7 close all hidden; %close all figure windows
8 warning off %ignore warnings
9 if not(isdeployed)

10 clc; %clear matlab command window
11 addpath(’Functions’); %add the subdirectory functions do the
12 matlab work path
13 end
14 global rw Ti
15 %%MATLAB model predicting producing tracer concentration profiles
16 %%in push-pull "Echo" tests.
17 %%produced for and published in the PHD dissertation
18 %%of Sverre Gullikstad Johnsen
19 %%2003-2006
20 %%–––––––––––––––––––––––––––––––––-
21 %%
22 %%M-file produces plots of the producing tracer concentration cs.
23 %%dimensionless volume produced, Vp/Vinj,tot.
24 %%–––––––––––––––––––––––––––––––––-
25
26 %%–––––––––––––––––––––––––––––––––-
27 %%Input file information
28 %%–––––––––––––––––––––––––––––––––-
29 %%Input files are located in the sub directory InputData.
30 %%Input data should include test paramters and layering data.
31
32 %%Test paramter data must be on the form (fill inn the missing numbers).
33 %% qi= ;% [l/s] Injection rate
34 %% qp= ;% [l/s] Production rate (absolute value)
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35 %% Ti= ;% [days] Total time of injection
36 %% rw= ;% [m] Well radius
37 %% dP= ;% [kPa/m] natural pressure gradient
38 %% visc= ;% [cp]=[1E-3 Pa s] Water viscosity
39
40 %%Layering data must be on the form (Two first lines are required):
41 %% k1 por1 h1
42 %% k2 por2 h2
43 %% ...
44 %% kM porM hM
45 %%–––––––––––––––––––––––––––––––––-
46
47
48 %%–––––––––––––––––––––––––––––––––-
49 %%Output file information
50 %%–––––––––––––––––––––––––––––––––-
51 %Output is stored in the directory OutputData, and files are named
52 %according to the date and time they are run.
53 %Data stored includes:
54 % 1. Date and time of the run
55 % 2. Test parameters used
56 % 3. Layering data used
57 % 4. Reservoir production profile data
58
59
60
61 %%–––––––––––––––
62 %%Choose experiment
63 %%–––––––––––––––
64 proceed=0;
65 while proceed==0
66 Experiment = input(’Which experiment? (SW1, SW2, Tst=default):’,
67 ’s’);
68 if (isempty(Experiment))
69 Experiment=’Tst’;
70 end
71 if strcmp(Experiment,’sw1’)
72 Experiment=’SW1’;
73 elseif strcmp(Experiment,’sw2’)
74 Experiment=’SW2’;
75 elseif strcmp(Experiment,’tst’)
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76 Experiment=’Tst’;
77 end
78 if strcmp(Experiment,’SW1’) || strcmp(Experiment,’SW2’) ||
79 strcmp(Experiment,’Tst’)
80 proceed=1;
81 else
82 error(’The requested experiment doesnt exist.’);
83 end
84 end
85
86
87
88
89
90 %%–––––––––––––––
91 %%Input datafiles
92 %%–––––––––––––––
93 [N,qi,qp,Ti,rw,dP,visc, Layering, ExpProfile,NumProfile] = ReadInput(
94 Experiment);
95
96
97
98 %%–––––––––––––––
99 %%Geological data preparation

100 %%–––––––––––––––
101
102 kj=Layering(:,1) ;%Layer permeability
103 porj=Layering(:,2) ;%Layer porosity
104 hj=Layering(:,3) ;%Layer height
105 h=sum(hj) ;%Total reservoir height
106 M=length(hj) ;%Total number of layers
107
108 kA=sum(kj.*hj)/h ;%Arithmetic average permeability
109 porA=sum(porj.*hj)/h ;%Arithmetic average porosity
110
111 Cj=porA./porj.*kj/kA ;%Layerwise heterogeneity scaling
112 factor
113
114
115
116 %%–––––––––––––––
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117 %%Summarize data on the screen
118 %%–––––––––––––––
119 disp(’ ––––––––––––––––––––––––––––––’);
120 disp(’| Push-Pull "Echo" Test Tracer Production Profile Solver |’);
121 disp(’| Sverre Gullikstad Johnsen |’);
122 disp(’| 2003-2006 |’);
123 disp(’ ––––––––––––––––––––––––––––––’);
124 disp(’ ’);
125 disp(’ ––––––––––––––––––––––––––––––’);
126
127 disp([’| Number of stream-lines: ’ num2str(N) ’
128 |’]);
129 if strcmp(Experiment,’SW1’)
130 disp(’| Experiment: Pickens-Grisak SW1
131 |’);
132 elseif strcmp(Experiment,’SW2’)
133 disp(’| Experiment: Pickens-Grisak SW2
134 |’);
135 elseif strcmp(Experiment,’Tst’)
136 disp(’| Experiment: Custom test
137 |’);
138 end
139 disp(’ ––––––––––––––––––––––––––––––’);
140 disp([’| Number of Layers: ’ num2str(M,2) ’
141 |’]);
142 disp([’| Average permeability: ’ num2str(kA,4) ’ darcy
143 |’]);
144 disp([’| Average porosity: ’ num2str(porA*100) ’ %
145 |’]);
146 disp(’ ––––––––––––––––––––––––––––––’);
147 disp([’| Injection phase duration: ’ num2str(Ti) ’ days
148 |’]);
149 disp([’| Injection rate: ’ num2str(qi) ’ l/s
150 |’]);
151 disp([’| Production rate: ’ num2str(qp) ’ l/s
152 |’]);
153 disp([’| Natural pressure gradient: ’ num2str(dP) ’ kPa/m
154 |’]);
155 disp(’ ––––––––––––––––––––––––––––––’);
156 disp(’ ’);
157
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158 proceed=0;
159 while proceed==0
160 reply = input(’Is it ok to proceed? (Y=default, N):’,’s’);
161 if (isempty(reply))
162 reply=’Y’;
163 end
164 if (reply∼=’Y’ && reply∼=’N’)
165 proceed=0;
166 end
167 if (reply==’N’ || reply==’n’)
168 return;
169 end
170 if (reply==’Y’ || reply==’y’)
171 proceed=1;
172 end
173 end
174
175
176
177 %%–––––––––––––––
178 %%Calculations
179 %%–––––––––––––––
180 options = optimset(’Display’,’off’,’FunValCheck’,’off’); %give
181 no warnings when fzero terminates unexpectedly
182 t=cputime;
183
184
185 %We want an odd number of stream-lines
186 if mod(N,2)==0
187 N=N+1;
188 end
189
190 %prepare matrices to store layerwise data
191 TBTmatrix=zeros(M,N);
192 Histmatrix=zeros(M,N);
193 ResTBTvec=[];
194 Volrate=[];
195 LostInLayer=[];
196
197 %reformulate the 3-dimensional injection/production rates
198 qi3D=qi*3600*24/1000; %[l/s]–>[m3/day]
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199 qi2D=qi3D/h; %[m2/day] 2D injection rate
200 qp3D=qp*3600*24/1000; %[l/s]–>[m3/day]
201 qp2D=qp3D/h; %[m2/day] 2D production rate
202
203 %Layerwise natural drift velocity
204 Uuj=(3600*24)*dP*1e3*9.869e-13*kj./(visc*1e-3*porj);%[m/day]
205
206
207
208 %%–––––––––––––––
209 %for every layer, find the production profile
210 %individual layer profiles are stored in the matrices TBTmatrix and
211 %Histmatrix, so that individual layer profiles may be plotted.
212 %Each layer profile is appended to the vectors ResTBTvec and Volrate.
213 for j=1:M
214 [lost,Volrate,ResTBTvec,TBTmatrix,Histmatrix] = calcProdProfile(qi,
215 qi2D,qp,qp2D,porA,
216 hj,j,Cj,Uuj,M,N,
217 options,ResTBTvec,
218 Volrate,TBTmatrix,
219 Histmatrix);
220 if strcmp(lost,’yes!’)
221 LostInLayer=[LostInLayer j];
222 end
223 end
224 %%–––––––––––––––
225
226
227 %Order the elements of ResTBTvec and Volrate.
228 [ResTBTvecSorted, order]=sort(ResTBTvec);
229 VolrateSorted=Volrate(order);
230
231
232 %generate normalised histogram of tracer inflow
233 ResHistvec(1)=1-VolrateSorted(1)/qp3D;
234 for i=2:length(ResTBTvecSorted)
235 ResHistvec(i)=ResHistvec(i-1)-VolrateSorted(i)/qp3D;
236 %rateAddedSorted(i)/J;
237 end
238
239
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240
241
242
243
244 %%–––––––––––––––
245 %%Making plots
246 %%–––––––––––––––
247 %Generate figure
248 MakePlots(Experiment,ResTBTvecSorted,ResHistvec,ExpProfile,NumProfile);
249
250 %Generate output file
251 [success,message,filename] = MakeFile(N,qi,qp,visc,dP,kA,porA,Layering,
252 Ti,rw,Experiment,ResTBTvecSorted,
253 ResHistvec,LostInLayer);
254
255
256
257
258 %%–––––––––––––––
259 %%Write report to screen
260 %%–––––––––––––––
261 disp(’ ’);
262 disp(’ ––––––––––––––––––––––––––––––-’);
263 disp(’| FINAL REPORT |’)
264 ;
265 disp(’ ––––––––––––––––––––––––––––––-’);
266 disp([’| cpu-time spent: ’ num2str(cputime-t,4) ’ s
267 |’]);
268 disp(’| |’)
269 ;
270 disp([’| Time of Break-Through (Vp,tbt/Vinj.tot): ’ num2str(
271 ResTBTvecSorted(1),3) ’ |’]);
272 if strcmp(lost,’yes!’)
273 disp(’| Tracer was lost in and the production profile approaches
274 |’);
275 disp(’| 0 assymptotically.
276 |’);
277 else
278 disp([’| End-time of Tracer Production (Vp,eop/Vinj.tot): ’
279 num2str(ResTBTvecSorted(length(ResTBTvecSorted)),3) ’ |’])
280 ;
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281 end
282 disp(’| |’)
283 ;
284 if success && isempty(message) %If output directory and file was
285 created
286 disp(’| Production profile data are stored in the file
287 |’);
288 disp([’| ’ filename ’ |’]);
289 else
290 disp(’| Output data could not be stored.
291 |’);
292 disp(’| If the program is run from a read-only medium, f.ex. a CD,
293 |’);
294 disp(’| it should be copied to the harddrive to enable data
295 storage.|’);
296 end
297
298 disp(’ ––––––––––––––––––––––––––––––-’);
299
300
301
302
303
304
305
306

C.4 Functions
The following functions should be put in the sub directory Functions.

ReadInput.m
Function used to read the input data.

1 function [N,qi,qp,Ti,rw,dP,visc, Layering, ExpProfile,NumProfile] = ReadInp
2 ut(
3 Experim
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4 ent)
5 %Reads input parameters, experimental data and numerical simulation data.
6
7 if strcmp(Experiment,’SW1’)
8 TestParam=load(’InputData/SW1TestParam.dat’);%load file containing
9 test paramters

10 Layering=load(’InputData/SW1LayeringData.dat’);%load file
11 containing geological information about layering
12 ExpProfile=load(’InputData/SW1PickensProfile.dat’);%load the
13 Pickens-Grisak prod.profile data
14 NumProfile=load(’InputData/SW1CoatsProfile.dat’) ;%load the Coats
15 et al. prod.profile data
16 elseif strcmp(Experiment,’SW2’)
17 TestParam=load(’InputData/SW2TestParam.dat’);%load file containing
18 test paramters
19 Layering=load(’InputData/SW2LayeringData.dat’);%load file
20 containing geological information about layering
21 ExpProfile=load(’InputData/SW2PickensProfile.dat’);%load the
22 Pickens-Grisak prod.profile data
23 NumProfile=load(’InputData/SW2CoatsProfile.dat’) ;%load the Coats
24 et al. prod.profile data
25 elseif strcmp(Experiment,’Tst’)
26 if exist(’InputData\TstTestParam.dat’,’file’)
27 TestParam=load(’InputData/TstTestParam.dat’);%load file
28 containing test paramters
29 else
30 error(’PushPull:noTestParam’,’\nNo test parameters were
31 specified. \nSpecifiy test parameters in the file
32 "InputData\\TstTestParam.m"’);
33 end
34
35 if exist(’InputData\TstLayeringData.dat’,’file’)
36 Layering=load(’InputData/TstLayeringData.dat’);%load file
37 containing geological information about layering
38 else
39 error(’PushPull:noLayering’,’\nNo layering data provided.
40 \nEven for the single layer solution, average perm. and
41 por.\nas well as C1 and h1 must be provided.’)
42 end
43
44 if exist(’InputData\TstExpData.dat’,’file’)
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45 ExpProfile=load(’InputData/TstExpdata.dat’);%load experimental
46 data
47 else
48 ExpProfile=[];
49 disp(’No experimental data found.’);
50 disp(’Experimental data may be included in the file
51 "InputData\TstExpData.dat"’);
52 end
53
54 if exist(’InputData\TstNumData.dat’,’file’)
55 NumProfile=load(’InputData/TstNumdata.dat’);%load experimental
56 data
57 else
58 NumProfile=[];
59 disp(’No numerical simulation data found.’);
60 disp(’Numerical simulation data may be included in the file
61 "InputData\TstNumData.dat"’);
62
63 end
64 end
65
66
67 N= TestParam(1) ;% Number of stream-lines traced in

each
68 layer
69 qi=TestParam(2) ;% [l/s] Injection rate
70 qp=TestParam(3) ;% [l/s] Production rate (absolute value)
71 Ti=TestParam(4) ;% [days] Total time of injection
72 rw=TestParam(5) ;% [m] Well radius
73 dP=TestParam(6) ;% [kPa/m] Natural pressure gradient
74 visc=TestParam(7) ;% [cp]=[1E-3 Pa s] Water viscosity

calcProdProfile.m
Function used to track the injectant front and generate the production profile data.

