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ABSTRACT

Experiments in which calcium chloride displaced
sodium chloride from four cores showed the extent
of asymmetry in the resulting effluent concentration
profiles. These results provided a check on how
validly the mixing process is modeled by a differ
ential (i.e., not finite-stage) capacitance mathemat-
ical model.

The effluent concentration profile from two
consolidated  cores  exhibited considerable
asymmetry, while two unconsolidated cores yielded
nearly symmetrical profiles. All runs resulted in
breakthrough of the 50 per cent concentration
significantly before one pore volume was injected.
In addition, wvelocity appreciably affected the
effluent concentration profile from a Torpedo
sandstone core.

The differential capacitance model matched the
data significantly better than a simple diffusion
‘model. The capacitance model allows determination
of the amount of dead-end pore space in a porous
matrix and the effect of velocity on the rate of
diffusion into this space. An experimental program
yielding insight into the physical validity of the
capacitance effect is described.

INTRODUCTION

Axial dispersion — the mixing accompanying the
flow of miscible fluids through porous media — has
been the subject of many relatively recent
studies 1=13 and a comprehensive review of the topic
-has been given by Perkins and Johnston.l4- This
dispersion is of practical interest in studies of the
miscible displacement process, fixed-bed chemical
reactors, and the adsorption of solutes from a
flowing stream onto the sutface of a porous medium.
In the latter case, the effect of dispersion must be
considered when adsorption pardameters are deter-
mined from the nature of concentration profiles.

In general, eatly studies of dispersion assumed
applicability of a simple diffusion equation and
were conceined with cortelation of the experimentally

determined ‘‘effective’” diffusion coefficient with
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system properties over a large range of the latter.

Recent investigators%=13 have been concerned
with the deviations between the asymmetrical
effluent concentration profiles observed and the
symmetrical ones predicted by the diffusion model.

In the present ,study, - effluent concentration
profiles were obtained from consolidated and
unconsolidated cores. These profiles were compared
with those predicted by a differential (i.e., not
finite-stage) capacitance model. Solutions to the
simple diffusion model, for three sets of boundary
conditions, were compared with one another and
with the experimental profiles. :

SUMMARY OF PREVIOUS WORK

. The reader is referred to Perkins and Johnstonl4
for an extensive review of studies of dispersion in

" porous media. Many investigators have employed

the simple diffusion model characterized by Eq, 1

below:
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The dispersion coefficient D for unconsolidated
systems is correlated by

D=l75vdy, ++vv e

N 0 )

for 2<v 4, /D, <50, where v is interstitial velocity
and d,, is particle diameter. Since heterogeneity of
the sand pack affects the mixing, this equation is
also expressed as

D=O.5V0'dp,""""'(3)

where o is proportioral to the degree of heterogeneity
and is about 3.5 for random packs of unconsolidated
v dp [+

sand,!4 Eq. 3 holds for 2 < < 50. For a

o
homogeneous (regular) type of packing, o should be
1 or less.6 Aris and Amundson® and Carberry and
Bretton? considef o to be:the number of particle
lengths per mixing cell in the finite-stage model.

.Dara._from. consolidated cores indicate o dj to be

about 0,36 cm for outcrop rocks, Torpedo sandstone
having a reported, value of 0.17 cm.}3 For v 4,/D,
less than about 2, the effect of molecular diffusion
must be considered and the total dispersion coeffi-

T 78



cient D is the sum of the molecular term D,/F¢
and the convective term on the right side of Eq. 3.
The value of 1/F¢ is generally about 0.7 for
unconsolidated media, significantly less for
consolidated media.

Several writers have proposed dispersion models
which differ from the simple diffusion Eq. 1. Aris
and Amundson, and Carberry and Bretton discuss a
finite-stage model in which a porous medium is
viewed as a series of mizing cells, each having
uniform composition. For a small number of such
cells in series, the calculated concentration profile
is asymmetrical, while the profile for a large
number of cells approaches the symmetrical, normal
distribution predicted by Eq. 1 (for large y). This
mixing cell model and Eq. 1 give similar concen-
tration profiles provided D in 1 obeys

vdp 2
L
5 = (4)

Thus, if o changes very slowly with velocity then
the dispersion coefficient D should vary linearly
with velocity. As mentioned above, this behavior
is experimentally observed.

