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Abstract

An Impes stability criterion is derived for multidimensional
three-phase flow for black oil and compositional models. The
grid may be structured or unstructured. Tensor considerations
are neglected. The criterion can be used to set the time steps in
an Impes formulation or as a switching criterion in an adaptive
implicit model.

The criterion extends previous work by accounting for
three-phase flow, including capillary, gravity and viscous forces,
with all the possible cocurrent and countercurrent flow configura-
tions in a general grid. The criterion derivation uses stability
theory, to the limits of its applicability, augmented by numerical
experimentation, including extensive one-dimensional tests and
numerous field study datasets.

Introduction

A reservoir simulation model consists of N«N_ nonlinear
difference equations which express conservation of mass of N,
components in each of N grid blocks comprising the reservoir.
The form of each of these equations, for a given block, is

M

Ln+l

-M

In

= At * {sum (interblock flow rates) -

sum (well rates)} ........... ey

where M, is the mass of component / in the block at time level

n. The first sum is over all block neighbors; the second sum is
over all wells completed in the block. Well terms are assumed
to be treated fully implicitly and are dropped from consideration.

The Impes formulation'* treats the interblock flow rates
implicitly in pressure, but explicitly in saturations and composi-
tions. This explicit treatment gives rise to a conditional stabil-
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ity for Impes,

where At is maximum stable timestep and F, is some function of
rates and reservoir and fluid properties. This paper derives the
function F; for compositional and black oil models, accounting
for viscous, gravity, and capillary pressure forces in cocurrent
and countercurrent 3-phase flow. The grid may be unstructured,
or structured (e.g. Cartesian) with or without non-neighbor
connections.  The flow may be one-dimensional (1D),
two-dimensional (2D) or three-dimensional (3D). Tensor
considerations are neglected. The Condition 2 gives a different
stable step value for each block. In an Impes model, the time
step used is the minimum of all blocks' stable step values. In an
AIM (adaptive implicit) model,’ each block's stable step size can
be used to determine if the block needs implicit treatment. The
effects on stable step size of (a) interphase mass transfer and (b)
the pressure and composition dependence of fluid properties are
assumed small and neglected.

Two functions F, are derived for use in the Condition 2. The
first relates to effects of explicit treatment of the
saturation-dependent terms (relative permeability and capillary
pressure) in the interblock flow rates. The second relates to the
explicit treatment of compositions in the interblock flow rates.

Derivations of the function F; are lengthy and, at various
points, tedious. This tends to obscure the simplicity and low cpu
expense associated with the final results. Therefore, a Summary
section gives the final results, followed by sections describing the
derivations.

Summary

For the unstructured grid case, the subscript i denotes a grid
block and the subscript j denotes one of its neigbors. Derivations
using a Cartesian grid use subscipts i, j, k as the grid block
indices in the x, y, and z directions, respectively. In all equations
throughout the paper, each phase mobility and its derivatives are
evaluated at the upstream block for the phase.

Maximum Stable Step Due to Explicit k, and P,. For

three-phase multidimensional flow, for each grid block i, the
maximum stable time step is limited by the Condition 2 with
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= U2 |f11,+ £22,+[(F 11, + f22)7 - 4det(F) | (3)

where each fis a sum of J, terms, one for each of the J; neigh-
‘Ii

bors of block i, j = 1,2,...,J,. Forexample, f11,=Y f11,.
j=1

FUL, = T L0, 2 )k, |AD, | - A A, [AD

()l

- A, + R, )P, | 2 (4a)

ewoi t cwo; )

F12, = =T, IR [AD,| + A\, |AD
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- (O A |AD |

S M AP, DA e (4b)

cgm cgo;

F2U, = =T, A, A, | + A A, [AD,]

APy + Pogo) 1y (4c)

£22, = T, LA |AD,| + O, +h A, [AD,|

RWICY

+x (A, +A )(chm cgg,)]”‘ (4d)

det(F) = f11,£22,- f12,f21, ..oooviinnn., (4e)
The flow potential definitions are

AD, = Bp -y AZ AP, . (52)
AD, = AP ~Y,AZ oo (5b)

AD, = Ap -y, AZ+ AP,

where AX is X;-X,, X being any of p, Z, P_,,, and P
each neighbor j, the four frsl.j (rs=1 1,12,21,22) values are stored

in the four frs arrays at the gas phase upstream block position, if
A, is not zero. If A, is 0, they are stored at the water phase

upstream block position. The frs, satisfy f11, >0, f22,>0,
and det(F,) > 0, which provide a check on coding errors.
The F, given by Eq. 3 accounts for viscous, gravity, and

capillary forces, and for all possible cocurrent and countercurrent
flows of three phases between two blocks. The above equations
collapse to simple forms for each of the three two-phase cases.