1 function [lost,Volrate,ResTBTvec,TBTmatrix,Histmatrix] = calcProdProfile(
2 qi,qi2D,qp,qp2D,
3 porA,hj,j,Cj,Uuj,
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4 M,N,options,
5 ResTBTvec,Volrate,
6 TBTmatrix,
7 Histmatrix)
8 global rstart rw Uu Ti Qi Qp psiinj psiprod Cinj i
9 %sub routine to calculate the production profile from a push-pull test

10 %in a single layer reservoir.
11 %for multi layer reservoirs, this routine is called for every layer.
12
13 disp([’Working on layer ’ num2str(j) ’ of ’ num2str(M) ’...’]);
14
15 %Layer specific rates
16 Qi=qi2D/(2*pi*porA)*Cj(j); %[m2/day] Reformulated Injection Rate
17 Qp=qp2D/(2*pi*porA)*Cj(j); %[m2/day] Reformulated Production Rate
18 (absolute value)
19 Uu=Uuj(j); %[m/day] Layer natural drift velocity
20
21
22 %reinitialize vectors
23 histweight=[];
24 rate=[];
25 TBTdimless=[];
26
27
28 %–––––––––––
29 %Injection Phase
30 %–––––––––––
31 %Angles at which stream-lines leave the well bore
32 thetaout=(0:pi/(N-1):pi); %[rad]
33
34
35 %Stream-lines to trace during injection phase
36 psiinj=Uu*rw*sin(thetaout)+Qi*thetaout;
37
38 %Integration constant during injection
39 Cinj=-Uu*rw*cos(thetaout)-Qi*log(sin(thetaout));
40
41 %Find maximum radial advancement for theta=0 and theta=pi
42 thetamax(1)=0;
43 thetamax(N)=pi;
44 rmax=zeros(1,N);
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45 rstart=sqrt(rw^2+2*Qi*Ti);
46 rmax(1)=fzero(’rm1’,rstart);
47 rmax(N)=fzero(’rmN’,rstart);
48
49 %Check if up-gradient rmax is valid
50 %rmax(N) cannot be larger than the dist to the stagnation point
51 rmaxboundupgrad=Qi/Uu;
52 while (rmax(N)>rmaxboundupgrad || rmax(N)<0)
53 rstart=rstart*0.99;
54 rmax(N)=fzero(’rmN’,rstart);
55 end
56
57 %Check if some injectant will be lost
58 rbound=Qp/Uu;
59 lost=’nope’;
60 if (rmax(1)>rbound) %if max down-stream radial pos. is greater than
61 rbound
62 disp([’Injectant will be lost in layer ’ num2str(j) ’ of ’ num2str(
63 M) ’.’]);
64 lost=’yes!’;
65 end
66
67 %Find the angle and maximum radial advancement for each streamline at
68 the
69 %end of the injection phase
70 thetastart=thetaout;
71 for i=2:N-1
72 %Must demand that theta and rmax are monotone functions of psi
73 %Must demand that the fluid left the well-bore
74 while (rmax(i)<=rw)
75 thetamax(i)=fzero(’thetam’,thetastart(i),options);
76 %Check if all thetamax are numbers. if NaN calculate again
77 with a
78 %new initial value
79 while (isnan(thetamax(i))==1)
80 thetastart(i)=thetastart(i)*0.99;
81 thetamax(i)=fzero(’thetam’,thetastart(i),options);
82 end
83 rmax(i)=(psiinj(i)-Qi*thetamax(i))/(Uu*sin(thetamax(i)));
84 %Check if the fluid left the well-bore, if not recalculate
85 with new
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86 %initial angle value
87 if (rmax(i)<=rw)
88 thetastart(i)=thetastart(i)*0.99;
89 end
90 end
91 end
92
93
94
95
96
97
98 %–––––––––-
99 %Production Phase

100 %–––––––––-
101
102 %calculate stream-line numbers to trace during production phase
103 psiprod=psiinj-(Qp+Qi)*thetamax;
104
105
106 %If injectant is lost, monitor the non-lost streamlines only.
107 %Assume sweep efficiency of remaining stream-lines is good enough
108 if strcmp(lost,’yes!’)
109
110 %end-points with a psiprod<0 are recovered, while those with
111 psiprod>=0
112 %are lost
113 recovered=[];
114 for i=1:N
115 if psiprod(i)<0
116 recovered=[recovered i];
117 end
118 end
119
120
121 %cut off all matrices so that only the i last entries are used in
122 %calculations plus one streamline for theta=0
123 N=length(recovered)+1; %new number of streamlines to
124 trace
125 psiprod=[0 psiprod(recovered)];
126 thetamax=[0 thetamax(recovered)];
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127
128 %we put the rmax(1) at angle theta=0 close to the stagnation point.
129 rmax=[Qp/Uu*(1-eps) rmax(recovered)];
130
131
132 end
133
134
135 %Calculate angle of arrival at rw
136 thetaintersec=zeros(1,N);
137 for i=2:N-1
138 thetastart=thetamax(i);
139 thetaintersec(i)=fzero(’thetaI’,thetastart);
140 end
141 thetaintersec(1)=0;
142 thetaintersec(N)=pi;
143
144 %Calculating time of break-through for each stream-line
145
146 %Integration constant
147 Cp=-Uu*rmax.*cos(thetamax)+Qp*log(sin(thetamax));
148
149 %time of break-through
150 TBT=1/Uu^2*(Cp+(Qp*thetaintersec+psiprod).*cot(thetaintersec)-Qp*log(
151 sin(thetaintersec)));
152 TBT(1)=1/Uu^2*(Uu*(rw-rmax(1))+Qp*log((Uu*rw-Qp)/(Uu*rmax(1)-Qp)));
153 TBT(N)=1/Uu^2*(Uu*(rmax(N)-rw)+Qp*log((Qp+Uu*rw)/(Qp+Uu*rmax(N))));
154
155
156 %Dimensionless time conversion
157 qiTOT=Ti*qi; % Total Volume Injected into the reservoir
158 TBTdimless(1:N)=qp*TBT/qiTOT;% Dimensionless time vector
159
160
161 %Production Rate associated with each stream-line, Qp,n,j
162 %sum(rate)=pi*Qp
163 rate(1)=(psiprod(2)-psiprod(1))/2;
164 rate(N)=(psiprod(N)-psiprod(N-1))/2;
165 for i=2:N-1
166 rate(i)=(psiprod(i+1)-psiprod(i-1))/2;
167 end
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168 rate=abs(rate);
169
170
171 %Layer specific histogram (normalised)
172 %Note that Qp is scaled by 2pi and that we are studying the half-plane
173 %only, hence, divide py pi*Qp not 2pi*Qp.
174 histweight(1)=rate(1)/(pi*Qp);
175 for i=2:N
176 histweight(i)=histweight(i-1)+rate(i)/(pi*Qp);
177 end
178
179
180 %Volumetric rate produced from each stream-line in current layer
181 %(assuming the "height" of each stream-line is hj)
182 %(pi is allready accounted for in the rate)
183 rate3D=2*porA*rate*hj(j);
184
185
186 %store layer specific production profile
187 TBTmatrix(j,1:N)=TBTdimless;
188 Histmatrix(j,1:N)=histweight;
189
190
191 %Append layer spesific data to the overall reservoir data
192 ResTBTvec=[ResTBTvec TBTdimless];
193 Volrate=[Volrate rate3D];
194
195

rm1.m
Function used to find the down-gradient maximum radial advancement.

1 function f = rm1(r)
2 global rw Qi Uu Ti
3
4 f=Uu*(r-rw)-Qi*log(abs(Uu*r+Qi)/abs(Uu*rw+Qi))-Uu^2*Ti;
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rmN.m
Function used to find the up-gradient maximum radial advancement.

1 function f = rmN(r)
2 global Qi Uu Ti rw
3
4 if (Qi-Uu*r==0)
5 r=r*0.9;
6 end
7
8 f = Uu*(r-rw)+Qi*log(abs(Qi-Uu*r)/abs(Qi-Uu*rw))+Uu^2*Ti;
9

10

thetaI.m
Function used to find the polar angle coordinate of the intersection point of the
well-bore and a stream-line.

1 function f = thetaI(theta)
2 global psiprod Qp Uu rw i
3
4 f=rw*Uu*sin(theta)-psiprod(i)-Qp*theta;

thetam.m
Function used to find the polar angle coordinate of the injection-phase stream-line
end point.

1 function f = thetam(theta)
2 global Qi psiinj Uu Ti Cinj i
3
4 f = (Qi*theta-psiinj(i))*cot(theta)-Qi*log(sin(theta))+Uu^2*Ti-Cinj(i);

MakePlots.m
Function used to generate plots.
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1 function MakePlots(Experiment,ResTBTvecSorted,ResHistvec,ExpProfile,
2 NumProfile)
3 %generate production profile plots from a push-pull "echo" test
4
5 if strcmp(Experiment,’SW1’)
6 hold on
7 plot (ExpProfile(:,1),ExpProfile(:,2),’ok’)
8 plot (NumProfile(:,1),NumProfile(:,2),’k’,’LineWidth’,2)
9 plot(ResTBTvecSorted,ResHistvec,’g’,’LineWidth’,2)

10 legend(’Pickens & Grisak SW1 Field Test Data’,’Coats et al. Numerical
11 Simulation Result’,’Semi-Analytical SW1 Model Data’);
12 elseif strcmp(Experiment,’SW2’)
13 hold on
14 plot (ExpProfile(:,1),ExpProfile(:,2),’ok’)
15 plot (NumProfile(:,1),NumProfile(:,2),’k’,’LineWidth’,2)
16 plot(ResTBTvecSorted,ResHistvec,’g’,’LineWidth’,2)
17 legend(’Pickens & Grisak SW2 Field Test Data’,’Coats et al. Numerical
18 Simulation Result’,’Semi-Analytical SW2 Model Data’);
19 elseif strcmp(Experiment,’Tst’)
20 hold on
21 plot(ResTBTvecSorted,ResHistvec,’g’,’LineWidth’,2)
22 legendstring=’Semi-Analytical Model Data ’;
23 %plot experimental data if they exist
24 if exist(’ExpProfile’,’var’)==1 && not(isempty(ExpProfile))
25 plot(ExpProfile(:,1),ExpProfile(:,2),’ok’)
26 legendstring=[legendstring; ’Experimental Field Test Data’];
27 end
28 %plot numerical simulation data if they exist
29 if exist(’NumProfile’,’var’)==1 && not(isempty(NumProfile))
30 plot(NumProfile(:,1),NumProfile(:,2),’k’,’LineWidth’,2)
31 legendstring=[legendstring; ’Numerical Simulation Data ’];
32 end
33 legend(legendstring);
34 end
35
36
37 xlabel(’Dimensionless Time, V_{prod}/V_{inj,TOT}’);
38 ylabel(’Concentration, C’);
39 axis([0 2 0 1.2]);
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MakeFile.m
Function used to generate output data files.

1 function [success,message,filename] = MakeFile(N,qi,qp,visc,dP,kA,porA,
2 Layering,Ti,rw,Experiment,
3 ResTBTvecSorted,ResHistvec,
4 LostInLayer)
5 %generate the output data file from the stream-line based
6 %semi-analytical push-pull test calculations
7
8
9 %If the OutputData directory does not exists create it

10 if exist(’OutputData’,’dir’)∼=7
11 success=mkdir(’OutputData’);
12 if not(success)
13 disp(’Output directory could not be created.’);
14 disp(’If the program is run from a read-only medium,such as a
15 CD,’);
16 disp(’ it should be copied to the hard drive to enable data
17 storage.’);
18 end
19 else
20 success=true;
21 end
22
23
24 %write the production profile to file
25 if success %if the OutputData directory exists
26 filename=[’OutputData/’ Experiment ’-ProdProfileData-’ datestr(now,
27 ’yyyy-mmmm-dd_HH.MM.SS’) ’.dat’];
28 [fid,message] = fopen(filename, ’wt’);
29
30 if isempty(message) %if the outputfile could not be opened for
31 writing
32 fprintf(fid, ’%%Stream-line based push-pull test production
33 profile\n’);
34 fprintf(fid, ’%%generated from experiment "%s"\n’, num2str(
35 Experiment));
36 fprintf(fid, ’%%the %s at %s.\n’, num2str(date), num2str(
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37 datestr(rem(now,1))));
38 fprintf(fid, ’%%–––––––––––––––––––––––-
39 –––––––––-\n\n’);
40 fprintf(fid, ’%%Test parameters used were:\n\n’);
41 fprintf(fid, ’%%N= %6.0f \n’, N);
42 fprintf(fid, ’%%qi=\t%6.3f [l/s]\n’, qi);
43 fprintf(fid, ’%%qp=\t%6.3f [l/s]\n’, qp);
44 fprintf(fid, ’%%Ti=\t%6.3f [days]\n’, Ti);
45 fprintf(fid, ’%%rw=\t%6.3f [m]\n’, rw);
46 fprintf(fid, ’%%dP=\t%6.3f [kPa/m]\n’, dP);
47 fprintf(fid, ’%%visc=\t%6.3f [cp]\n\n’, visc);
48 fprintf(fid, ’%%–––––––––––––––––––––––-
49 –––––––––-\n\n’);
50 fprintf(fid, ’%%Tracer recovery:\n\n’);
51 if isempty(LostInLayer)
52 fprintf(fid, ’%%All the injected tracer was recovered.
53 \n\n’);
54 else
55 fprintf(fid, ’%%Tracer was lost in layers \n’);
56 fprintf(fid, ’%% %4.0f.\n’,
57 LostInLayer);
58 end
59 fprintf(fid, ’\n%%––––––––––––––––––––––-
60 ––––––––––-\n\n’);
61 fprintf(fid, ’%%Average permeability was %6.3f darcy.\n’, kA);
62 fprintf(fid, ’%%Average porosity was %4.1f%%.\n\n’,
63 porA*100);
64 fprintf(fid, ’%%Layering data used were:\n\n’);
65 fprintf(fid, ’%%Perm.\t Por.\t height\n\n’);
66 fprintf(fid, ’%%%6.3f %4.3f\t%6.3f\n’, [Layering(:,1);
67 Layering(:,2); Layering(:,3)]);
68
69 fprintf(fid, ’\n\n%%–––––––––––––––––––––-
70 –––––––––––-\n’);
71 fprintf(fid, ’%%–––––––––––––––––––––––-
72 –––––––––-\n’);
73 fprintf(fid, ’\n%%Production profile data:\n\n’);
74
75 fprintf(fid, ’%%Dim.less Volume \n’);
76 fprintf(fid, ’%%Produced,\t\t Producing Fractional\n’);
77 fprintf(fid, ’%%Vp/Vinj,tot\t\t Tracer Concentration\n\n’);



Appendix C 153

78 fprintf(fid, ’%12.9f\t\t %12.10f\n’, [ResTBTvecSorted;
79 ResHistvec]);
80 end
81 end
82
83 fclose(’all’);
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The Software Compact Disc
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D.1 Introduction
Provided with this copy of the thesis, or obtainable upon request, is a compact
disc containing an executable of the MatLab, [3] source code cited in Appendix
B. Included on the compact disc, is also the MatLab Runtime Environment needed
to run the executable, unless MatLab is already installed on the system.
The soft-ware is installed and run from an intuitive menu based user interface.

The compact disc contains two modelling examples, using the Pickens-Grisak
SW1 and SW2 test parameters, [2], as well as their reported layering data. Run-
ning the stream-line based model, the stream-line based model production profiles
are compared to the Pickens-Grisak experimental data as well as the SENSOR
simulation results obtained by Coats et al., [1].
Using the compact disc soft-ware, it is also possible to design a custom built sim-
ulation, using custom test parameters and layering data. It is possible to input
experimental and/or simulation data to compare with the stream-line based model
results, as well.

The compact disc should auto run as it is inserted into the cd-rom, and an
installation menu should appear. The soft-ware was developed on and for a Win-
dows XP system, however, and might not run smoothly on other systems.

The compact disc documentation is cited in Section D.2.