Deans12 has proposed a finite-stage model which
consists of the above-mentioned mixing cell model
augmented by terms accounting for mass transfer
from the flowing stream into stagnant volume. This
“‘capacitance’’ model has three parameters: number
of stages, amount of stagnant volume, and rate
constant for the mass transfer to the latter. This
- model is discussed further,

Gottschlich13 recently presented a "ﬁlm” model
which is differential (as opposed to finite-stage)
and which treats bed capacitance by supposing the
stagnant volume to occur as a thin film over the

rock or sand surface. Mass transfer into this film |

#2c

is governed by the diffusion equation, D, 972 =

%f—, where Z is distance within the film. This

model also has three parameters: dispersion
coefficient D, amount of liquid in the film, and a
parameter involving film thickness and diffusion
coefficient.

Turner? and van Deemter, et al.,2 discuss the
differential ~capacitance model, employed in this
study, in connection with pulse or periodic input
concentration. Lapidus and Amundsonl give a
double-integral form of solution for this model.

MATHEMATICAL MODELS EMPLOYED
. IN THIS STUDY

The effluent concentration data obtained in this
study are compared with the standard diffusion
model,
“model described in this section.
DIFFUSION MODEL

The standard diffusion model for the step-input
type of experiment is constituted by a number of
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a differential form of Deans’ finite-stage_
capacitance model, and the differencial capacxtance

solutions to Eq. 1, each solution corresponding to
a different selection of boundary conditions* Three
such solutions are considered here. The most
general treatment of the boundary conditions has
been given by Bischoff and Levenspiel.10 They
considered a system composed of a packed bed
preceded by an entrance section, denoted by sub-
script a, and followed by an exit chamber, denoted
by subscript b. If x, denotes the position in the
entrance section at which concentration is step-
changed, o the inlet face of the core, and L the
end of the core, then their boundary conditions are:

A?x=x°,C°=C°;-.....(5)

' 9C, ac
at x=o,v(.:a-D°3—;" =vC - D 77, ond
ACQ:C;-.-(G)
c oC
ut_x-L,vC-Dé-x—-va Dba ,and

Perhaps the most widely employed specialization
of conditions 5, 6 and 7 is:

at x =0, €C=C,

and

as x—=®©, C(x,t}=»=0 . ... (8

Egs. -8 presuppose the validity of conditions 35
when x, = o and the insensitivity of the solution to
the existence or non-existence of a core extension
from L to infinity. Aris and Amundson® note that
when the. entrance section is ignored (i.e., %, = a),
Eq. 6 is the nroper condition and the conditions 8
should read

' ac

: ot x=0, vCo=vC ~D ==

and °" ax
as x—®, C(x,t)~»0 - ...

Egs. 9 comprise the second set of boundary condi-

tions  considered here. Brenner ! employs
Danckwerts’1® reasoning in treating the case of a
finite core with the conditions

at x=0, vCyu=vC - Daai
and
=L 9C . ... (10
at x=, 3w S0 (10)

The second -of conditions 10 derives from 7, with
the stipulation that Dy << D (i.e., mixing in the
exit chamber is small compared with mixing in the
core). .

*Initial condition is C (x,0) = o.
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The solution to Eq. 1 for conditions 8 is well
known:

L. -l—[erfc (‘/-7 vl

Y £ - Yy
2 ﬁ)"’e erfc

C, 2
(_22:‘/— 1‘/%)] e e e e e e e (11)

Approximation of the second term in the brackets*
gives

c .| Y yl1

c, "z erfe (5% vt

VT e-{f(y-l)a
f_—'rr'y (y+1) e oo W (12)
which gives an error in C/C, of less than 0.5 per
cent for y > 50.
The solution to Eq. 1 for conditions 9 is given

by Brenner!l and derived in a somewhat more
straightforward manner in Appendix A as

c£='§l}rfc(‘/—y7-1- UL (_zfi 1}%)]

-—27-: (y+I)eyy erfc(E y+I)

f-

Appmximation18 of the term erfe (ﬂl—t—l reduces
13 to 2V

£ .1 VY yl1
c.° 2 erfe ( ) —V.I-)-
VI -rly-D%41

e (2g

). .(14)
{+1

which possesses the same accuracy as 12.