For example, for 1D two-phase gas-oil flow,
Ay = A=Ay = A, =0, which give fl1=f12=£21=0 and

F=f22=TQR ) |AD,| -2\, |AD,]
A A (P + Pogy) 11O, +1) (6)

IfP,, and gravity are neglected, this further reduces to F=qf, ,
giving the well known result

where f, . is fractional flow lg/ (A, +A )

The coding requirements associated with Eq. 3 are low. All
terms in Eqs. 3-5, except the derivatives of phase mobilities and
capillary pressures, exist in the interblock flow subroutine of an
Impes model. The above results do not depend upon choice of
Impes variables or upon whether variable substitution is used.

Maximum Stable Step due to Explicit Compositions. The
explicit treatment of compositions gives the Condition 2 with

Q.p,% +O.P,Y,

F, = Max(I)
S.p,%, +Sgpgy,

where I = 1,2,...,N,. The rate Q, is the sum of all oil outflow
rates from block i to its neighbors; Qg is similarly defined. The

maximum stable step is the lesser of the two values given by
Condition 2 when F is substituted from Eq. 3 and Eq. 8. The F,

of Eq. 8 is simple and inexpensive in cpu. The rates @ and Q,

are stored in arrays in the interblock flow subroutine.

A Comparison with Previous Work

Previous papers referenced elsewhere? give an Impes stability
condition for multi-dimensional flow in a Cartesian grid. For
cocurrent, hyperbolic, 1D gas-oil flow, that condition is

GRAV, <1, i (9)

Previous work is unclear regarding use of this condition when the
flow is counter-current. For 1D counter-current flow in a vertical
column with uniform grid spacing Az,

af; = ~T,(1,-7 Az (10)
Substituting this in Condition 9 gives

“T(Y, -7 02V AV, <1 (11)



SPE 69225

IMPES STABILITY: THE STABLE STEP 3

or, expanding the derivative V',

—%T(yo )AL <1 L (12)

8 08
pi

The derivative \P" is positive for low to moderate S . and negative
for larger §S,. Condition 11 presents a dilemma since it gives

unconditional stability and conditional stability for positive and
negative W', respectively. For this counter-current flow, Eq. 3
gives F, = f22; and Condition 2 is

%T(y 1Az O, - A2A )AL < 1 (13) -

8 08
pi

Numerous 1D vertical countercurrent flow simulations were
performed, initializing the column with uniform saturation
distributions or with the upper half containing the heavier phase
and the lower half containing the lighter phase. In all cases, use
of At from Condition 13, using = in place of <, gave
non-oscillatory stability. In most cases, instability occurred for
At values 10 to 20 % larger. In all cases, results exhibited
significant instability using Az from Condition 11 with the
conservative choice of |‘P[ replacing -¥'. Conditions 12 and
13 give the data-dependent ratio

At (this work)
At (previous work)

_ Max(k) (JAh, + Ay ogl) _
Max(k) 020, 221,

o8 8 08

. {(14)

where Max(k) denotes maximum over all grid blocks at the
current time step. Numerous similar simulations with three phase
flow gave stability using Eq. 3 and instability with Az values 20
% larger.

Derivation of F for Effects of Explicit Treatment of
Saturations

Methods of stability analysis generally apply to linear difference
equations with constant coefficients. For the case of variable
coefficients, mathematicians long ago suggested applying the
analysis using constant coefficients equal to local values and then
applying the resulting analysis criterion to each subregion
separately.” That procedure is followed here, with the local
region being a single block-pair interface.

The Two-Phase Flow Case. For the case of 1D incompressible

gas-oil flow, the Darcy expressions for oil and gas flow rates
from grid block i to block i+1 are

9, = ~Tiaph,(Bp -v,AZ) .

T b (Bp ~Y,AZ+APL) (15b)

cgo

il

9y

where AX for any quantity Xis X, | -X;. Eliminating Ap from

these two equations gives gas and oil phase flow rates as

1]

AN LG~ Ty ko (8 +APDT oo (16a)

cgo

dg;

g, = MM [g+ T+U2X (g+AP )] oot (16b)

where g is the gravitational term (A k AZ, qis q,, +q,;» an and
A, is A, +X,. Bach of Doi> Doi> 9> 8 and AP, may be positive

or negative.
The equation expressing conservation of mass of gas in grid
block i is

|
Pl (S

At gion+l gtn) = qgi—l(Sgi—],n’Sgi,n)

q (Sgt n’ ng,n) ....... (17)

which emphasizes that ¢, is a single-valued function of S, and

g1 depending upon the oil and gas flow rate directions. The
rlght hand side interblock flow terms are explicitly dated in
saturation in accordance with the Impes treatment.