References
[1] K. H. Coats, C.H. Whitson, and L.K. Thomas. Modelling conformance as dis-

persion. SPE Annual Technical Conference and Exhibition, 26-29 September,
Houston, Texas, September 2004. SPE 90390.

[2] J.F. Pickens and G.E. Grisak. Scale-dependent dispersion in a stratified gran-
ular aquifer. Water Resources Research, 17(4):1191–1211, 1981.

[3] The MathWorks web page.
http://www.mathworks.com, 2006.

http://www.mathworks.com
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D.2 Compact Disc Documentation

Instructions for installation and running
of the push-pull test production profile solver
PushPullTestModel v. 1.0
------------------------------------------------------------------------
developed by
Sverre Gullikstad Johnsen
sverregu@gmail.com

as part of a PHD study at the
department of petroleum technology and applied geophysics
Norwegian University of Science and technology
Norway

2003-2006
------------------------------------------------------------------------

------------------------------------------
CONTENT:
------------------------------------------

I List of files
II Installation instructions
III Uninstalling
IV Using the program

A) Running simulations
B) Input files
C) Output files

V Development environment (MATLAB version)
VI References

------------------------------------------
I LIST OF FILES
------------------------------------------

Autorun.inf CD autostart instructions
CD_Start.exe CD menu
README.txt This file
Start.txt Instructions if the CD does not automatically start

Acrobat707/
Acrobat707.exe Adobe Acrobat Reader installation file

InstallFiles/
copyPushPullTestModel.bat Installation batch file for the PushPullTestModel files.

Copies the files needed to the hard drive,
creates a desktop shortcut and start menu items.

MCRInstaller.bat Copies the MATLAB Component Runtime installation file to a
temporary directory on the hard drive, extracts the installation files,
starts the installation program and deletes the temporary directory after
the installation program is closed.
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Start Menu Items/
CleanUp.bat Automatic removal tool for the PushPullTest Model Files.

Removes the files created by the copyPushPullTestModel.bat
PushPullTestModel.lnk Executable shortcut

MATLAB Component Runtime/
MCRInstaller.exe Self-extracting MATLAB Component Runtime library utility

PushPullTestModel/
PushPullTestModel.exe Main program executable
PushPullTestModel.ctf Component Technology File archive

PushPullTestModel/
InputData/

SW1CoatsProfile.dat Coats et al. numerical simulation data
SW2CoatsProfile.dat
SW1PickensProfile.dat Pickens and Grisak experimental field test data
SW2PickensProfile.dat
SW1TestParam.dat Pickens and Grisak field test parameters
SW2TestParam.dat
SW1LayeringData.dat Pickens and Grisak test-site layering data
SW2LayeringData.dat

TstLayeringData.dat Custom model layering data
TstTestParam.dat Custom model test parameters

May be added by the user:
TstExpData.dat Custom model experimental data to compare with
TstNumData.dat Custom model numerical simulation data to compare with

Thesis/
Thesis.pdf The PHD thesis on which the PushPullTestModel is based.
PaperI.pdf Papers published as part of the PHD work.
PaperII.pdf
PaperIII.pdf

------------------------------------------
II INSTALLATION INSTRUCTIONS
------------------------------------------

The CD is created on and for a Windows XP environment. Thus, the automatic
installation procedures might not function properly on any other operative system.
The CD has been run and tested on a Windows 2000 computer, where the automatic installation failed.
However, the MCRInstaller and the PushPullTestModel program functioned smoothly when manually copied
to the hard drive.

As the CD is inserted into the CD ROM, a menu should autostart.
If this is not so, manually run the CD_Start.exe from the CD.

1) This step may be performed automatically by choosing the
"Install MATLAB Component Runtime" in the CD menu.

The MATLAB Component Runtime is needed to run the PushPullTestModel
executable.
You need administator privileges to install the MCR as it makes
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changes to both your registry and your system path, however you
need user-level privileges, only, to run the push-pull test solver.

IF YOU ALLREADY HAVE MATLAB INSTALLED, YOU DO NOT NEED TO INSTALL MCR!
(see below for information about matlab and compiler versions used)

Copy to the hard drive and run the file MCRInstaller.exe to
install the MATLAB component runtime library utility.
MCR will be extracted in the directory from where it is run.
When the setup files have been extracted, an installation wizard
starts automatically. After the installation wizard has been run,
the extracted files may be deleted.
You need administator privileges to install the MCR as it makes
changes to both your registry and your system path, however you
need user-level privileges, only, to run the push-pull test solver.

For more information on running the MCR Installer utility, see the
MATLAB compiler User’s guide, f.ex. at www.matlab.com .

IF YOU ALLREADY HAVE MATLAB INSTALLED, YOU DO NOT NEED TO INSTALL MCR!
(see below for information about matlab and compiler versions used)

2) Choose the "Copy the PushPullTest Model Files to the Hard Drive"
in the CD menu to copy the necessary files to the hard drive, create
a desktop shortcut and start menu/programs items.

This step might not function properly on non-Windows XP systems.
In that case, copy the PushPullTestModel/ directory to the hard drive
manually, and create short-cuts yourself.

The push-pull test solver is executable from any media, but to
enable the storage of output data, the program files should all
be copied to the hard drive or any other writable media.

3) The program is ready to be run.
If the automatic procedure in step 2 was succesful, the program
may be run by double clicking the desktop shortcut or by
clicking the start menu/programs/PushPullTestModel shortcut.

First time execution of the
PushPullTestModel.exe program file will create a directory,
PushPullTestModel_mcr, containing necessary program files.

------------------------------------------
III UNINSTALLING
------------------------------------------

These steps might not function properly on a non-Windows XP system.
In such a case remove all files manually from the hard drive.

1) Go to "control panel/Add or Remove Programs" and choose to "remove"
the "MATLAB Component Runtime".

2) This step may be performed automatically by clicking the
start menu/programs/PushPullTestModel CleanUp shortcut, or by running
the CleanUp.bat located in the PushPullTestModel directory on the
hard drive or on the CD.
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Delete all files/directories and shortcuts you copied/created to/on
the hard drive.

------------------------------------------
IV USING THE PROGRAM
------------------------------------------

A) RUNNING SIMULATIONS
1) Execute the file PushPullTestModel.exe.

2) The program will ask you which of three different experiments
you want to simulate, SW1 or SW2 by Pickens and Grisak or the
custom-built test Tst. The custom-built test parameters and
input data could be altered to suit the user’s needs.

3) The program will list some of the key parameters of the simulation
and ask if you are ok with running the simulation with these
parameters.

4) The simulation finishes by producing a graphical representation
of the production profiles, summarizing some of the simulation
key figures to the screen and creating an output file.
Note that the medium from which the program is run must be
writable to do so.

B) INPUT FILES
In the directory /InputData/ several .dat files are provided.
Files whose names begin with SW1 or SW2 should not be altered, as these
represent simulations of the Pickens-Grisak field tests SW1 and SW2.

Files with names beginning with Tst may be altered by the user.

TstTestParam.dat contains key test parameters such as number
of streamlines, injection and production rates,
duration of the injection phase, well radius,
natural reservoir pressure gradient and viscosity.

The file should contain seven numbers, representing,
in the following order,
N, number of stream-ines to be traced in each layer,
qi, injection rate, in liters per second,
qp, production rate in liters per second,
Ti, duration of the injection phase in days,
rw, well radius in meters,
dP, natural pressure gradient in kilopascal per meter,
visc, viscosity of the injectant/reservoir fluid in

centipoise

TstLayeringData.dat contains stratification data.
At least one line must be included, consisting of
permeability, fractional porosity and layer thickness.
If more than one line is included, each line will
represent an individual layer in a multi-layered
reservoir model.
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The user may add files containing experimental data and/or
numerical simulation data, TstExpData.dat and TstNumData.dat.
Data should be listed in two columns, whereas column 1 contain
dimensionless volumes produced, Vp/Vinj,tot, and column 2 contain
fractional concentration of injectant in the producing well-stream.
The experimental/numerical data will be presented graphically along
with the stream-line based production profile in the resulting plot.

C) OUTPUT FILES
If the medium, from which PushPullTestMode.exe is run, is writable,
output files will be created in the directory /OutputData/. If the
directory does not exist, it will be created.

The output filenames are on the form
Experiment-ProdProfileData-yyyy-mmm-dd_hh.mm.ss.dat
where Experiment=SW1, SW2 or Tst.

The output file contains:
* Date and time of the simulation.
* Test parameters used.
* A list of the layers where tracer was lost, if any.
* Layering data used, including permeabilities, porosities, layer

heights, average permeability and average porosity.
* Production profile data generated, in two columns, where column 1

contain dimenionless volumes produced, Vp/Vinj,tot, and column 2
contain fractional concentration of injectant in the producing
well-stream.

------------------------------------------
V DEVELOPMENT ENVIRONMENT

(MATLAB version and WINDOWS version)
------------------------------------------

The program is developed in MATLAB where the "ver" command resulted in the following

-------------------------------------------------------------------------------------
MATLAB Version 7.1.0.246 (R14) Service Pack 3
MATLAB License Number: 159436
Operating System: Microsoft Windows XP Version 5.1 (Build 2600: Service Pack 2)
Java VM Version: Java 1.5.0 with Sun Microsystems Inc. Java HotSpot(TM) Client VM mixed mode
-------------------------------------------------------------------------------------
MATLAB Version 7.1 (R14SP3)
Simulink Version 6.3 (R14SP3)
Communications Toolbox Version 3.2 (R14SP3)
Control System Toolbox Version 6.2.1 (R14SP3)
Data Acquisition Toolbox Version 2.7 (R14SP3)
Excel Link Version 2.3 (R14SP3)
Extended Symbolic Math Version 3.1.3 (R14SP3)
Financial Toolbox Version 2.5 (R14SP3)
Fixed-Point Toolbox Version 1.3 (R14SP3)
Fuzzy Logic Toolbox Version 2.2.2 (R14SP3)
Image Processing Toolbox Version 5.1 (R14SP3)
Instrument Control Toolbox Version 2.3 (R14SP3)
MATLAB Compiler Version 4.3 (R14SP3)
Model Predictive Control Toolbox Version 2.2.1 (R14SP3)
Neural Network Toolbox Version 4.0.6 (R14SP3)
Optimization Toolbox Version 3.0.3 (R14SP3)
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Partial Differential Equation Toolbox Version 1.0.7 (R14SP3)
Real-Time Workshop Version 6.3 (R14SP3)
Robust Control Toolbox Version 3.0.2 (R14SP3)
Signal Processing Toolbox Version 6.4 (R14SP3)
SimPowerSystems Version 4.1.1 (R14SP3)
Simulink Accelerator Version 6.3 (R14SP3)
Simulink Control Design Version 1.3 (R14SP3)
Simulink Fixed Point Version 5.1.2 (R14SP3)
Simulink Verification and Validation Version 1.1.1 (R14SP3)
Spline Toolbox Version 3.2.2 (R14SP3)
Stateflow Version 6.3 (R14SP3)
Statistics Toolbox Version 5.1 (R14SP3)
Symbolic Math Toolbox Version 3.1.3 (R14SP3)
System Identification Toolbox Version 6.1.2 (R14SP3)
Wavelet Toolbox Version 3.0.3 (R14SP3)

------------------------------------------
VI REFERENCES
------------------------------------------

http://www.mathworks.com/
The Mathworks, creator of MATLAB.

Coats KH, Whitson CH, Thomas L (2004) Modelling Conformance as Dispersion.
SPE Annual Technical Conference and Exhibition, Houston, Texas, USA,
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Pickens J, Grisak G (1981) Scale-dependent Dispersion in a Stratified Granular Aquifer.
Water Resources Research 17(4):1191-1211
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Abstract
Analysis of stream-line-based formulations are used to calculate, analytically, the
time of break-through for clean water and the end-time of tracer production in
addition to overall producing tracer concentration vs. time, in a single-well tracer
push-pull test. As a main topic we study injection/production in unconfined ho-
mogeneous aquifers of infinite extent, subject to natural groundwater drift. In-
jectant and in situ groundwater are assumed to be miscible, incompressible fluids
with identical fluid properties. Only macroscopic flow is considered, and flow is
assumed to experience no in situ fluid mixing (physical dispersion) so fluid inter-
faces remain sharp. Analytical results are compared to field study data provided
by Pickens and Grisak and numerical simulation data obtained by Coats et al.
The good match with experimental data and numerical simulation data validate
the physical dispersion-free method proposed.

Keywords Analytical, Contamination, Echo test , Macroscopic dispersion,
Natural drift, Push-pull test, Stream-line, Tracer, Water

1 Introduction
In 1981 Pickens and Grisak, [ [8]], reported from two full-scale single-well push-
pull tests, SW1 and SW2, performed using two neighbouring wells in the same
aquifer. Push-pull tests, also known as echo or injection-withdrawal tests, are
single-well tests where an injection phase “pushing” injectant containing a tracer
into the well is followed by a production phase where fluids are “pulled” out of
the well. Normalised tracer concentrations are measured during the production
phase.
Laboratory experiments on core-samples from the test site gave a dispersivity of
approximately 0.035cm, whereas the field tests, neglecting natural groundwater-
drift, gave 3cm and 9cm, respectively, fitting the one-dimensional convection-
dispersion equation (1D CD-EQ) to the test data. Pickens and Grisak conclude
that the great variations are due to a strong scale dependency in apparent disper-
sivity; others also suggest the same, [ [1]], [ [7]].

Recently Coats et al. have shown that the large dispersivity reported by Pick-
ens and Grisak may be mainly due to natural drift of the in situ ground water, [
[3]]. Coats et al. remind that all experimental evidence show that dispersivity
is a rock property and that any “apparent” scale dependence of dispersivity de-
rived from produced-well concentration profiles1 must be due to other physical
phenomena such as drift.

1Production profiles and concentration profiles refer to the plot of the normalised concentration
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In this paper a “source/sink in a uniform stream”-problem is solved for the
boundary values provided by the Pickens-Grisak test site by introducing and trac-
ing individual stream-lines. Pickens and Grisak report a fractional porosity of
0.38 and a hydraulic conductivity of approximately 1.4 · 10−2cm/s. In the nu-
merical simulations run by Coats et al., and also in this paper, a permeabil-
ity of 14.8darcy has been used. Interpretation of the Pickens-Grisak Figure 2
gives a hydraulic head gradient of about 0.05kPa/m. The Coats et al. value of
0.0023psi/ f t (∼ 0.052kPa/m) has been used. Based on these figures, the natural
macroscopic velocity of the groundwater is 0.17m/day, [ [6]], see Appendix B.
It was assumed that the areal extent of the aquifer was infinite, that the reservoir
thickness was 8.2m, as reported by Pickens and Grisak, and that the test well fully
penetrated the reservoir. Test parameters for the two single-well tests, SW1 and
SW2, are given in Table I. Steady state injection/production was assumed.