Brenner's solution to Eq. 1 for conditions 10
appears to be in error in its asymptotic form for
large y (say > 50). The correct form of his Eq. 26
is, for large yand at y = ],

w_c_f V7 11, VT o
e
3 erfe (F ) - vy (F1)
12
(ISH_I 2(“)) R ¢ 5|

which is accurate to 0,2 per cent for y >50 and to
0.05 per cent for y > 100. Brenner's version of 15
has (+ 4) in place of (~ 2) in the last term. Error in
his version is indicated by the steady growth of
the error in his asymptotic form (see his Table 1)

from zero for ¥ = 16 to 0.0024 at y = 40,

Eqs. 12, 14 and 15 are the three versions of the
diffusion model employed in this study. A minor

*See Ref, 18, page 483,
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addition is made to these equations by allowing the
existence of an amount of stagnant volume into
which diffusion is negligibly slow. This is easily
accomplished by replacing ! in the solutions by
1/, where f is the fraction of the total pore volume
occupied ‘by mobile fluid.

Quantitative comparison of Eqs. 12, 14 and 15 is
rather difficult by inspection. One measure of
comparison is the value of effluent concentration
at one pore volume injected. At y =1 =1, the three
solutions 12, 14 and 15 become, respectively,

€ _L .. .. .(16
c. 2+2,-—-,”,7. (16)
.1 7
B 5, N ¢ V)

and
L L5 1, ...... 18
Co 2+4 \/17'7' (18

For a y value of 100, Eqs. 16 and 18 give corre-
sponding C/C, values 6 per cent and 14 per cent

TABLE 1 — C/C, AT x=L FOR STEP.INPUT EXPERIMENT

Infinite Bed Infinite Bed Finite Bed
¥ A Eq 12 Eq., 14 Eq 15
50 o7 0445 0352 ,0508
.8 . » 1531 1295 21756
K} .3339 2974 3786
1.0 5399 +5000 25997
Tal ,7187 .6848 .7789
T2 8455 8217 .8944
1.3 9224 9079 +9562
145 9759 9703 9913
100 «8 0651 0561 ,0736
9 12495 12270 2771
1.0 5282 5000 5705
11 7722 .7508 8102
12 .9138 9027 9366
1.3 9735 9692 49835
150 8 ,0300 0261 40337
9 . 1959 1799 +2154
1.6 15239 .5000 15576
1.1 8118 $7962 8394
12 19495 9436 9618
' 1.3 9903 .9889 9938
200 85 0572 0514 0634
9 »1574 1454 1722
95 +3215 «3036 +3450
1.0 5199 +5000 15499
1,06 <7049 5876 .7332
1 +8423 ,8303 «8637
115 «9264 9198 .9398
1,225 9814 9792 49862
300 9 5 .0981 1146
95 «2783 12646 +2970
1.0 «5163 .5000 5407
1.05 »7384 +7252 +7602
L1 +8866 8788 9005
T2 9886 9874 9911 -
390 9 40754 .0703 0817
T 495 " 42480 T 2367 2634
1.0 +5143 5000 .5357
1.05 »7634 +7523 7815
110 9143 +9087 9242
1175 9850 9880 29911
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larger than 0.5. Table 1 lists effluent concentration
as a function of injected pore volumes as computed
from Eqs. 12, 14 and 15 for a range of y values.

DEANS’ CAPACITANCE MODEL

In an 'attempt to account for the tailing or
asymmetry noted in effluent concentration profiles,
Deans!? modified the mixing cell model to include
diffusion or mass transfer into stagnant volume.
Deans gives the differential form of his model (for
small mixing cell length) as

*
-v 8¢ . - ..
v & & +a-nS,. .. .a9

where C* is concentration in the stagnant volume,
and

-f) 8C
With the definitions ¢ = KL/v, Y = ay and Z =

la——_L/ (J - y), Egs. 19 and 20 reduce to

-—-—:—:c—c‘:...-----(zl)

to which the solution for a step-change in feed
concentration (from zero to C, is20

o
Co
. This solution is only valid for Z > o; C/C_ is zero

" for Z <o. Since Eq. 22 yxelds

.Y
Co-e (23)