Stability analysis requires a constant-coefficient, linear
difference equation which is, in some sense, an approximation to
Eq. 17. That equation is obtained by writing Eq. 17 twice, once
as shown where the § o ATe the actual calculated values and again
with the S values replaced by S g*,. which is the exact (error-free)

solution. Subtracting the resulting two equations gives

V.
A’" (& puy ~ i) = 89y =0qy o (18)

. *
where €, 18 the error Sg,.‘n - Sg,.,,l and

ng' = q (Sgl n’ gt+ln) qgt(Sgl n’Sgt+ln) """" (19)
Using the first Taylor series terms gives

8q, = qg',.,l.sim + qg'i‘msm‘n ................. (20)

where g, ; is the partial derivative of g, withrespectto S ; and

The

term ngi_l in Eq. 18 is expressed in similar fashion, with care to

qg, i»1 1s the partial derivative of ¢ ; with respect to §

gi+l"’

use locally constant derivatives (i.e. qg, Liol = qg” and

gi-1,i = Dgisiv1>

8y 1 = gii®i1,n * Dgiviv1 Ein (1)
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Substituting Eqs. 20 and 21 into Eq. 18 gives the error equation

Z”’ (&1 = Bin) = A€y =&Y CE L (22)
where

T T (23a)

by = Qi = Quiiet v (23b)

Ci = i v v (23c)

Egs. 23 show that a, +c,=b,. Also, qg',.'i > Oand qg'i,i+l < O for
all cases of cocurrent and countercurrent flow, so that each of
a,b;,c;> 0.

The Appendix describes application of stability analysis to Eq.

22 with the variable coefficients Vpl,a b;,c; assumed to be

constants independent of i and n. The resulting stability condi-
tion is

—ét—(a +hove) <2 oo (24)
pi
a;+¢c, <b, ... (25)

and using Eqgs. 23, the stability condition is

At '
V(qgi" - qg,.m) <l oo (26)

pi

The terms qg'i‘ ; and qg'i, ;1 are obtained by differentiating Eq.

16a with respect to S, and Spre It might appear that different

expressions for qg',.' ; —qg'i_ ;,1 would result for the four possible

cocurrent and countercurrent flow configurations. However, that
is not the case. For all four cases,

T. A A
! ! _ i+12% g ‘
qgi,i - qgi,i+l - )y (chm choi+l) +

1

X
| g— 7»7» |qm]

KX

Note that the termqg‘i' ; —qg/l.‘ ;.1 is always positive. The last two

(non-P ) terms in Eq. 27 can be expressed equivalently as

Tiin [AAJAD | AN |AD |] (28)
3 A AR | AN JAD T

t

These results (Eqgs. 26-28) for 1D gas-oil flow are equivalent to
Condition 2 with F; = f22, in Eq. 3. For multidimensional flow
there are more contributions to F s each of the same form as
f22..

i

The Three-Phase Flow Case. For the case of 1D three-phase
incompressible flow, the Darcy expressions for phase rates from
grid block i to block i+1 are

Qi = ~Tianh B -V, BZ -BP) oo (29a)
Gy = ~Trapho (AP =¥, AZ) i (29b)
Gy = ~Troph(Bp ~Y,AZ+ AP ) . (29¢)

Eliminating Ap from these equations gives the phase rates as

q,; = AJLg+ (R +l da, +Xgag0]/k ........... (30a)
9y = Xg[q - (7»0+7»W)ag0 -ha A (30b)
q, = MNlg-r,a,,+ ?»gag()]/ki ....... (30c)

where g is total rate g,+q,,+q,, }, is total mobility A_+A +A,,

and
a, =T ,[(0,Y)AZ+AP )] ....ooooiit. (31a)
a, = T, \plv, -y )AZ+AchD)] .............. (31b)

Since the fluids are assumed incompressible and saturations
add to 1.0, g is a constant independent of i and there are only two
independent conservation equations. Selecting the water and gas
equations,

V.
-2 (SW”M Suin) = Duicyn= Quin +ovvrvr e (32a)
X”t’(Sg,.ym1 = Spin) = gy g e (32b)

Following the same procedure as in the two phase case (Eqgs.
17-22), we obtain two equations in the two errors €1 = SW—SW‘

and €2 = Sg—Sg R
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il = Gomisiv1 Eli1n

V.
Pl -gl ) =
At i)

= Gyt = Gowiin1) €l

* Gunii €141

~ Ggirivl €241
= (Gugiri = Dwgii1) €24,
i €2, - - (333)

pi _ ' )
Y (e2;,,, -€2;,) = Dewiivt ELii1n

= Gowisi ~Ggwiic1) €Ly,

* Goii €Ly p

~ egiriel €210
= (Gygii ~Dggiie1) €25,

+ q;,;gi,i 82,.‘]‘" ... (33b)
The Appendix describes application of the stability analysis to
these two simultaneous equations to obtain the Condition 2 and

Eq. 3.