In Figure 1 stratigraphic interpretations by Cherry et al, [ [2]], are shown.
The Pickens-Grisak test site is marked with the circle in Figure 1(a) , and the
stratigraphic cross-sections are indicated also. The Y-Y’ line is from Cherry’s
own figure, while the X-X’ line has been added based on Figure 1 in [ [4]]. The
piezometer KO indicated in Figure 1(b) as well as in Figure 1(c) is located ap-
proximately where the Y-Y’ and the X-X’ lines are crossing. The stratification
along the X-X’ cross-section is close to horisontal, and the thickness of the vari-
ous strata does not vary much. It will be assumed that this is the situation for all
cross-sections perpendicular to the Y-Y’ cross-section, hence it is assumed that
the natural drift is parallel to the Y-Y’ cross-section. Furthermore, it was as-
sumed that both the injectant and the in situ groundwater are incompressible fluids
with identical fluid properties. Viscosity was assumed constant and temperature,
pressure and density variations were neglected, i.e., no gravitational, viscous or
thermodynamic effects were taken into account. It was assumed that the tracer2

of tracer in the produced fluid either as a function of time, tp, or as a function of dimensionless
volume produced, QD = |Qp|tp

QiTi
.

2Usually tracers are added to the injectant in relatively small concentrations to obtain near ideal

Table I: Test Parameters for the two single-well tests performed by Pickens and Grisak.
Parameter Test SW1 Test SW2

Well Radius 0.057 m 0.057 m

Injection Phase
Rate 76.55 m3/day 62.12 m3/day
Duration 1.25 days 3.93 days

Production Phase
Rate 76.55 m3/day 52.36 m3/day
Duration 2.0 days 16.9 days
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(a) Perch Lake Overview

(b) North-South direction

(c) West-East direction

Figure 1: Figure 10, 6 and 7 in [ [2]]; Physical hydrogeology of the Lower Perch Lake Basin. The
X-X’ line in (a) is based on Figure 1 in [ [4]].

was ideal, i.e., chemically and physically stable, not interacting with in situ fluids
or solids and not naturally present in the reservoir.

Even though microscopic flow in porous media will be affected by physical
dispersion, it has been assumed that the physical dispersion is negligible and that
no in situ mixing takes place. The injectant and the groundwater are miscible and
displace each other perfectly, maintaining a sharp interface between the two flu-
ids, i.e., all mixing will occur in the well-bore.

For injection phases lasting longer than some critical time, Tc, some fluid will
cross the ψp = 0 production phase stream-line. For given production phase para-
meters, this fluid will be lost and cannot be recovered unless the production rate is
increased. In this paper, the Tc will not be addressed, and it will be assumed that
Ti < Tc, so that all injected fluid is recoverable. In the follow-up paper, Part II, [
[5]], we will, however, give Tc attention.

tracer behaviour. In this paper, though, the notations injectant and tracer will be used equivalently
about the fluid being injected, and in situ water containing no tracer will be referred to as clean
water. Produced water may consist of a mixture of injected water and clean water, whereas the
tracer concentration will be in the range (0,1). The producing tracer concentration at some time,
t, is accordingly the ratio of injectant volume to total volume produced in an infinitesimal time
interval.
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2 No Drift
Considering a homogeneous reservoir of infinite areal extent, with a test-well lo-
cated at the origin, the Darcy velocity field due to injection/production at a con-
stant two-dimensional rate of q is given by

Ur =
q

2πφr
=

Q
r

, (1a)

Uθ = 0 , (1b)

where q is positive for injection and negative for production.
Equation 1a is a separable differential equation, and the solution is given by

1
2

r2 = Qt +C . (2)

In a push-pull test the injectant front position will be rw at the start of injection and
rmax at the end of injection/start of production. The radius of the injectant-covered
area is hence given by

r(t ≤ Ti) =
√

r2
w +2Qiti , (3)

and

r(Ti < t ≤ Ti +Tp) =
√

r2
max−2|Qp|tp (4)

during the injection and production phases, respectively. From Equation 3 , we
get an expression for rmax by inserting t = Ti, and from Equation 4 we get

Tp =
∣∣∣∣Qi

Qp

∣∣∣∣ ·Ti , (5)

when r(t = Ti +Tp) = rw, as expected for piston-like displacement. Owing to the
symmetry of the problem, the above calculations are valid for any angle, θ , so
we get TBT = Tp, for all θ , i.e., the producing fractional concentration of tracer
drops from 1 to 0 instantaneously. In Figure 2 a schematic of the different time
variables referred to, can be seen.

3 Drift
In nature we often find a steady velocity component due to natural variations in
the hydraulic head, and the most obvious example is a river. Natural drift may,
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Figure 2: Schematic of different times involved in the analytical derivations. For Tc > Ti we have
so-called conservative injection, where all injectant may be recovered.

however, also occur sub-surface, in groundwater reservoirs. In such a situation
Equation 1a and Equation 1b has to be added to terms from the natural velocity
field, and the total velocity field is now given by, [ [10]],

Ur = Uu cosθ +
Q
r

, (6a)

Uθ = −Uu sinθ , (6b)

which in Cartesian coordinates become

Ux = Uu +
Qx

x2 + y2 (7a)

Uy =
Qy

x2 + y2 (7b)

It is assumed that the uniform stream velocity vector points in the positive x-
direction, and the test well is still located at the origin. We can see that stagnation-
points, i.e., spatial points where all velocity components become zero, exist for
(x,y) =

(
−
∣∣∣Qi

Uu

∣∣∣ ,0) and
(∣∣∣Qp

Uu

∣∣∣ ,0) in the injection and production phases, respec-
tively. Assuming miscible flow, i.e., the injectant perfectly displaces the in situ
fluid, the stream-lines passing through the stagnation-points will represent ab-
solute boundaries between the injectant and the in-situ fluid during the injection
phase and between recoverable fluid and escaped fluid in the production phase, as
seen in Figure 3. The shape of these boundaries is the Rankine half-body, [ [10]].
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(a) Injection phase
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(b) Production phase

Figure 3: General picture of stream-lines, or constant ψ contours, in the upper half-plane, in the
sink/source in a uniform stream model. Injection- and production-rates are symmetrical, so the
two cases are mirror images of each other. The Rankine Half-body is shown as the emphasised
stream-lines. Source, in (a), and Sink, in (b), are located at the origin and the uniform stream
velocity vector points in the positive x-direction, as indicated.

3.1 Stream-line Contours

The stream-line contours are identified by real numbers ψ , [ [10]], which are given
by

∂ψ

∂ r
=−Uθ

∧ ∂ψ

∂θ
= r ·Ur , (8a)

or
∂ψ

∂y
= Ux

∧ ∂ψ

∂x
=−Uy , (8b)

which, from Equation 6 and Equation 7 , respectively, result in

ψ = Uu · r sinθ +Q ·θ . (9a)
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and

ψ = Uu · y+Q · arccos

(
x√

x2 + y2

)
(9b)

From Equation 9a we get

r =
ψ −Qθ

Uu sinθ
, (10)

which gives, from Equation 8a ,

dθ

dt
=−1

r
∂ψ

∂ r
=−Uu sinθ

r
=−(Uu sinθ)2

ψ −Qθ
, (11)

where we have used that Uθ = r · dθ

dt .
The ψ denote stream-lines or flow-paths. By definition, [ [10]], the fluids on

a stream-line are confined there, i.e., a fluid particle with a given ψ will stick to
this number until the streaming conditions are altered. Plotting lines of constant
ψ , we can visualize the flow pattern of the fluid system.

ψp

rw
(t=T  ,     )ψiiθ

ψ
i

ψ
ir(t=T  ,     )i

x

y

Figure 4: General view of the trace of a fluid particle leaving the wellbore at the radius rw at the
time t = 0. The trace is described by the injection phase stream-line ψi until the particle reaches
it’s maximum radial advancement rmax at the time t = Ti and thereafter by the production phase
stream-line ψp until it is back at the well-bore radius rw.

Since there may be no cross-flow between stream-lines, the stream-lines are
uniquely identified by one set of r and θ values. It follows from Equation 9a that
a fluid particle situated at the injection phase stream-line ψi and at the angle θ at
the end of injection, is bound to flow along the production phase stream-line

ψp = ψi− (|Qp|+Qi)θ , (12)
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for tp > 0. If the particle did not cross the ψp = 0 boarder during the injection
phase, i.e., ψp from Equation 12 is less than 0, the particle will move back towards
the production well as shown in Figure 4, else, if ψp > 0, the particle will keep
moving away from the production well and is lost. In Figure 3 a selection of
stream-lines have been shown for the “source/sink in a uniform stream” problem,
for the injection phase (source) and the production phase (sink), respectively.

ψ
2

ψ
1

x

y

u

n
ds

s

Figure 5: Geometrical interpretation of stream-lines, ψ: volume flow between two stream-lines.

Furthermore, the two-dimensional rate between two stream-lines, ψ1 and ψ2,
are found by integrating along some path, s, as seen in Figure 5,

q =
∫
s

dq , (13)

where dq is given by
dq = (~u ·~n)ds . (14)

The normal vector,~n, to the line segment ds is given by

~n = x̂xx
dy
ds
− ŷyy

dx
ds

. (15)

Applying Equation 8b , Equation 14 and Equation 15 to Equation 13 we get

q =
∫
s

(Uxdy−Uydx) =

ψ2∫
ψ1

dψ = ψ2−ψ1 . (16)

Hence, the numerical stream-line number difference between two arbitrary stream-
lines is a measure of the two-dimensional rate flowing between them.
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3.2 Break-through, θ = π

Injection Phase

Break-through (BT) is defined as the earliest time at which clean water enters the
well-bore during the production phase. BT may, hence, both refer to the earliest
time clean water enters the well-bore from any stream-line or the earliest time
clean water enter the well-bore from a specific stream-line.

From Equation 6a we see that the radial particle velocity is monotonically
decreasing with θ ∈ [0,π]. For all radii and angles, the injection phase radial fluid
velocity is positive and the production phase radial fluid velocity is negative (for
recoverable fluids).
This means that the tracer front will be closest to the well at θ = π at all times.
Hence, break-through will happen for the θ ≡ π producing stream-line, first. From
Equation 6b , we see that at angles θ = 0 and θ = π , the velocity is radial only,
and for θ = π , the particle velocity, during the injection phase, is given by

~ui =
(
−Uu +

Qi

r

)
r̂rr . (17)

Solving for r, the differential equation, Equation 17 , we get

Uu (r− rw)+Qi ln
∣∣∣∣ Qi−Uu · r
Qi−Uu · rw

∣∣∣∣=−U2
u · t, t ∈ [0,Ti] . (18)

Production Phase

Breakthrough will occur at the time when the fluid located in the position (r,θ) =
(rmax,π) at the start of the production phase, tp = 0, is produced back and arrives
at the well perimeter, rw. Hence we must calculate the time it takes for a particle to
travel this distance. For θ = π , the particle velocity, during the production phase,
is given by

~up =
(
−Uu−

|Qp|
r

)
r̂rr , (19)

which results in the time-radius relation

Uu (r− rmax)−|Qp| ln
∣∣∣∣ |Qp|+Uu · r
|Qp|+Uu · rmax

∣∣∣∣=−U2
u · t, r ∈ [rw,rmax] . (20)

The time of break-through, TBT , may now easily be found by inserting rw for r in
Equation 20 . rmax is found by inserting Ti for t in Equation 18 and solving for r.
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3.3 End of Tail, θ = 0

Assuming all injectant can be recovered, we deduce, from the same argument as
above, that the last drop of injectant to be produced back comes from the injec-
tion/production stream-lines with θ ≡ 0. The calculations are identical to those
for θ = π and we get that the down-gradient tracer front position, r, is implicitly
given by

Uu (r− rw)−Qi ln
(

Qi +Uur
Qi +Uurw

)
= U2

u t, t ∈ [0,Ti] (21a)

during the injection phase, and

Uu (r− rmax)+ |Qp| ln
(

|Qp|−Uur
|Qp|−Uurmax

)
= U2

u t, r ∈ [rw,rmax] (21b)

during the production phase. Finding the maximum down-stream radius from
Equation 21a , Equation 21b can be used to calculate at what time the last drop
of injectant is produced back, i.e., when the producing injectant concentration
reaches zero.

3.4 Angles between 0 and π

Injection

Owing to the symmetry about the x-axis, it suffices to investigate the upper half-
plane, θ ∈ [0,π].
Solving the separable differential equation, Equation 11 , for the injection phase,
we get

(Qiθ −ψi)cotθ −Qi ln |sinθ |=−U2
u t +C (ψi) , (22)

where θ ≡ θ(t,ψi) and C (ψi) is an integration constant depending on the stream-
line in question. For t = 0 we have the boundary condition r = rw, so we get from
Equation 9 that[

Qiθ(t = 0,ψi)−ψi

]
=−Uurw sin

[
θ(t = 0,ψi)

]
, (23)

and we get an expression for the integration constant,

C (ψi) = −Uurw cosθ −Qi ln |sinθ |
∣∣∣
θ=θ(t=0,ψi)

. (24)

As θ(t = Ti,ψi) can be found from Equation 22 , we can use Equation 10 to
calculate the maximum radial advancement for each injection phase stream-line,
ψi,

rmax = r(t = Ti,ψi) =
ψi−Qiθ

Uu sinθ

∣∣∣∣∣
θ=θ(t=Ti,ψi)

. (25)



Analytical Treatment of a Push-Pull “Echo” Test.
Part I - Development of a Single Layer Solution. 179

Solving Equation 22 for θ may result in multiple solutions. The relevant solution
will be in the interval (0,π), if we study the upper half-plane, and result in an rmax
in the range

(
rmax(θ = π),rmax(θ = 0)

)
. Both θ(Ti) and rmax must be monotone

functions of ψi.

Production

During the production phase the rate is by definition negative, but except for the
sign of Q, Equation 6 and Equation 7 remain the same, so it suffices to let
Qi →−|Qp| in Equations 22-25 to get the production phase equations;

ψp = Uur sinθ −|Qp|θ (26)

r =
ψp + |Qp|θ

Uu sinθ
(27)

−U2
u t +C (ψp) =−(|Qp|θ +ψp)cotθ + |Qp| ln |sinθ | (28)

C (ψp) = −Uurmax cosθ + |Qp| ln |sinθ |
∣∣∣
θ=θ(t=Ti,ψi)

(29)

From Equation 27 it is possible to calculate at what angle a given production
phase stream-line enters the well bore, θ(rw,ψp) by setting r = rw. The production
phase stream-line will be known from Equation 26 , putting in the rmax and θ(t =
Ti,ψi) values obtained from Equation 25 and Equation 22 , respectively.
When the polar coordinates at which the production phase stream-line intersects
the well-bore are found, these can be used to calculate the “time of break-through”
for clean water, TBT,ψp , for each production phase stream-line, using Equation 28
with the integration constant in Equation 29 .

4 Comparing the Analytical Solution with Experi-
mental Data

To generate a production profile based on the theory presented, we have to aban-
don the analytical approach. There is no way to find an analytical expression for
the producing tracer concentration as a function of time. We can, however, gen-
erate a semi-analytical production profile by keeping track of a finite, but large,
number of stream-lines and employing the analytical approach to calculate the
TBT for each of them.