.Y
=|-e ZSO e ‘10(2\/72') dx . . -(22)

for Z = o0, and since | = { when Z is zero, Eq. 22
predicts that effluent concentration will remain
zero until ! = f, at which time all concentrations
' -—beétween zero and e simultaneously appear. A
second property of the model (Eq. 22) is that at Z
=Y(=1),

c°=—2-+~2—e IO(ZY),....¢(24)

and approximation of the Bessel function I 2y

for Y > 2 yields

cC L, 1_
C st A (25)

In Eq. 25, Y has been replaced by (@) since Y =a
when effluent concentration is considered (y = 1),
Thus use of Eq. 24, along with an experimental
value of effluent C/C, at one pore volume injected,
yields the value of ®the rate group (a) directly.
. Graphical representauon of the solution 22 is
available -
of C/C, at I values other than f and unity.

The reduction of Eq. 22, for large Z and Y, to a
form nearly identical to the diffusion model solu-
tions is given in Appendix B. -
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in the literature2! for determination

DIFFERENTIAL CAPACITANCE MODEL

If the diffusion Eq. 1 is augmented by terms
accounting for stagnant volume, the result is

g%,

D axz ax

=f3 +(| n3% at' - (26)
and '

(-5 55 =k {c-c. .. .. .@2n
where Eq. 27 presupposes a first-order mass trans-
fer process.

This set of equations is solved, for boundary
conditions 9, in Appendix C with the result,

@ L(-y5 cos £)
T

e
=575 | a, cos{ZJ-w) +
Co 0 02|+ 0% I )
a, sin (ZJ -w)]d zZz - ... (28)

Terms in Eq. 28 are defined in Appendix C. An
analytical solution to Eqs. 26 and 27 has been
given by Lapidus and Amundsonl! in the form of a
double integral over time. The form of the solution
given in Appendix C'is somewhat more amenable to
numerical evaluation in that a single integral is
involved.

Properties of this model are more easily dis-
cernible from dxmensxonless forms of Eqgs. 26 and
27:

1. 9¢C _8cC ac . 9C
¥ ‘g&é Y I+(| ) 51 ° .(29)
and
%k
-2 - a(c-c.. ... .. (30)

For sufficiently small velocity, the rate group
(@) will be large and the mass transfer process will
be essentially instantaneous. The model reduces to
Eq. 1 in this case, and the solution is given by
Eq. 14. For sufficiently large velocity, the rate
group (a) will be negligibly small and the model

.again redvces to Eq. 1, with solution 14, except

that | must replace I in the latter two equations.

EXPERIMENTAL PROCEDURE

Step-input experiments were conducted with
cores of Wausau sand, Ottawa sand, Torpedo sand-

-stone and Alundum. Five per cent calcium chloride

was injected into the cores, which initially contained
5 per cent sodium chloride. Small effluent samples
wege collected in weighed vials and the fluid,
volumes were determined by we:ght difference.

" Density, as a function of composition of the sodium _ .

and calcium. chloride solutions, was taken into
account, Calcium content was determined by the
Versine or EDTA titration method.

The possible occurrence of adsorption or ion
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exchange was investigated by batch experiments
wherein sand or crushed rock was contacted with
the calcium chloride’ with and without sodium
chloride initially present. Analyses for calcium
content as a function of time showed that no dis-
cernible change in concentration occurred over the
period of a day. The absence of adsorption effects
was also indicated by the breakthrough of the 0.5
C/C, point in the flow tests prior to one pore
volume injected. If adsorption had been significant,
the breakthrough of solute would have been delayed,
with the 0.5 C/C, point appearing after one pore
volume injected.

Pore volumes of each core were carefully obtained
by expanding air into the evacuated cores and

- correcting the calculated pore volumes for non-core
system volume. Both authors measured this non-
core volume indepéndently by injecting water with
a calibrated syringe and obtained the same results.
Each end-plate in the Torpedo sandstone core
contained 0.4 cc of “‘non-core’’ volume while the
system volume downstream of the exit valve (to
the end of the short outlet line) was 1 cc. Collected
volumes were corrected for non-core volume in
determining pore volumes injected (I). This non-core
volume is not part of the hypothesized stagnant
(core) volume discussed herein. The pore volumes
are believed accurate to within £ 0.2 cc.

The possibility of adsorption as well as viscosity
effects was further examined by comparing the
effluent concentration profiles for sodium chloride
displaced by calcium chloride, and vice versa. The
resulting profiles were virtually identical.