Derivation of Ffor Effects of Explicit Compositions
This section ignores the effects of explicit treatment of satura-
tion-dependent terms on stable step size. For the assumptions
mentioned in the Introduction, the mass conservation equations
in differential form for 1D flow are

%(SOP(,XﬁSngY,) = -%(Clopox,*qugy,),

1=1,2,.,N_ ....(34a)

%( p,) = —(—%(qopo) .................... (34b)

.g_t( p,) = _§§(qu8) .................. (34c)
If g, =0, these equations give

Do GP D (35a)

ot S,p,x; + Sgpgy, 5

and if q,=0,

ox, 4,P, %, ox,

—

or  S,p,x, + Sgpgy, ox

Eqgs. 35 are obtained from Eqgs. 34 using y, = K ,x, and neglect-
ing the dependence of the K-values on pressure and composition.
Eqgs. 35 are easily expressed in difference form, with explicit
dating of the spatial derivatives and upstream weighting.
Application of the von Neumann stability analysis, as in the
Appendix, gives stability conditions

9ePe 7 Ar <1 (g,=0) ......... (36)
Sapoxl +Sgpgy1 VP"

qo po xl _A_L

TPt AL @.=0) ... G37)
SyPoX; +S,Pe Y, Vo &

If § isOor S p is 0, these further reduce to the well known

stability conditions for multicomponent miscible flow,

Ar
zf_v <1 (5,=0) ... (38)
8 pi
q,01

<1 0 N (39)
S,V

The four stability conditions, just given for various choices of
rates and saturations, are all included in the general stability
condition, written for the general case of multidimensional flow
with non-neighbors,

Q0P0x1+Qng)’1 ﬁ <
Sopa'xl * Sgpgyl Vpi
Q, is the sum of all oil outflow rates from block i to its

Max (D)

neighbors, rb/day. The rate Q, is similarly defined. Condition

40 simply states that, for each component, the mols flowing out
of a block in a time step cannot exceed the mols in place in the
block. All saturations, densities, and compositions in Condition
40 are dated explicitly at time n, while all rates g and Q are dated
at time n+1.

The writer knows of no theoretical basis for Condition 40 in
the case where both @, and Q, are nonzero. Young and

Russell® derived a different, approximate stability condition for
those conditions. Numerous 1D simulations were performed
generating steady-state (uniform saturation) distributions
corresponding to injection of different fixed-proportion
gas-oil-water feed streams. The proportions were such that the
throughput Eq. 8 dominated (i.e. gave smaller A¢ than) the
displacement Eq. 3. In all cases, non-oscillatory stability
occurred with At given by the Condition 40 (using = in place of
<). In cases of only one mobile hydrocarbon phase, instability
arose for At values 20 % larger. With mobile oil and gas phases,
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instability occurred in most cases at Ar values 20 % larger, but
in some cases did not occur until Ar was 60 % larger.

Testing and Discussion

Alarge number of 1D test problems and numerous 3D field study
datasets were run to test stability as a function of the CFL limit.
The term CFL is Max (i) CFL, where CFL;is F;At/ V. The tests

included black oil and compositional, two-phase and three-phase
cases, with cocurrent and countercurrent flow. Several of these
tests are described below.

With one exception, CEFL=1 gave non-oscillatory stability in
all cases. The CFL limit for stability ranged from 1 to 2,
depending upon the problem-dependent uniformity of the CFL;
values. The stable CFL limit was close to 1.0 for hear-uniform
CFL,; and close to 2.0 for the Buckley Leverett, variable CFL,
problem.* As capillary pressure becomes more dominant inthe F,

of Condition 2, the CFL, distribution becomes more uniform and
the CFL limit tends toward 1.0, as shown by Problem 4 below.
Tests of the heuristic Eq. 8, which perturbed uniform 1D,
compositional gas-oil flowing mixtures, showed CFL limits
ranging from 1.1 to 1.6.

The linear solver step of an Impes Newton iteration gives a
new pressure distribution which may result in new upstream
blocks for each phase. If more than one Newton iteration is
taken, the model recalculates transmissibilities based on those
new upstream blocks. In addition, loops may be performed
within a Newton when stable step logic is used. After the linear
solver is called, flow rates and stable step size are calculated
using the upstream blocks and interblock rates corresponding to
the new pressure distribution. If that stable step is less than the
time step being used, the model recalculates transmissibilities
using the new pressure distribution, resets At to the stable step
value and returns to the solver. For most problems, the average
number of Newtons per time step is close to 1.0 and the average
number of loops per Newton is close to 0.

An option used in the tests discussed below is the forcing of
one loop with Ar reset to stable step size regardless of whether
the stable step is smaller or larger than the time step being used.
This results in the CFL value each time step exactly equalling the
value cited in the discussion. Unless noted otherwise, the runs
described here used no constraints other than the stable step
condition. That is, no change constraints or maximum time step
constraints were used.