Using a finite number of stream-lines, the production profile is in reality not a
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Figure 6: Producing tracer concentration vs. dimensionless time, Volume produced/Total volume
injected , comparing the Pickens-Grisak field test data, numerical simulation results from the Coats
et al. SENSOR model and this paper’s semi-analytical stream-line-based model.

continuous line, but rather a series of points. As the inflow rate associated with
each stream-line is an approximation3, the points are error prone. Tracing a large
number of stream-lines, however, the error becomes negligible, and the produc-
tion profile points become so dense that the space between them vanish, hence
there is no need for interpolation.
Only the upper half-plane was studied and the N traced injection phase stream-
lines intersect the well-perimeter, at r = rw, at uniform angle intervals such that
∆θi = π

N−1 and n = 1 and n = N corresponds to the angles θ = 0 and θ = π ,

3Modelling a finite number of stream-lines, a finite inflow rate has to be associated with each
stream-line such that the sum equals the actual injection/production rate.
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respectively. As described in the previous sections, the rmax,ψi,n were calculated
for each stream-line, ψi,n, and the corresponding TBT,ψp,n were calculated for each
stream-line, ψp,n.

As shown in Equation 16 , the two-dimensional rate between two stream-lines,
ψm and ψn is simply ψm−ψn. Half of this rate may be associated with each of
the two stream-lines, so the total in-flow rate associated with a given stream-line,
ψn where n ∈ [2,N−1], is

qp,n =
1
2
(
ψp,n+1−ψp,n

)
+

1
2
(
ψp,n−ψp,n−1

)
=

1
2
(
ψp,n+1−ψp,n−1

)
, (30a)

and as we study the upper half-plane only, we have

qp,1 =
1
2
(
ψp,2−ψp,1

)
, (30b)

and

qp,N =
1
2
(
ψp,N −ψp,N−1

)
. (30c)

We now get that

N

∑
n=1

qp,n =
1
2
(
ψp,2−ψp,1

)
+

1
2
(
ψp,N −ψp,N−1

)
+

1
2

N−1

∑
n=2

(
ψp,n+1−ψp,n−1

)
= ψp,N −ψp,1 (31)

= Qp ·π =
qp

2φ
, (32)

where qp
φ

is the rate through the effective area A ·φ .
Assuming dispersion-free piston displacement, each stream-line produce in-

jectant at the partial rate given by Equation 30 until the time of break-through
for that particular stream-line. After the time of break-through, the stream-line
produces clean water at the same rate. Hence the total inflow concentration of
injectant will be equal to

CN∗ =

N∗

∑
n=1

Qp,n

Qp
, (33)

where N∗ is the number of stream-lines still producing tracer.
Since this way of plotting, in reality, generates step-functions of N steps, we
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Figure 7: Comparing semi-analytical model results with the Coats et al. Sensor model results
shown in their Figure 18. Pickens-Grisak SW test area with drift for two injection=production
rates; 3 days at SW1-rate and 6 days at half SW1-rate.

would, for a small number of stream-lines, get into the dilemma of plotting up-
per or lower value of each step, i.e., choosing N∗ as the number of stream-lines
with TBT,n > tp or ≥ tp. However, as this will only be a problem for small N’s,
which will also result in several other inaccuracies and problems, this will not be
addressed any further. Here, ≥ tp was chosen.

The semi-analytical solution plots in Figure 6(a) and Figure 6(b) are gener-
ated from a thousand data-points

(
TBT,n,CN−n+1

)
, based on tracing a thousand

stream-lines, and are compared to the Pickens-Grisak field test data and the nu-
merical simulation data provided by Coats et al.

In Figure 7 results from the semi-analytical model is compared to the Coats
et al. SENSOR results using SW1 and half SW1 rates, from their Figure 18,
[ [3]]. As is seen, there is good agreement between the semi-analytical model
and results from the simulator, SENSOR, but the SENSOR model shows a some-
what more dispersed result. In Figure 8 a selection of stream-lines as well as the
injectant-covered area, at ti = Ti, is shown for SW1 and SW2 injection and produc-
tion phases, respectively. It can be seen how the injectant-covered area deviates
somewhat from a perfect circle.

To verify the semi-analytical solution described in this paper, and to compare
with the results obtained by Coats et al., a commercially available stream-line
based simulator, 3DSL, [ [9]], was employed. An equivalent model to that of the
stream-line based semi-analytical model and the Coats et al. model was built and
run, both for SW1 and SW2 test parameters. The resulting production profiles
were more or less identical to the Coats et al. results, but somewhat more dis-
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(a) SW1 - Injection phase
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(b) SW1 - Production phase
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(c) SW2 - Injection phase
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(d) SW2 - Production phase

Figure 8: Injection and Production phase stream-lines for SW1 and SW2 test-parameters, respec-
tively. Injectant covered areas at the end of the injection phase are shown as the hatched area. The
test-well is located at the origin, and, as indicated, the uniform stream velocity vector points in the
positive x-direction.
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persed than the semi-analytical profile, depending on the number of data-points
generated, i.e. the number of time-steps taken. Based on our study of the semi-
analytical model, the SENSOR model and the 3DSL model, and correspondence
with Marco Thiele at Streamsim Technologies Inc., [ [9]], we are under the im-
pression that our semi-analytical solution represent the most accurate solution and
that the single-well push-pull test is not readily modelled using available simula-
tors, finite difference based or stream-line based.

5 Conclusions

1. In an entirely dispersion free model, it has been shown that real experimen-
tal data may be matched well even though apparent dispersivity is large.

2. It has been shown analytically, in an over-simplified reservoir model, that
natural drift alone may cause a big part of the apparent dispersivity reported
by Pickens and Grisak.

3. The analytically calculated times for clean water break-through and end
time of tracer production and the semi-analytical calculations in-between
show good agreement with results from numerical simulations run by Coats
et al and stream-line based simulation results obtained from Streamsim’s
3DSL.

A Hydraulic Head - Hydrostatic Pressure Conver-
sion

Hydraulic head, h, is commonly used to denote the pressure of a water column of
a certain height. The pressure at a given depth is found by solving the differential
equation

dP
dh

= ρwg , (A1)

where ρw, the water density, is assumed to be constant and g is the gravity. The
hydraulic head is hence related to the pressure by the formula

h =
P

ρwg
. (A2)
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B Darcy’s Law and the Natural Drift Velocity
The Darcy velocity is given by

v = K · dh
dx

=
K

ρwg
dP
dx

, (B3)

where the hydraulic conductivity, K, is related to the permeability, k, by

K = k · ρg
µ

, (B4)

where ρ and µ is the density and viscosity of the fluid in question. The unit of
permeability is frequently given as darcy = 9.869 ·10−13 m2. For flow in a porous
media of porosity φ , the macroscopic fluid velocity will be given by

u =
v
φ

=
K
φ
· dh

dx
=

k
µφ

dP
dx

. (B5)
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Abstract

The semi-analytical stream-line based model developed and validated in a previ-
ous paper is used to study the effects of varying the injection phase duration. It
is shown that for a given set of boundary values and test-parameters there exists a
theoretical maximum injection phase duration giving conservative tracer produc-
tion. The model is used to study the tracer production profiles as the injection
phase duration is extended to values larger than this limit. The applicability of the
one-dimensional convection-dispersion equation on calculating apparent disper-
sivity Peclet numbers is studied, as the injection phase duration is increased. It is
shown how it fails to predict the volume of recoverable tracer and how it fails to
fit the measured data. It is also shown how a strongly scale depending apparent
dispersivity may occur in a model, with no physical dispersion, due to natural drift
only.

Keywords Analytical, One-dimensional Convection-Dispersion Equation, Con-
tamination, Echo test, Macroscopic dispersion, Natural drift, Push-pull test,
Stream-line, Tracer

1 Introduction

In 1981 Pickens and Grisak, [ [8]], reported from two full-scale single-well push-
pull tests, SW1 and SW2, performed using two neighbouring wells in the same
aquifer. Push-pull tests, also known as echo or injection-withdrawal tests, are
single-well tests where an injection phase “pushing” injectant containing a tracer
into the well is followed by a production phase where fluids are “pulled” out of
the well. Tracer concentrations in the producing fluids are measured during the
production phase.
Laboratory experiments on core-samples from the test site gave a dispersivity of
approximately 0.035cm, whereas the field tests, neglecting natural groundwater-
drift, gave 3cm and 9cm, respectively, fitting the one-dimensional convection-
dispersion equation (1D CD-EQ) to the test data. Pickens and Grisak conclude
that the great variations are due to a strong scale dependency in apparent disper-
sivity; others also suggest the same, [ [3]], [ [7]].

Recently Coats et al., [ [4]], have shown that the large dispersivity reported by
Pickens and Grisak may be mainly due to natural drift of the in situ ground water.
Coats et al. remind that all experimental evidence show that dispersivity is a rock
property and that any “apparent” scale dependence of dispersivity derived from
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produced-well concentration profiles4 must be due to other physical phenomena
such as drift.

In part I of this work, [ [6]], we introduced a stream-line based model with
no physical dispersion, and we showed how natural drift alone might cause the
apparent dispersivity reported by Pickens and Grisak. In the stream-line based
model it was assumed that the injectant and the in situ fluids were incompress-
ible fluids with identical fluid properties. Viscosity was assumed constant and
temperature, pressure and density variations were neglected, i.e., no gravitational,
viscous or thermodynamic effects were taken into account. It was furthermore
assumed that the tracer was ideal, i.e., chemically and physically stable, not in-
teracting with in situ fluids or solids and not naturally present in the reservoir. It
was also assumed that the injectant and the in situ fluids were miscible and dis-
place each other perfectly, maintaining a sharp interface between the two fluids,
hence all mixing will occur in the well-bore, during the production phase. Unless
otherwise stated all results shown in this paper are obtained using the stream-line
based model developed in [ [6]], with constant injection/production rates. For a
complete understanding of the mathematics of the stream-line based model, we
refer to part I. Only a few of the key-equations are given in this text.

As will be shown, there exists, in the stream-line based model, a theoretical
maximum injection phase duration, Tc, for which tracer-production is conserva-
tive5. The Tc depends on injection-rate, production-rate, natural groundwater drift
velocity and well radius. For injection phase durations, Ti, larger than this limit,
some of the injected tracer will be lost and cannot be produced back unless the
production-rate is increased. As Ti increases, the tracer production profile will ob-
tain an increasingly long tail, and when Ti ≥ Tc the production profile approaches
0 asymptotically. The effect of injection phase durations larger than Tc has been
studied for Ti ∈ [Tc,∞), and it is shown that the dimensionless time of break-
through as well as the integral of the tracer production-profile goes to zero as
Ti →∞. Production profiles were created for a selection of Tis and the 1D CD-EQ
were fitted to the profiles. The apparent dispersivities from the best fit proce-
dure were plotted versus length travelled, and even though the model is free of
physical dispersion, the system shows a strong scale dependency of the apparent
dispersivity. It is also argued that the 1D CD-EQ lack some of the key properties
of a real concentration profile and that fitting the 1D CD-EQ to experimental data
has no value for large Tis. First, a real concentration profile must take the value
1 at tp = 0, whereas the 1D CD-EQ concentration profile will be smaller than 1

4Production profiles and concentration profiles refer to the normalised concentration of tracer
in the produced fluid either as a function of time, tp, or as a function of dimensionless volume
produced, QD = |Qp|tp

QiTi
.

5By conservative tracer-production we mean that all the injectant is recoverable.
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for all tp ≥ 0, for any NPe. Second, the integral of the concentration profile, from
0 to ∞ should be 1 or smaller, whereas the integral of the CD-EQ concentration
profile seems to be larger than 1, although this is not strictly proven. The apparent
dispersivity resulting from fitting the 1D CD-EQ to experimental data cannot be
expected to be a measure of the physical dispersivity.

1.1 The Stream-Line Based Model
The Velocity Field

The model presented in [ [6]] is based on solving the source/sink in a uniform
stream problem, [ [10]]. The problem is charaterised by the velocity field

Ur = Uu cosθ +
Q
r

, (1a)

Uθ = −Uu sinθ , (1b)

where Uu is the natural drift velocity of the ground-water and Q = q
2πφ

is the re-
formulated 2-dimensional rate of injection/production. By definition Q is positive
when injecting and negative when producing.

ψp

rw
(t=T  ,     )ψiiθ

ψ
i

ψ
ir(t=T  ,     )i

x

y

Figure 1: General view of the trace of a fluid particle leaving the wellbore at the radius rw at the
time t = 0. The trace is described by the injection phase stream-line ψi until the particle reaches
it’s maximum radial advancement rmax at the time t = Ti and thereafter by the production phase
stream-line ψp until it is back at the well-bore radius rw.
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Figure 2: General picture of stream-lines, or constant ψ contours, in the upper half-plane, in the
sink/source in a uniform stream model. Injection- and production-rates are symmetrical, so the
two cases are mirror images of each other. The Rankine Half-body is shown as the emphasised
stream-lines. Source, in (a), and Sink, in (b), are located at the origin and the uniform stream
velocity vector points in the positive x-direction, as indicated.

Stream-Lines

In [ [6]] it was shown how a push-pull test could be solved semi-analytically by
tracing a finite number of individual flow-paths and keeping track of the tracer
front position along each path. The tracer front position will move along the
stream paths in the same way as the fluid particles will, as shown in Figure 1. The
flow-paths or stream-line contours are given by the real numbers

ψi = Uu · r sinθ +Qiθ , (2a)

and
ψp = Uu · r sinθ −|Qp|θ , (2b)

during the injection and production phases, respectively. By definition, [ [10]], the
fluids on a stream-line are confined there, i.e., a fluid particle with a given ψ will
stick to this number until the streaming conditions are altered, hence, knowing the
stream-line number, ψ , we have a relation between angle and radius, and knowing
the velocity field, we may calculate the tracer front position at any given time. In
Figure 2(a) and Figure 2(b), it can be seen how the constant ψ contours form
flow-paths during the injection and production phases, respectively.

Break-Through

In [ [6]] it was shown how the time of break-through for clean water6, for each
stream-line, may be calculated. Tracing a thousand stream-lines, using the test
parameters, given by Pickens and Grisak, [ [8]], [ [6]], Figure 3(a) and Figure
3(b) were obtained, comparing the two Pickens-Grisak field tests with numerical
simulation results by Coats et al. and results from the semi-analytical stream-line
based model.

6Clean water is defined as water containing no tracer.
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Figure 3: Producing tracer concentration vs. dimensionless time, Volume produced/Total volume
injected , comparing the Pickens-Grisak field test data, numerical simulation results from the Coats
et al. SENSOR model and results from the Johnsen-Whitson semi-analytical stream-line-based
model, for SW1 and SW2 test parameters, respectively.

2 The Effect of Long-Lasting Injection Phases

2.1 Asymptotic Value for the Time of Break-Through

As the duration of the injection phase increases, the maximum up-stream radial
position approaches the injection phase stagnation point in (x,y) =

(
−Qi

Uu
,0
)

as-
ymptotically. As the time of break-through is a direct consequence of the up-
stream radial position at time Ti, the time of break-through must also approach
some value asymptotically, as the injection phase duration is increased. The time
of break-through, as a function of injection phase duration, keeping all other pa-
rameters constant, is shown in Figure 4, for both SW1 and SW2 test-parameters.
The times needed, for a particle located in the injection phase stagnation-point
at tp = 0, with SW1 and SW2 test-parameters, to travel back to the test-well,
TBT,max, are shown as horizontal asymptotes. The critical times, Tc, are shown
as vertical lines. In Figure 5 the dimensionless volume produced at the time of
break-through, |Qp|TBT

QiTi
, is shown as a function of injection phase duration, Ti. It

can be seen how the dimensionless volume produced at tp = TBT goes to zero as
Ti is increased.

2.2 Lost Injectant

As can be seen from Equation 1 , there exists a production-phase stagnation point,
where all velocity components become zero, in (x,y) =

(∣∣∣Qp
Uu

∣∣∣ ,0). From Equation
2 we see that the stagnation point is passed through by the stream-line defined
by ψp = 0. In Figure 2(b) the ψp = 0 stream-line is emphasised. Injectant that
crosses the boarder defined by this production phase stream-line is lost and cannot



194 Paper II

0

5

10

15

20

25

30

35

40

45

50

1.E-03 1.E-02 1.E-01 1.E+00 1.E+01 1.E+02 1.E+03 1.E+04

Duration of Injection Phase,  [Days]

T
im

e 
of

 B
re

ak
-T

hr
ou

gh
, [

D
ay

s]

SW1 TBT,max

SW2 TBT,max

SW1 Tc

SW2 Tc

SW2 TBT

SW1 TBT

Figure 4: Time of clean water break-through, TBT , versus duration of the injection phase, for the
Pickens-Grisak SW1 and SW2 conditions, calculated with the semi-analytical model developed in
[ [6]]. The TBT,max horizontal lines show the time needed to produce back a fluid particle situated
at the injection phase stagnation point at tp = 0. As Ti increases, the tracer front gets closer to the
stagnation point, and the time of break-through gets closer to the asymptote defined by TBT,max.
The critical times, Tc, are represented by the vertical lines.

0

0.2

0.4

0.6

0.8

1

1.2

1.E-03 1.E-02 1.E-01 1.E+00 1.E+01 1.E+02 1.E+03 1.E+04

Duration of Injection Phase, [Days]

D
im

en
si

on
le

ss
 T

im
e 

of
 B

re
ak

-T
hr

ou
gh

SW2 Tc

SW1 Tc

SW1 TBT,D

SW2 TBT,D

Figure 5: Dimensionless time of break-through, QpTBT
QiTi

, versus duration of the injection phase, Ti,
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be recovered unless the production rate is increased.
ψp = 0 gives

r =
|Qp|
Uu

· θ

sinθ
, (3a)

⇓
dr
dθ

=
|Qp|
Uu

· sinθ −θ cosθ

sin2
θ

≥ 0 ∀ θ ∈ [0,π] , (3b)

which means that the distance from the well to the ψp = 0-stream-line is monoton-
ically increasing and is at it’s minimum for θ = 0.
The velocity vector field gives

~ui =
1
r

(Uu · r cosθ +Qi) r̂rr−Uu sinθ · θ̂θθ , (4a)

⇓

|~ui|2 =
2UuQi

r
cosθ +U2

u +
Q2

i
r2 , (4b)

⇓
d|~ui|2

dθ
= −2UuQi

r
sinθ ≤ 0 ∀ θ ∈ [0,π] , (4c)

meaning that the velocity at a given radius is decreasing monotonically with θ .
Since the angle θ = 0 both give the shortest path to the ψp = 0 boundary and at
all radii give the highest fluid velocity, the ψp = 0 boundary will be crossed by
the θ = 0 injectant first.

During the injection phase, we have, for θ = 0, from Equation 1 ,

~ui =
dr
dt
· r̂rr =

(
Uu +

Qi

r

)
r̂rr , (5)

and by integrating

dt =
dr
|~ui|

(6)

from r = rw to
∣∣∣Qp

Uu

∣∣∣, we find that the ψp = 0 stream-line will be crossed at the time

Tc =
1

U2
u

(
|Qp|−Uurw +Qi ln

∣∣∣∣Uurw +Qi

|Qp|+Qi

∣∣∣∣) , (7)

which will be referred to as the critical time. If Ti ≥ Tc some of the injectant will
be lost.



196 Paper II

X , [m]

Y
,
[m

]

Arec

ψ
p
=

0

ψ
i
=
Q

i
π

−20 −10 0 10 20
0

5

10

15

20

25

30

35

40

(a) SW1

X , [m]

Y
,
[m

]

Arec

ψ
p
=

0ψ
i
=
Q

i
π

−20 −15 −10 −5 0 5 10 15
0

5

10

15

20

25

30

(b) SW2

Figure 6: Theoretically recoverable tracer covered area, Arec, bound by the injection and produc-
tion phase boundary stream-lines, for SW1 and SW2 test-parameters.

2.3 Infinite Injection Phase
During the injection phase, the up-stream tracer transport is limited by the injec-
tion phase stream-line ψi = Qiπ , but the down-stream tracer transport is unbound.
During the production phase the stream-line ψp = 0 defines a boundary between
recoverable and non-recoverable fluids, as seen in Figure 2(b) . Hence, the max-
imal volume of tracer produced back will be proportional to the area bound by
these two boundary stream-lines, as shown in Figure 6. The hatched area is, how-
ever, an asymptotic value, and it will neither be entirely covered with tracer nor
entirely recovered within a finite time-scale. The shape of the area is determined
by the test-parameters as well as the porosity, permeability and natural ground-
water velocity.

As is shown in Figure 4 , the time of break-through approaches an asymptotic
value as the duration of the injection phase goes to infinity. The asymptotic value
is the time needed, for a particle located in the injection phase stagnation-point at
tp = 0, to travel to the production well. The total volume of tracer injected, QiTi,
however, is not limited, so

lim
Ti→∞

|Qp|TBT

QiTi
= 0 . (8)

That is, the dimensionless volume produced at the time of break-through will go
to zero as the duration of the injection phase goes to infinity, as indicated in Figure
5 . The total recoverable volume of tracer is given by

Vt,tot =
∞∫

0

Vt(tp)dtp , (9)
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where Vt(tp) is the volume of injectant recoverable in the time interval (tp, tp +
dtp). For Ti < Tc, all the injected tracer is recoverable, and Vt,tot = |Qp|Tp = QiTi.
Vt(tp) may be expressed by a concentration-function, 0≤C(tp)≤ 1, multiplied by
the production rate, so that

Vt,tot =
∞∫

0

|Qp|C(tp)dtp . (10)

Making the change of variable, QD = |Qp|tp
QiTi

, we get

∞∫
0

C(QD)dQD =
Vt,tot

QiTi
, (11)

so the integral of the concentration, C(QD) equals one, for Ti < Tc. We have
no analytical expression for the concentration profile, and neither do we have an
analytical expression for the shape of the tracer front, so we cannot, in general,
calculate the integral of C. All we can say is that for Ti > Tc, the integral of C(QD)
is, due to the loss of tracer, smaller than one. We can summarise our knowledge
of C(t) in the following way;

C(tp) =
{

1 for tp < TBT
0 for tp → ∞

, (12a)

∞∫
0

C(QD)dQD =
{

1 for Ti < Tc
0 for Ti → ∞

. (12b)

In Figure 7 concentration profiles are shown, for various injection phase dura-
tions, for SW1 and SW2 parameters, respectively.
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Figure 7: Concentration profiles for various injection phase durations, Ti = a ·Tc, for SW1 and
SW2 test parameters, respectively, where a ∈

[
0.2, 0.35, 0.5, 0.9, 1.0, 1.1, 3.0, 5.0, 10.0

]
,

calculated using the semi-analytical model developed in [ [6]].
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3 The 1-Dimensional Convection-Dispersion Equa-
tion

The Aronofsky-Heller, [ [2]], convection-dispersion equation (CD-EQ), at a fixed
spatial point, is widely used to fit the producing concentration profiles in single-
well tests, CCD for concentration of clean water and (1−CCD) for injectant con-
centration7. The CD-eq is given by, [ [4]],

CCD(PVin j) =
1
2

erfc

(
1−PVin j

2
√

PVin j/NPe

)
+

eNPe

2
erfc

(
1+PVin j

2
√

PVin j/NPe

)
, (13)

where, [ [1]],

erfc(z) = 1− erf(z) , (14)

erf(z) =
2√
π

z∫
0

e−t2
dt , (15)

and the Peclet number, NPe, is a shaping parameter. The Peclet number is defined
as the scale, L, divided by the dispersivity, α , [ [4]]. CCD(PVin j) has the the
following properties, [ [2]];

CCD(PVin j) =
{

0 for PVin j = 0
1 for PVin j → ∞

. (16)

The Aronofsky-Heller dimensionless pore-volumes injected, PVin j, is related to
the dimensionless volume produced, QD, by the relation,

PVin j =
1
2

(QD +1) , (17)

as seen in Equation A3 . Using the CD-EQ to fit the Pickens-Grisak field data, we
obtain Peclet numbers of 56.4 and 27.4, for the SW1 and SW2 tests, respectively.
For the semi-analytical model developed in [ [6]], using the SW1 and SW2 test
parameters, we obtain Peclet numbers of 161.5 and 70.0, respectively, as seen in
Figure 8. In Figure 9 it can be seen how the CD-equation best-fit Peclet number
varies with the ratio Ti/Tc for SW1 and SW2 parameters, respectively. The sum-of-
squares error is plotted along with the Peclet numbers. For Ti > Tc, some of the
tracer front points being traced are in the non-recoverable area. The stream-lines
belonging to these points were simply discarded, hence the number of stream-
lines traced will decrease as Ti is increased. It can, in Figure 9 , be seen that the

7For two-well transmission-tests, CCD is the concentration of injectant, and (1−CCD) is the
concentration of clean water.
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for the Pickens-Grisak SW1 and SW2 parameters.

total Npe sum-of-squares error decreases as Ti increases. However, as can be seen
in Figure 10, the number of stream-lines traced decreases also, so that the average
error per stream-line keeps increasing as Ti is increased beyond Tc.

3.1 Scale-Dependency of the Dispersivity

Figure 11 is the same as the Coats et al. Fig.17, [ [4]], where apparent dispersivity
versus length traveled is added for the semi-analytical model results. The apparent
dispersivity is given by

αa =
L

NPe
, (18)

where L is the length traveled. L = 2 ·Lm, where
Lm =

(√
2Qi ·Ti + r2

w− rw

)
is the mean maximal tracer front travel distance, has

been used. Even though the semi-analytical model is free of physical dispersion,
there is a strong scale-dependency in the CD-EQ-calculated apparent dispersivity
of the model results.
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3.2 The Integral of the Production Profile
Using the quadl8 routine in The Mathworks’s MATLAB, [ [9]], we have calculated

the integral
∞∫
0

(1−CCD(QD)) dQD for different Peclet numbers, as seen in Figure

12. As the quadl routine may not use an infinite upper limit, we have calculated
the integral using the upper limits QD = 105, 108 and 1010. As can be seen in
Figure 12 , there is no noticeable difference in the results, for NPe > 10−3, so we
conclude that the left-out tail of the integral is negligible. It can be seen from
Figure 9 that the Peclet number is about 10 for Ti = Tc and is decreasing for
increasing Tis. In Figure 12 we see that the integral starts deviating noticeably
from 1 at approximately NPe = 10. As Ti becomes larger than Tc we no longer have
conservative tracer production, and we would expect the integral of the production
profile to decrease, becoming smaller than 1 and approaching zero for Ti → ∞.
The integral of the

(
1−CCD

)
concentration profile, however, increases and we

therefore have to realise that the 1D CD-EQ will provide an increasingly poor fit
when extending the injection phase duration, Ti.

3.3 Boundary Values of the CD-EQ
Another problem with the CD-equation becomes clear when we look at the con-
centration profile at tp = 0, or rather QD = 0, where PVin j = 1/2. Here, a real
concentration profile must take the value 1. The 1D CD-EQ, however, takes the
value 0 for PVin j = 0 and increases monotonically, so in general

(
1−CCD(PVin j >

0)
)

< 1, which contradicts Equation 12a . For relatively large NPe the deviation

from 1 is negligible, but for large Ti, the NPe decreases and
(

1−CCD(PVin j > 0)
)

becomes noticeably smaller than 1.
In Figure 13 1D CD-EQ best fits are shown for injection phase durations of

0.2 and 10 times the critical time, Tc, for SW1 and SW2 test parameters. Peclet
numbers are 49.0, 0.91, 54.1 and 0.11 for the short and long injection phases,
for SW1 and SW2, respectively. It is evident that the fit to the 10 ·Tc production
profile is of little value.

8The MATLAB quadl routine approximates the integral of a function between two finite limits
to within a default error of 10−6 using recursive adaptive Lobatto quadrature, [ [9]], [ [5]].
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4 Conclusion
1. For injection phase durations, Ti, larger than some critical time, Tc, the

tracer production is not conservative, and the 1-dimensional Convection-
Dispersion equation will no longer fit the producing tracer concentration
profile well.

2. For Ti < Tc, the Peclet number plots linearly vs. Ti in a log-log diagram,
using the SW1 and SW2 test parameters.

3. A strong scale dependency of the apparent dispersivity has been found even
though the physical dispersivity of the model per definition is zero.

4. The apparent dispersivity resulting from fitting the one-dimensional convection-
dispersion equation cannot be expected to be a measure of the physical dis-
persivity.

A Converting from PVin j to QD

In the Aronofsky-Heller CD equation, [ [2]], the variable used is Pore-Volumes
injected, PVin j, when comparing single-well field test data with the CD-EQ so-
lution it is, however, convenient to introduce the variable dimensionless volume
produced, QD ≡

Vp
Vi,TOT

. The Aronofsky-Heller 1D CD-EQ applies to an infinitely

A

R=u T R+u ti i p p

φ

L=2 R

x

Figure 14: The Aronofsky-Heller two-well transmission test stream-tube of length L = 2R, cross-
section A and fractional porosity φ .

long stream-tube where tracer is injected at one end and the tracer concentration is
measured at the other end, as in a two-well transmission test. Frequently however,
the 1D CD-EQ is used to assess the dispersivity in single-well push-pull tests as
well. To convert the Aronofsky-Heller PVin j to QD in a single-well test, we need
to view the single-well test as an equivalent two-well test. Studying one stream-
tube only, assume that the tracer front9 has moved the distance R at the end of
the injection phase, such that R = ui · Ti, where ui is the constant fluid velocity

9The tracer front is defined as where the tracer concentration is 0.5.
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during the injection phase and Ti is the duration of the injection phase. During
the production phase, the tracer front must move the same distance back to the
producer. Hence, the 1-dimensional stream-tube single-well test, where the tracer
front moves the distance 2R, is equivalent to the 1-dimensional stream-tube two-
well test, where the tracer front moves the distance L = 2R, as shown in Figure
14. In the two-well test, the tracer front will reach the producer the moment one
Pore-Volume has been injected, i.e., PV = AφL, and

PVin j =
Vin j

PV
. (A1)

During the production phase of the single-well test we get

PVin j =
AφR+qptp

2AφR
, (A2)

where Vi,TOT = AφR is the total volume injected during the injection phase, and
Vp = qptp is the volume produced, so

PVin j =
1
2

(
Vp

Vi,TOT
+1
)

=
1
2

(QD +1) . (A3)
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Abstract
Based on a semi-analytical stream-line based model developed in a previous pa-
per, we study injection/production in stratified aquifers of infinite areal extent,
subject to natural groundwater drift. Injectant and in situ groundwater are as-
sumed to be miscible, incompressible fluids with identical fluid properties. Only
macroscopic flow is considered, and flow is assumed to experience no in situ fluid
mixing (physical dispersion) so fluid interfaces remain sharp, and all mixing oc-
curs in the well-bore. Analytical results give an excellent match to field study data
provided by Pickens and Grisak.