Problems 1-6 use the water-oil mobility data of Young and
Russell's first two problems.® Problem 1 is their 20-block 1D
vertical water-oil displacement with an implicit producer in block
1. After water breakthrough, the CFL occurred in block 2. For
a CFL of 2.0, the after-breakthrough behavior was stable. For
CFL = 2.1 and larger, S, oscillated in block 2 and significant

oscillations in oil production rate occurred. An explanation for
this stability for CFL values up to 2.0 is given elsewhere.’
Identical results were obtained when the 20-block column was
horizontal.

Problem 2 simulates counter-current flow in a 20-block, 100 ft,
closed vertical column with k(yo—yg) =274 md-psi/ft. Runs (a)

were made for initial S ,=.43, and runs (b) for initial S, = 1.0

in the upper half and .2 in the lower half of the column. The
stable CFL limit was 1.6 for runs (a) and 1.2 for runs (b). In
runs (a), CFL, decreased significantly with distance from the CFL
block. Runs (b) exhibited more uniform CFL; distributions.
Problem 3 illustrates stability behavior when the CFL; values
are uniform throughout the grid. Water and oil were co-injected
to establish uniform saturations through a 1D 20-block horizontal
grid. The injection mix was then perturbed from 50 % (by
volume) water to 45 % water. After the new steady-state, the
injection mix was again perturbed, from 45 % to 55 % water.
For CFL=1.2, the results were stable with no perturbations.
However, the perturbations travelled unstably through the grid
with the amplitude of S oscillations at the perturbation front

increasing with distance travelled. Large water-cut oscillations
occurred after perturbation breakthrough, followed by areturn to
stability. This behavior is not tolerable if significant oscillations
in water-cut and/or gas-oil ratio (gor) are to be avoided. These
results exhibit the stable flow which can occur with uniform CFL;
and CFL considerably above 1. In numerical tests of stability,
perturbations should be introduced before concluding that a
uniform CFL;, CFL > 1 flow regime is "stable".

Problem 4 includes capillary pressure in a 1D 20-block
horizontal grid with initial S_;=.2. The diffusivity or capillary

term is k(P ). /uLlK,=13.5 with P, =(P
((1-s)/(1 —SWC))3. Water breakthrough occurred at about .24

pore volumes water injected. Instability at CFL = 1.1 gave
fractional water-cut oscillations with an amplitude of about .04
when the water-cut was .4.

Three-phase Problem 5 simulates gas injection in a 1D
horizontal 20-block grid with initial §,,=.4 and § ;=.6. Gas

viscosity pg=.05 cp, Sorg=.2, Sgc=0, and k.=
(8, /(1-5

there is no dissolved gas or oil content of the gas phase. After gas
breakthrough at .177 pore volumes injected, At was controlled
each time step with one loop to exactly satisfy the specified CFL
value. Runs with CFL values up to 1.98 exhibited stability with
no water-cut or gor oscillations. Using CFL =2.2 gave large gor
oscillations and significant water-cut oscillations, similar to the
two-phase Problem 1 results.

Problem 6 is the same as Problem 5 except a water-oil-gas
mixture containing equal parts by volume of each phase was
injected at constant total rate to establish uniform saturations
throughout the 20 blocks. Runs from that point were then made
using the 1-loop option so that the At of each time step exactly
satisfied the specified CFL value. With no perturbations of the
injection mixture, a CFL of 1.5 gave large water-cut and gor
oscillations which persisted indefinitely. A CFL of 1.2 gave
stable behavior - no change in water-cut or gor. However,
similar to the two-phase Problem 3, for CFL = 1.2 perturbations

cwo CW(])”ICIX

3 . . .
org™ S,.))’ . Gas, oil, and water are incompressible and
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in the injection mixture resulted in unstable travel of the pertur-
bations and large gor oscillations after perturbation break-
through, followed by a return to stability.

Problem 7 is Young and Russell's 1/4 five-spot waterflood
problem. The block-centered 13x13x1 grid had uniform spacing
with half edge and quarter corner blocks. That is, the volume of
each interior block was four times that of each corner well block
and twice that of each other edge block. Wells are located at grid
points. The time step was controlled by changes
(AS__,Ax_)=(.1,.1) and the specified CFL limit. The time

max’ max

step was limited by the CFL limit alone after water breakthrough
at .339 pore volumes injected. The 1-loop option was activated
at that point and runs were made with various CFL limits. As the
CFL limit was increased above 1.88, the water-cut -oscillated,
with an amplitude increasing with increasing CFL. The runto .4
pore volumes injected, using CFL=1.88 (without the 1-loop
option) took 93 steps, 94 Newtons, and .44 seconds cpu on a 400
MHz Gateway PC with the Compaq Visual Fortran Compiler
version 6.0.