Keywords Analytical, Contamination, Dynamic Aquifer, Echo test, Layering,
Natural drift, Push-pull test, Stratification, Stream-line, Tracer, Water

1 Introduction
In a previous paper, Part I, [ [3]], we developed a semi-analytical single-layer,
stream-line based model to predict production profiles in single-well push-pull
“Echo” tests. The model was verified by comparing with experimental data, from
two field-scale single-well tests, SW1 and SW2, provided by Pickens and Grisak,
[ [7]], and with numerical simulation data provided by Coats et al., [ [2]], as seen
in Figure 1.

In Part II, [ [4]], we pointed out several weaknesses in the traditional way of
applying the 1-dimensional Convection-Dispersion Equation to assess dispersivity
in single-well push-pull tests.

This paper, Part III, is basically an extension of part I, [ [3]], and the two papers
should really be read as one. Topics covered in Part I is generally not covered here.
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Figure 1: Producing tracer concentration vs. dimensionless time, Volume produced/Total volume
injected , comparing the Pickens-Grisak field test data, numerical simulation results from the Coats
et al. SENSOR model and results from the Johnsen-Whitson semi-analytical stream-line-based
model, for SW1 and SW2 test parameters, respectively.
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In Section 2, however, we give a short summary of the mathematical formulae
derived in Part I. Part II does not supply much mathematical foundation for this
paper, but will provide motivation for understanding and applying the techniques
we propose.

For years the natural groundwater drift has been neglected when assessing
push-pull test production profiles, and field scale dispersivities have been over
predicted by several orders of magnitude compared to laboratory dispersivities.
Coats et al., [ [2]], suggest that the natural drift affects the apparent dispersiv-
ity more than the physical dispersivity does. Their numerical simulation results
support their suggestion, and so does our semi-analytical model where physical
dispersion is zero per definition, and the apparent dispersion is all due to the nat-
ural groundwater drift.

In this paper the single-layer homogeneous model developed in
[ [3]], is extended to a stratified heterogeneous model, where porosity and/or per-
meability may vary from layer to layer. Pickens and Grisak, [ [7]], provided strati-
fication data from their test site, which is used in the model. We judge the excellent
match to the experimental data, by the layered model presented in this paper, to
be a conclusive verification of the Coats et al. suggestion.

Comparing the Part I-model to the Pickens-Grisak field data, it was assumed
that the areal extent of the aquifer was infinite, that the reservoir thickness was
8.2 m, as reported by Pickens and Grisak, and that the test well fully penetrated
the reservoir. Furthermore it was assumed that the aquifer had a homogeneous
fractional porosity of 0.38 and permeability of 14.8 darcy. Following Coats et al.,
a natural gradient of 0.052 kPa/m was assumed.

In this paper, the homogeneous single-layer methodology is applied to each
layer in a multi-layered aquifer model consisting of a finite number of horizontal
layers of equal or varying thickness and rock properties, and we study the effect
of layering on the producing tracer concentration. It is assumed that the natural
pressure gradients in each layer are identical and that pressure changes spread
momentarily throughout the reservoir. It is also assumed that there is no cross-flow
between different layers, that all flow is strictly 2-dimensional. Partial producing
tracer rates from each layer are summed and normalised to present the fractional
tracer concentration of the producing well-stream. For a reservoir with no natural
drift it is shown that there is no effect of varying permeability and/or porosity.
It is shown, however, that the effect of varying permeability and/or porosity in a
reservoir subject to natural drift is the same as that of multiplying the injection
phase duration, Ti, with the scaling factor C j = φA

φ j

kA
k j

in each layer, j.

In Figure 2 the well configuration at the Pickens-Grisak test site is shown.
The Pickens-Grisak SW1 and SW2 tests were performed in the wells P1 and P3,
respectively. Stratigraphic interpretations by Cherry et al, [ [1]], are shown in
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interpreted from Figure 1 in [ [3]].

Figure 1 in Part I, [ [3]]. The north-arrow in Figure 2 makes an angle of 29.5◦

to the line passing through the wells P1 and P2, and the Y-Y’ line, in Figure 1 of
Part I, makes an angle of between 24◦ and 31.5◦ with the north-arrow. It will be
assumed that the natural drift is parallel to the line passing through the wells P1
and P2.

Based on 23 piezometer hydraulic head measurements, Pickens and Grisak
arrived on a hydraulic head vs. radial distance correlation, neglecting the natural
drift. They did not state, however, which of the thirty piezometers indicated in
Figure 2 they used. We have developed an alternative hydraulic head equation,
depending on both radius and angle, taking into account the natural gradient. We
show how the Pickens-Grisak regression equation is in good agreement with our
alternative equation at a number of piezometer coordinates.

Pickens and Grisak used their hydraulic head regression equation to calculate
hydraulic conductivities, and we show how the resulting hydraulic conductivities
may be affected by (1) including natural drift and (2) the angle at which the mea-
surements are performed, compared with the drift direction. The SW1 and SW2
multi-level sampling devices were not lined up using the same angle to the natural
direction of flow, as seen in Figure 2 . We also show how the hydraulic conductiv-
ity calculations are greatly simplified when the multi-level sampling devices are
placed directly down-stream from the test-well, as for SW1, compared to putting
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them at an angle to the natural direction of flow, as for SW2.

2 Single-Layer Model
In [ [3]] it was shown how the single-well push-pull test could be modeled as
a “source/sink in a uniform stream” stream-line based problem. A method for
tracing the injectant front along a finite number of stream-lines was proposed, and
it was shown how the time of break-through for clean water, for each stream-line,
may be calculated. Here we give a short review of the formulae derived in Part I.

For each stream-line traced, it is necessary to calculate the tracer front position
at the end of injection, t = Ti, first. The equations needed to be solved for rmax =
r(t = Ti) are

Uu (r− rw)+Qi ln
∣∣∣∣ Qi−Uu · r
Qi−Uu · rw

∣∣∣∣=−U2
u · t , (1a)

for the stream-line with constant θ = π ,

Uu (r− rw)−Qi ln
(

Qi +Uur
Qi +Uurw

)
= U2

u t , (1b)

for the stream-line with constant θ = 0, and

r(t = Ti,ψi) =
ψi−Qiθ

Uu sinθ

∣∣∣∣∣
θ=θ(t=Ti,ψi)

, (1c)

where θ is given by

(Qiθ −ψi)cotθ −Qi ln |sinθ |=−U2
u t +C (ψi) , (2a)

and
C (ψi) = −Uurw cosθ −Qi ln |sinθ |

∣∣∣
θ=θ(t=0,ψi)

, (2b)

for the stream-lines with θ ∈ (0,π). As the problem is symmetrical, it suffices to
study the upper half-plane.

When rmax is found for a given stream-line, the time of break-through, i.e., the
time a fluid particle with r = rmax at the start of the production phase arrives back
at the well perimeter, rw, can be found. The times of break-through can be found
by solving, for tp and r = rw, the equations

Uu (r− rmax)−|Qp| ln
∣∣∣∣ |Qp|+Uu · r
|Qp|+Uu · rmax

∣∣∣∣=−U2
u · tp , (3a)
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for the stream-line with constant θ = π ,

Uu (r− rmax)+ |Qp| ln
(

|Qp|−Uur
|Qp|−Uurmax

)
= U2

u tp , (3b)

for the stream-line with constant θ = 0, and

−U2
u t +C (ψp) =−(|Qp|θ +ψp)cotθ + |Qp| ln |sinθ | , (3c)

where
C (ψp) = −Uurmax cosθ + |Qp| ln |sinθ |

∣∣∣
θ=θ(t=Ti,ψi)

, (4a)

θ(rw,ψp) is found from

r =
ψp + |Qp|θ

Uu sinθ
, (4b)

and the stream-line numbers are given by

ψp = ψi− (|Qp|+Qi)θ , (4c)

for the stream-lines with θ ∈ (0,π). The θ(t = Ti,ψi) , needed to find ψp , is
known from solving Equation 2a .

3 The Effect of Layering
Assume we have a fully penetrated aquifer of height b, consisting of M homo-
geneous layers of different or equal permeability and porosity, k j, φ j, and equal
height10, b j = b

M , as shown in Figure 3. Also assume that there is no cross-flow
between the layers, i.e., we have strict 2-dimensional flow, and that the reservoir
pressure and pressure gradients are the same in all layers. All fluid properties are
subject to the assumptions given in Part I. We define the arithmetic average of
permeability and porosity as

kA ≡
∑k jb j

∑b j
=

∑k j

M
, (5a)

and

φA ≡
∑φ jb j

∑b j
=

∑φ j

M
. (5b)

10Assuming that all layers have equal height is sufficiently accurate since we do not require
different permeability/porosity for all layers, i.e., one thick physical layer may be considered as
many thin layers to meet the assumption.
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Figure 3: Schematic diagram of a fully penetrated layered unconfined/phreatic aquifer.

Using Darcy’s law (see the appendix of Part I), the volumetric rate of flow between
the well and layer number j is

q3D, j =−
A j∇P k j

µ
=−

2πrw
b
M ∇P k j

µ
, (6)

and because the volumetric well rate must be the sum of all layer rates, we get

q3D = ∑
j

q3D, j =−
2πrw

b
M ∇P ∑ j k j

µ
=−2πrwb∇P kA

µ
, (7)

and when rearranging, we get

− 2πrwb∇P
µ

=
q3D

kA
, (8)

so the layer-specific rate into/out of layer number j may be written

q3D, j =
q3D

M
·

k j

kA
, (9)

which we formulate as 2-dimensional areal rates by dividing by the layer height,
b/M,

q j =
q3D, j
b/M

= q ·
k j

kA
, (10)
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and

Q j =
q j

2πφ j
=

q
2πφA

· φA

φ j

k j

kA
= Q ·C j , (11)

where C j ≡ φA
φ j

k j
kA

.

3.1 No drift

The layer specific fluid particle velocity due to the injection/production becomes

u j(r) =
Q j

r
=

Q
r
·C j , (12)

which gives the expression for the tracer front radial position in layer j as a func-
tion of time,

r j(t) =


√

r2
w +2 ·C jQiti t ≤ Ti√

r2
max, j−2 ·C j|Qp|tp Ti < t ≤ Tp, j

, (13)

assuming r j(0) = rw and r j(Ti) = rmax, j. For r j(Tp, j) = rw, we get

rw = r j(Tp) =
√

r2
w +2C j ·

(
QiTi−|Qp|Tp, j

)
. (14)

Squaring both sides and reorganising, we get

Tp, j =
Qi

|Qp|
·Ti , (15)

which means that the time of break-through in a permeability and/or porosity
layered reservoir with no natural drift, is neither affected by the permeability- nor
the porosity-distribution, since the time of breakthrough in an arbitrary layer is
independent of the layer-specific properties.

3.2 Drift

The natural drift velocity, in layer j, due to some natural pressure gradient is

Uu, j =
∇P k j

µφ j
= Uu ·

φA

φ j

k j

kA
. (16)
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We can now write the layer specific velocity field as(
dr
dt

)
j

= C j

(
Uu cosθ +

Q
r

)
, (17a)

(
dθ

dt

)
j

= −C j
Uu sinθ

r
. (17b)

If we make the change of variable, τ = C j · t, we get exactly the single-layer
velocity field, [ [3]]. The solution to the set of differential equations, 17a and b,
are thus found by letting t → C j · t in Equations 1a, 1c, 2a, 3a and 3c. Hence,
the effect of layer-wise permeability/porosity variations, on injection phase tracer
advancement in each layer, will be the same as the effect of changing the injection
phase duration in the single-layer model. Changing the Ti will affect the rmax, j,
for each stream-line, so the time of clean water break-through, along each stream-
line, will not only be adjusted by the scaling factor C j, but will also be affected
by the altered rmax, j.

In Figure 4 the time of clean water break-through, i.e., the TBT for the θ = π

stream-line, and the end-time of tracer production, i.e., the TBT for the θ = 0
stream-line, are shown, using the analytical method described in [ [3]], for a range
of different Tis smaller than the critical time, Tc, [ [4]]. Neither the time of clean
water breakthrough nor the end-time of tracer production is linearly related to the
duration of the injection phase, as is the case in the no-drift model (see Equation
15 ), which means that layering will have an effect on both the time of break-
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through and the end-time of production in the presence of natural groundwater
drift.

By letting Uu → Uu ·
(

k j
kA

φA
φ j

)
and Q → Q ·

(
k j
kA

φA
φ j

)
in Equation 1a , 1b, 3a

and 3b, we can calculate the time of break-through and the end time of tracer
production in the j’th layer, using the same method as described in [ [3]]. In
Figure 5 the maximum radial tracer front advancement is shown for both θ = 0
and π for SW1 and SW2 test parameters, as functions of C j. In Figure 6 the time
of clean water break-through and the end time of tracer production is shown for
SW1 and SW2 test parameters as functions of C j.

The injection-phase duration limit for conservative tracer production, the crit-
ical time, Tc, [ [4]], will also be affected by permeability/porosity variations. In
Figure 7, the relation between Tc and C j is compared to the actual Pickens-Grisak
injection phase durations, Ti, for SW1 and SW2 test conditions. Supposing some
layers have a high C j, tracer might be lost in these layers (Ti > Tc, j) even though
all the tracer may be recoverable from the other layers.

In Figure 8 the effect, of layering, on the overall production profile is shown
for a synthetic system of 29 layers of equal thickness and C js uniformly distrib-
uted in the range [0.054,1.946], with an average of 1, for SW1 test parameters.
The lowest C j layer give the steepest tracer concentration profile, while the C j = 1
layer, which behave identically to the single layer model, is marked with the thick
grey curve, and the highest C j layer obtain both the earliest time of clean water
break-through and the latest end-time of tracer production.
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4 Layering in Practice

Assuming layers of equal thickness is no problem mathematically. In practise,
however, when modelling realistic layering data, an infinite number of layers of
infinitesimal thickness would be needed. Thus, modifying the method previously
outlined is necessary.

When considering each single layer, the layer thickness is of no concern, as
two-dimensional flow is assumed. Only when calculating the fraction of the well-
stream entering/leaving each layer is the height of any importance, since the vol-
umetric flow depends on the layer thickness. Let b j = b

M → 0, i.e. M → ∞, and
assume that all the layers between bm1 and bm2 have the same properties. Now,

consider these m2−m1 layers as one single layer of thickness b j∗ =
zm2∫
zm1

db, where

z j is the depth of layer j. We now get that

q3D, j∗ =

zm2∫
zm1

q jdb = q jb j∗ , (18)

since all {qm1, . . . ,qm2} must be equal. The fractional volumetric rate contributed
to the well-stream from the production phase stream-line ψp,n in layer j∗ is now
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simply
q3D, j∗,n

q3D
=

Qp,n, j∗φ j∗b j∗

QpφAb
, (19)

and the producing tracer concentration becomes (see Equation 33 in [ [3]])

CN∗ =
∑
j∗

N∗

∑
n=1

Qp,n, j∗φ j∗b j∗

QpφAb
. (20)

5 Layering Data Provided by Pickens and Grisak
Pickens and Grisak present, in their Table 6, layer-wise data for the SW1 test.
Layer height, depth and radial distance of the measurements and the time at which
the tracer concentration reached 0.5 is presented. Neglecting natural drift, they
assumed that

q3D, j · t0.5 = πr2b jφ , (21)

where r is the radial position of the piezometer. Furthermore, they use the Thiem
equation,[ [5]],

q3D, j =
2πK jb j(h1−h2)

ln(r2/r1)
, (22)

and their own regression equation obtained from a fit of 23 hydraulic head mea-
surements,

hi = 0.512−0.275 · log10 ri , (23)

where hi is the hydraulic head at radial distance ri, to calculate the hydraulic
conductivity, K j, using r1 = rw. For some of the layers, Pickens and Grisak
report measured data at more than one radial distance without calculating the
corresponding hydraulic conductivity. In Table I the missing conductivities are
calculated using the Thiem equation and the Pickens-Grisak hydraulic head re-
gression equation. As can be seen there is significant uncertainty within each
layer regarding the conductivity, and the average hydraulic conductivity, from the
Pickens-Grisak Table 6, is not equal to the full-aquifer hydraulic conductivity they
reported from SW1. Additionally, hydraulic conductivities obtained from Equa-
tion 28 , Kanal , where KA = 1.4 · 10−2cm/s are presented. It was assumed that the
measurements were performed directly down-gradient from the test well.

The Pickens-Grisak hydraulic head regression equation, Equation 23 , is based
on 23 piezometer measurements, but it is not stated which of the 30 piezome-
ters indicated in their Figure 4, they used. Pickens and Grisak disregard the
fact that the natural drift perturbs the angular symmetry around the P1 well, but
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Table I: Table 6 in [ [7]], where missing values and analytically calculated conductivities, Kanal ,
have been added.

Depth Layer Radial t0.5 (
q3D,j

bj
) KThiem Kanal

thickness distance
m m m days m2/day 10−2cm/s 10−2cm/s

1.37 1.00
2.13 0.44 1.00 0.3670 3.26 0.503 0.472

2.00 1.1500 4.15 0.640 0.588
2.74 0.53 1.00 0.4040 2.95 0.457 0.429
3.19 0.45 1.00 0.3210 3.72 0.575 0.540
3.64 0.45 1.00 0.2540 4.70 0.726 0.683
4.08 0.45 1.00 0.2680 4.45 0.688 0.647

2.00 1.0920 4.37 0.674 0.620
4.53 0.45 1.00 0.2980 4.01 0.620 0.582
4.98 0.45 1.00 0.2170 5.51 0.852 0.799
5.43 0.45 1.00 0.1830 6.51 1.010 0.947

2.00 0.6390 7.47 1.153 1.059
5.87 0.45 1.00 0.1440 8.30 1.280 1.204
6.32 0.45 1.00 0.1130 10.61 1.640 1.534
6.77 0.45 1.00 0.1160 10.27 1.590 1.495

2.00 0.3940 12.13 1.872 1.717
3.00 1.0380 10.36 1.599 1.429

7.21 0.45 1.00 0.0929 12.85 1.990 1.866
7.66 0.45 1.00 0.0875 13.64 2.110 1.981
8.11 0.45 1.00 0.0917 13.02 2.010 1.891

2.00 0.3170 15.08 2.327 2.134
3.00 0.8420 12.77 1.971 1.761
4.00 1.0830 17.63 2.721 2.374

8.56 0.45 1.00 0.0792 15.08 2.330 2.189
9.00 0.45 1.00 0.0896 13.33 2.060 1.935
9.45 0.53 1.00 0.1210 9.88 1.530 1.433

2.00 0.3850 12.39 1.912 1.757
3.00 1.1290 9.32 1.469 1.314

10.05 0.40 1.00 0.3000 3.98 0.615 0.578
2.00 0.7250 6.39 1.017 0.933

10.82 1.00

the hydraulic head will in reality be a superposition of two parts, one originat-
ing from the natural hydraulic head gradient and one originating from the injec-
tion/production,[ [5]] ,

h(r,θ) = hu(x)+hw(r) , (24)

where we have
dhu

dx
=−5.3 ·10−3 m/m (25a)

and
dhw

dr
=

−q
2πKr

. (25b)

Solving the two differential equations, we get

h(r,θ) =−5.3 ·10−3 · r · cosθ − q
2πK

ln |r|+Cw(θ) , (26)
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Figure 9: The Pickens-Grisak hydraulic head regression equation compared to a theoretical θ -
dependent hydraulic head based on natural groundwater drift.

and assuming the Pickens-Grisak formula is correct for r = rw we may calculate
the θ -dependent integration constant, and we get

h(r,θ) =−5.3 ·10−3 · (r− rw)cosθ − q
2πK

ln
r

rw
+0.854 m . (27)

The main difference between Equation 27 and the Pickens-Grisak regression
equation is the angle dependency of Equation 27 , taking care of the broken sym-
metry due to the natural drift. In Figure 9 the θ -dependent hydraulic head equa-
tion, Equation 27 , is plotted for all thirty piezometer coordinates along with the
Pickens-Grisak regression equation. The theoretical hydraulic head is calculated
at the coordinates of the thirty piezometers in the Pickens-Grisak instrumentation
layout, Figure 2 . The Pickens-Grisak regression equation is in good agreement
with a selection of the theoretically calculated points.

Employing the Darcy equation (see the Appendix of Part I) and reorganising
Equation 1b , for layer j, requiring that all sampling points lie on the streamline
ψi = 0, we can calculate the hydraulic conductivity in each layer from

K j =
1(

1
ρwgφ

dP
dx

)2
t0.5

[
1

ρwgφ

dP
dx

(r2− rw)− Qi

KA
ln

( Qi
KA

+ r2
ρwgφ

dP
dx

Qi
KA

+ rw
ρwgφ

dP
dx

)]
, (28)

where r2 is the radial distance between the well and the sampling point and t0.5
is the time at which the injectant concentration reaches 0.5 at the sampling point.
Comparing hydraulic conductivities, reported by Pickens and Grisak and calcu-
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lated from Equation 28 , the Pickens-Grisak values are about 6% higher calcu-
lated at the r2 = 1 m sampling points and increasing until about 13% higher at the
r2 = 4 m sampling point. Hydraulic conductivities from Equation 28 are shown
in Table I .

Pickens and Grisak also reported sampling point break-through data for the
SW2 test, in their Table 9, however they have not provided hydraulic conductivi-
ties. Using the equations developed, we can calculate the hydraulic conductivities
in a similar fashion as for the SW1 test. The SW2 test, however, is a little more
complicated, since the sampling points, as can be seen in Figure 2 , are not directly
down-stream, i.e., on the ψi = 0 stream-line. The sampling points are located on
a line at an angle of θmsp ' 63◦ to the line between the wells P1 and P2, which is
assumed to be parallel to the direction of the groundwater drift. Hence, we cannot
use Equation 28 . We know, however, both the radius and the angle for each of the
three sampling points, (rmsp,θmsp), as well as the time, t0.5, at which the injectant
reached the sampling points, so it is possible to numerically calculate the C j, and
thus the K j. The equation needed to be solved is Equation 2a , where Uu → C jUu,
Qi →C jQi, ψi →C jψi and C (ψi)→C jC (ψi) . Employing the r−θ formulation
of the stream-line number ψi, [ [3]], we get

Uurmsp sinθmsp +Qiθmsp = Uurw sinθ0 +Qiθ0 , (29)

from which we can find the θ0 = θ(ti = 0,ψi), numerically. Knowing θ0, we may
find the C (ψi), and we may find the K j from

K j =
−KA

U2
u t0.5

[(Qiθmsp−ψi)cotθmsp−Qi ln |sinθmsp|−C (ψi)] , (30)

assuming that the porosity is the same in all layers. Assuming that the average hy-
draulic conductivity is the same as the Pickens-Grisak reported hydraulic conduc-
tivity for the SW1 test, KA = 1.4 ·10−2cm/s, we get the hydraulic conductivities re-
ported in Table II. Neither for the Pickens-Grisak K j values nor for the K j values
calculated here, we get an average of KA = 1.4 ·10−2cm/s, so there must be some
error in the data provided. For the K j,anal we get an average of 1.21 ·10−2cm/s and
1.43 ·10−2cm/s for SW1 and SW2, respectively11. Using a hydraulic head gradient
of 0.052 kPa/m, a constant fractional porosity of 0.38 and using KA = 1.4 ·10−2cm/s

despite the fact that this is wrong, we get the layering data, h j and C j, reported
in Table III. For the SW1 data it has been assumed that measurements have been
performed down-gradient from the test well, for the SW2 data, however, the mea-
surements have been performed at an angle of 63◦ to the natural drift direction.

11For layers where multiple K j are calculated, an average, ∑K j/n, has been used in calculating
the arithmetic average defined in Equation 5a .
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Table II: Table 9 in [ [7]] where analytically calculated conductivities have been added.
Depth Layer Radial t0.5 (

q3D,j
hj

)b KThiem Kanal

thickness distance
m m m days m2/day 10−2cm/s 10−2cm/s

2.29 0.48 0.36 0.028 5.53 0.853 0.989
0.66 0.094 5.53 0.853 1.004
2.06 0.88 5.74 0.886 1.030

2.67 0.38 0.36 0.028 5.53 0.853 0.989
0.66 0.085 6.12 0.944 1.110
2.06 1.06 4.78 0.738 0.855

3.05 0.95 0.36 0.087 1.78 0.275 0.318
0.66 0.213 2.44 0.377 0.443
2.06 1.43 3.54 0.546 0.634

4.57 2.515 0.36 0.038 4.07 0.628 0.729
0.66 0.132 3.94 0.608 0.715
2.06 1.22 4.15 0.640 0.743

8.08 3.875 0.66 0.053 9.81 1.514 1.780
2.06 0.34 14.9 2.299 2.666

Table III: Layer thickness and C j used in generation of the plots in Figure 10 for hydraulic
conductivities from both the Thiem equation and based on the analytical model.

SW1 SW2
Layer Cj,Thiem Cj,anal Layer Cj,Thiem Cj,anal

Thickness Thickness
m m

0.44 0.359 0.379 0.48 0.617 0.720
0.53 0.326 0.307 0.38 0.604 0.703
0.45 0.411 0.386 0.95 0.285 0.332
0.45 0.519 0.488 2.52 0.447 0.521
0.45 0.491 0.452 3.88 1.362 1.588
0.45 0.443 0.416
0.45 0.609 0.571
0.45 0.721 0.716
0.45 0.914 0.860
0.45 1.171 1.096
0.45 1.136 1.105
0.45 1.421 1.333
0.45 1.507 1.415
0.45 1.436 1.457
0.45 1.664 1.564
0.45 1.471 1.382
0.53 1.093 1.072
0.40 0.439 0.540

Since

C j =
k j

kA
=

bk j

∑(b jk j)
, (31)

we have to demand, in general, that

∑C jb j ≡ b . (32)

If this condition is not met the material balance fails. Hence, we must find a way
to mend the reported data, so that the resulting average is equal to the assumed
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average. We have assumed constant porosity, but more realistic C j’s might be
obtained if more detailed porosity data are introduced. Here the C j values have
been exchanged for a new set of C ∗

j values, which have been used in generating
production profiles, defined as

C ∗
j = C j · f , (33)

where f = ∑(C jb j)
b .
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Figure 10: The Pickens-Grisak field SWT tracer concentration profiles compared to results ob-
tained from the 0.052 kPa/m semi-analytical model with and without layering.

In Figure 10 results from the layered model is compared to the single-layer
model as well as the field data reported by Pickens and Grisak. Layering data
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Figure 11: The Pickens-Grisak field SWT tracer concentration profiles compared to results ob-
tained from the semi-analytical model with layering, doing regression on the hydraulic head gra-
dient.

used are reported in the tables I to III. Both SWT assumed a natural gradient
of 0.052 kPa/m. Comparing results from the layered model run with the Thiem
hydraulic conductivities and the stream-line based ones, there was no difference,
for SW1 or SW2. Comparing the single-layer and the layered models it can be
seen how the layered model gives a better match to the experimental TBT and
EoP. Even though the layered model does not give an exact match, it seems to be
able to predict some of the characteristics of the experimental data.

The experimental production profiles do not decrease evenly from 1 to 0, but
decreases in an oscillating manner. These oscillations are also present by the
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layered model. The oscillations in the experimental data may easily be taken for
errors or uncertainty in the measured data, but we conclude that they are effects
of the stratification of the aquifer in combination with the natural drift; that they
can be predicted by the stream-line based layered model. Due to the superposing
of single-layer production profiles, to get the multi-layered profile, dominating
layers will be more visible in the final profile than other less dominant layers.

There is great uncertainty in both the drift parameters as well as the layering
parameters for the two single-well tests, and by playing with these parameters it
should be possible to gain an exact match to experimental data. In Figure 11
a good fit has been obtained by playing with the hydraulic head gradient only.
Since the stream-line based calculations of hydraulic conductivities depend on the
groundwater drift velocity, they will also change when adjusting the hydraulic
head gradient. The plots are obtained by employing gradients of 0.06 kPa/m and
0.04 kPa/m, for the SW1 and SW2 tests, respectively.

6 Conclusion
1. Time of break-through is not affected by layering in an aquifer with no

natural drift.

2. Both time of clean water break-through and end-time of tracer production
is affected by layering in the presence of natural groundwater drift.

3. Introducing layering and applying the layering data reported by Pickens
and Grisak, it is possible to get an exact match to the experimental data,
including the characteristic oscillating behaviour of the production profile.
Thus it may be concluded that the oscillations are effects of the stratification
of the test-site in combination with the natural drift.

4. In a model free of physical dispersion, it is shown that a model combining
groundwater drift and layering heterogeneity may yield a perfect match to
production profiles showing large apparent dispersivity.
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