The SPE Comparative Solution Project Problems 1,3, and 10
are denoted here as Problems SPE1, SPE3, and SPE10. Problem
SPE1 was run using the above changes and a CFL limit of 1.5.
All steps after gas breakthrough at about 1230 days were
controlled by the CFL limit alone, with F; from the displacement

Eq. 3. The run took 145 steps, 154 Newtons, 1.42 seconds cpu
and exhibited no gor oscillations. A gor reversal at 1300 days is
real. Unstable gor behavior resulted for CFL > 1.5. The stable
step of Condition 2 increased from 8 days at 1250 days to 32
days at 2200 days and varied by less than + 10 % from an
average 31 days value thereafter. This stable step vs time profile
differs considerably from that reported by Young and Russell for
this SPE1 problem. The controlling cell was generally a
neighbor of the producing block.

The SPE3 9-component compositional problem was stable at
a CFL = 2.0, requiring 105 steps, 106 Newtons, and 5.13 seconds
cpu. All time steps were controlled by the CFL limit alone
(Condition 2 with < 1 replaced by < 2), and with F given by the

throughput Eq. 8. The displacement Eq. 3 F, limited none of the

steps. The stable step of Condition 2 declined from 32 to 24.5
days in the first ten years, and declined from 44 to 18.5 days in
the last five years. Compared with Young and Russell, the last
five year values are about the same, but the first ten year values
here are about two times larger. Instabilities occurred for
CFL=2.2.

Gas-oil Problem SPE10 simulates gas injection in a 100x1x20
grid with a geostatistical permeability distribution. The
immiscible gas and oil are incompressible and there is no
solution gas or interphase mass transfer. Implicit is faster than
Impes for this problem, running in 718 steps, 816 Newtons, and
214 cpu seconds. The Impes run using CFL=2.0 was stable and
required 7018 steps, 7059 Newtons, and 558 cpu seconds. Both
runs gave nearly identical time plots of rates and gor, contradict-
ing, in this case, the common belief that implicit results are less
accurate than Impes results due to larger numerical dispersion

error. An Impes run using CFL=2.2 gave rate and gor vs time
plots which were smooth and identical to those for CFL=2.0.
Nevertheless, the run was unstable, reflected in the 8494 steps,
8535 Newtons, and 849 cpu seconds. The instabilities were
saturation oscillations at blocks not near the producer.

Conclusions
An Impes stability criterion is derived for the three-phase,
cocurrent and countercurrrent, multidimensional flow occurring
in black oil and compositional models. It accounts for viscous,
gravity, and capillary forces in structured or unstructured grids
and gives a stable step size for each grid block. These stable
steps can be used as switching criteria in an adaptive implicit
model or to set the time step size in an Impes formulation.

The criterion is F;At/V,, < 1. We define the terms CFL; =

F,A11V,, and CFL = Max(i)CFL;. A large number of 1D two-

and three-phase numerical tests and numerous field study
datasets were run using Impes to check the criterion.
Non-oscillatory stability resulted for time steps obeying CFL =
1. Instability (oscillations) occurrred at CFL = 1.1 or 1.2 when
the CFL; values were nearly uniform through the grid.
Non-oscillatory stability occurred for CFL values between 1.2
and 2.0 as the (problem-dependent) CFL; distribution became
more non-uniform. All runs with CFL > 2.0 exhibited oscilla-
tions.

Nomenclature
fg = fractional flow of gas in a 1D gas-oil system,

A(1-gTh,/q)/},
f, = df,ldS,
F = stability function
8= (Yo_yg)(Z“l _Z[)
i= -1
k = permeability
k, = relative permeability, fraction

K, = component I K-value, y,/x,

L = length of 1D column
M, , = mass of component / in grid block at time level n

N = number of grid blocks
N, = number of non-aqueous components

= oil phase pressure
= gas-oil capillary pressure, p e Po

v
S
(]

dependent upon s ¢

=dp . 1dS,

P cgo cgo

= water-oil capillary pressure, p -p,,

dependent upon s

= dP, /dS,

(]

v
|

interblock total flow rate, rb/day
Qg = sum of gas outflow rates from a grid block, rb/day

N
1l
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Q, = sum of oil outflow rates from a grid block, rb/day A, = oil phase mobility,«  /p , dependent upon s
,q_,q. = phase interblock flow rates and s
99,9, = P g
q,; = gas phase flow rate from block i to block i+1 ’UW = o\, /38,
9ggii = 094795y, Iog = A,/0S,
qglgi‘“l = 09,105y, A, = total mobility, e.g. A _+X +X, ina three-phase
= tem
Qguii = 04,138, sys -
st s A, = water phase mobility,«, /p1, , dependent upon s
Dowisiv1 = aqgi/aSwi+l and Sg
q,,; = water phase flow rate from block i to block i+1 .
‘ e Ay = OA,13S,
G = 04105, .
, wgi, i wi gi )\'ww - BXW/(‘)SW
Dgrint = 08,108 B = viscosity
Qi = 04,135, ® = phase flow potential
¥ = AA /(L +)A),dependent upon S
qui,[+] = aqwi/aswid ’ 08 ( o g) p p g
S = saturation, fraction ¥ = d¥/ ng
See = critical gas saturation P, = molar density of gas phase, mols/rb
Sorg = residual oil saturation to gas p, = molar density of oil phase, mols/rb
S,. = connate water saturation
= time Subscripts
= transmissibility, kA /I, rb-cp/day-psi 8= ga,sd Péllasek -
T. ., = transmissibility for flow between grid blocks i 1, J= grd block InCees. .
+102 ' y £ i, j, k = grid block indices in the x, y, and z directions,
and i+l ) _ ) respectively
T, = transmissibility connecting block i and neighbor I = non-aqueous component number, / =1, 2, ..., _
block j- . n = time level
u= superﬁmal velocity 0 = oil phase
Vp = grid block pore volume w = water phase
X, ¥, z= Cartesian coordinates X, y, z = Cartesian directions x, y, and z
x, = mol fraction of component / in the oil phase
y, = mol fraction of component / in the gas phase ACKn°W|ec_|gments . ) o
) The author is indebted to Diane Korpics for transcribing the
Z = depth, measured vertically downward d
ocument.
Greek
B.B,,B, = eigenvalues of von Neumann stability analysiss, References
Egs. A-2, A-12 1. Stone, H.L., and Garder, Jr., A.O., "Analysis of Gas-Cap or
At = time step, to-t, Dissolved-Gas Drive Reservoirs”, Trans. AIME (1961) 222 92
Ax, Ay, Az = grid block dimensions, length 2. _Coats,.K.H., A I\I{ote on Impes and Some Impes-Based
AS = change over time step of saturation Simulation Models", SPEJ (September 2000) 245-251
max = & P ’ 3. Thomas, G.W. and Thurnau, D.H., "Reservoir Simulation Using
maximum over grid an Adaptive Implicit Method", SPEJ 23 (October 1983) 759-768
Ax . = change over time step of mol fraction, 4. Coats, K.H., “Impes Stability: The CFL Limit”, SPE 66345
maximum over erid presented at the 16 th SPE Symposium on Reservoir Simulation,
_ : & Houston, TX, February 11-14, 2001
€ = error in saturation . 5. Hildebrand, F.B., Methods of Applied Mathematics, Prentice-Hall,
y = phase density or gradient, psi/ft Inc., Englewoods Cliffs, NJ, 1952
A = error amplification factor 6. Young, L.C., and Russell, T.F., "Implementation of an Adaptive
A, = error amplification factor for water saturation error Implicit Method", SPE 25245 presented at the 12 th SPE Sympo
. . . sium on Reservoir Simulation, New Orleans, LA, February
A, = error amplification factor for gas saturation error 29-March 3, 1993
A, = gas phase mobility,x _/p_, dependent upon s 7. Richtmyer, R.D., Difference Methods for Initial-Value Problems,
¢ e & Interscience Publishers, Inc., New York, N.Y., 1957
Ay = ad1dS,
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Appendix -- Stabili.ty Analysi; Citnet ™ Eijkon = OxEist jhn - bxeijkn +Co8i

The method of stability analysis used here was developed by J.

von Neumann and is described by many authors, including tac _be. +cCe&

Richtmyer.”
The Two-Phase Case. We consider the difference equation

inel ~Eig = G, - bE e,

€

similar to Eq. 22, where all coefficients a,b,c are > 0. The von
Neumann stability analysis method replaces ¢, , by the Fourier

type term
g, = Mel® T (A)
Theratio ¢, /¢, , is A so that the stability conditionis |A] < 1.

Substituting ¢, , from Eq. A-2 into Eq. A-1 and using the identity

¢ P -cosB +{sinp gives

A= 1-b+(a+c)cosP +i(a-c)sinB ........... (A-3)
and

A = (1 -b +(a+c)cosB)® + ((a-o)sinP)® ..... (A-4)

We seek the maximum value of |7»|2 over the range of
eigenvalues, or equivalently, the range of cosf values, -1 <

cosf < 1. The maximum value of |1|2 occurs at a f value

which satisfies d |M2/ dp = 0. Taking this derivative from Eq.
A-4, setting it to zero, and solving for B gives two roots. Using
the first root, sinf =0, in Eq. A-3, we find that stability ( |k| <
1) requires the two conditions (for cosf = -1 and +1, respec-
tively)

a+b+c <2 (A-5a)

a+c<b .. (A-5b)
Adding these two conditions gives a+c< 1. The second root
leads to nothing of consequence. For N> 1, all difference forms
of type Eq. A-1 in this paper satisfy a+c = b so that the Condi-
tion A-5b is always satisfied. Therefore the stability condition
for Eq. A-1is A-5a or, using a+c = b,

Discussion of the result b < 2 for the case N = 1 is dropped for
brevity.

Many authors point out that the stability condition for two or
three dimensions is simply the sum of two or three terms, each of
which is identical in form to that derived for the 1D case. For
example, consider Eq. A-1 written for three dimensions

y i, j+Lkn y “ijkn y=i,j-1kn

+ae ~be., + C8jgin v (A-T7)

ij.k+ln ij

Substituting €, =ame Pt P Jeads to the amplificaction

factor

A2 =11 +(a,+c,)cosP, b, +(a,+c )cosP -b,
+(a, +c,)cosp, - bz]2

a2 2
+(a ~c )sinp, + (ay—cy)2 sinf;

The maximum value of |A| occurs for cos 8, = cos B, = cos , =
-1 and the condition that |A| be <1 gives (provideda+c<b
each direction)

ax+bx+cx + ay+by+cy + az+bz+cz <2 ... (A-9)

which is simply the 1D result Condition A-5a with an additional
term of identical form for each additional direction.

The Three-Phase Case. The three-phase case involves the two
error Egs. 33a and 33b which are of the form

el el, = allel,, -bllel, +cllel, |

iLn+l T %tin

+

al2e2,,, , - bi2e2,, + cl2€2, | (A-102)

m
[\
H

a2lel.

i+l,n in i+l,n

~b2lel,, +c2lel, |
+ 02282“1’,' - b2282i_" + 022821'-1,” (A-10b)

Comparing the coefficients in Egs. 33 with those in Eqs. A-10
shows that the latter satisfy

ars + crs = brs rs=11,12,21,22 ....... (A-11)

Substituting €1, = k'l'e“B’ and €2, = )\geiiﬁz in these equations

gives
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where €, is the error vector (el

iwn?

of the amplification matrix E are

€2, )" and the elements ers

ell = 1-dIl ........... .. .. .o i, (A-13a)
€l2 = -dI2 ... (A-13b)
€21 = -d21 ... .. (A-13c)
€22 = 1-d22 ... ... ... . (A-13d)

and, for rs=11,12,21,22,

drs = - (ars+crs)cosP, +brs - {(ars—crs) sinf; . (A-14)

The spectral radius p,. of Eis the eigenvalue of E of maximum
absolute value. We impose the stability requirement p, < 1.
The value of p, obviously depends upon the eigenvalues B, B,
which assume all values corresponding to the ranges -1 < cos B,
< 1land-1< cos [32 < 1. In the two-phase case above, the most

restrictive stability condition |A| <1 resulted for the eigenvalue
cosP = -1, sinf = 0. Assuming that is also true for this
three-phase case gives the eigenvalues cosp, = cosp, = -1,
sinP, = sinf, = 0. Using these eigenvalues in Eq. A-14 gives
real drs values and Egs. A-13 give the (real) ers elements of the
amplification matrix E. The two eigenvalues of the E matrix are

then easily calculated as the roots of E's quadratic characteristic
equation. The stability condition that p, < 1 is obtained as

d11 +d22 +\(d1]1+d22)" —4de(D) <4 ...... (A-15)

where det(D) = d11d22 -d12d21. The drs satisfy

drs = 2brs rs=11,12,21,22 ........ (A-16a)
dll >0 . (A-16b)
d22 > 0 oo (A-16¢)
det(D) >0 ..o (A-16d)

These drs are related to the coefficients in the original Egs. 33 by

A1 = (Guuyii = G )¥200 Vo (A-17a)
A12 = (Gugii = Qugiin)¥2DL Vo (A-17b)
21 = (G = Qeuii o )¥200 Vi oo (A-17¢c)

22 = (Gugi; = Qgii) )¥20H Vi oo (A-17d)

As in the two-phase case discussed above, it might appear that
the form of each of these drs terms would depend upon which of
the 12 possible three-phase cocurrent/countercurrent flow
configurations is assumed. Again, however, that is not the case.
Each drs is independent of the flow configuration. Egs. A-17
together with differentiation of Eqs. 30 give the drs values. That
tedious process together with the Condition A-15 gives the final
stability Condition 2 with Egs. 3-5.

For each of the three two-phase cases, the stability Condition
2 is both necessary and sufficient. For the three-phase case, the
condition is a necessary one, valid for the above described choice
of eigenvalues B, and B,. However, there is no proof here that

the condition is also sufficient for the three-phase case. Numer-
ous numerical tests indicate the condition is both sufficient and
necessary in the three-phase case.

Sl Metric Conversion Factors
bbl x 1.589 873 E-0l =m®
ft* x2.831685 E-02=m’
Ibm x 4.535924  E-01 =kg
psi x 6.894 757  E+00 = kPa