The unconsolidated cores were prepared by
pouring the sand slowly into the lucite tube while
agitating with a hand vibrator. The consolidated
cores were fused to lucite tubes under a uniform
external pressure (ends and circumference) of 1,000
psi at a temperature of 276F, The pressure was
maintained at 1,000 psi as the cores were cooled
to room temperature over the period of one day,
Distribution plates with two concentric rings and
four rays ‘were employed at the core inlet and
outlet, Fluid feeding was attained by nitrogen
pressure, maintained through a constant head
device over the surface of the solution in a four-
liter, lucite feed tank. Flow rate was measured
by timing the collection of core effluent samples.

Table 2 gives core properties, and Table 3 lists
the run variables. The experimental effluent con-
centration curves are plotted in Figs. 1 through 7.
The effluent sample sizes were about 0.006, 0.01,
0.02, 0.016, 0.03, 0.03 and 0.015 pore volumes for
runs 1 through 7 respectively.

" TABLE 3 — RUN VARIABLES

v, Vi D,
Run Core cm/sec  ft/day Y 2q em/sec
1 Torpedo 009 25.6 370 00057
2 Torpedo 0525 150 302 .00409
3 Torpedo +202 575 212 02240
4 Alundum L0163 46.5 730 400045
5 Alundum «192 546 780 0050
6 Ottawa Sand +251 715 190 .0274
7 Wausau Quartz  ,0654 186 702 ,00193

DISCUSSION OF RESULTS

One of the major problems in this study was the
determination of that unique set of values for the
three parameters y, [ and @, which would give the
best agreement between the data and the capacitance
model (Eq, 28).

This determination was accomplished by a
steepest-descent search calculation. The criterion
of deviation was the sum of weighted squares of the
difference between observed and calculated C/C,,

i=6
DEV =3~ W, (A . (31

ci 2
-y Co)'

C.
where A~C—’-is the difference between the observed
[2]

g and the calculated (Eq. 28) —Cg— at a value of I

o
indicated by 7. As indicated by Eq. 31, six poincs
along the concentration profile were employed.
Little difficulty with local minimums was en-
countered in the use of this method.

This search method was also employed to
determine unique values of y and { which would
result in the best fit between data and diffusion
modeél solutions (for the three different sets of
boundary conditions), Eqs. 12, 14 and 15.

The values of DEV obtained through the search
technique from Eqs. 12, 14, 15 and 28 are given in
Table 4. This table shows ‘that the capacitance
model gave significantly better agreement with
data in runs 1, 4, 5 and 7 than was obtained with
the diffusion model. No satisfactory match of run 2
or 3 was obtained from any of the equations, while
tun 6 was matched very well by both the diffusion
and capacirance models. 7

The solid lines of Figs. 1 through 7 show the
experimental effluent concentration profiles. The
open circles represent the model solution, Eq. 28,
while the solid points are calculated from Eq. 14,
with I replaced by J. Thus, the solid points repre-

TABLE 2 — CORE PROPERTIES

Permeability Particle Size, Length, {s Dy, Pore Volume,
Core Darcys mm in. ini [ Porasity
Na. 1 Wausau Quartz -  {80-60 Mesh) 8,187 1.0 49.4 467
+18-,25 o ' T T
Ottawa Sand - 48,71 8.156 1.0 36:2 .345
Torpedo Sandstone 1e5-2 - 9.25 1.5 67 26
Alundum : "5 - 8.0 10312 30,2 274

MARCH, 1964
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TABLE 4 — VALUES OF DEVIATION, DEV

Run Model 'E_g_._ B4 £ a DEY
Capacitance  (28) 370 .900 .58 00109
Diffusion (12) 9.1 969 0 01207
Diffusion (14) 90,5  .958 1] 401209
Diffusion (15) 103.1 970 0 ..01780

2 Capacitance (28) 302 9219 1.54 00432
Uiffusion (12) 133 1,000 0 00774
Diffusion (14) 133 795 0 ,00728
Diffusion (15 4 1,000 0 301556

3 Capacitance (28) 212 911 1.42 .00420
Diffusion (12» 103 1,000 0 00779
Diffusion (14) 100 995 0 ,00683
Diffusion (15) 116 1,000 0 01873

4 Capacitance (28) 730 .928 .18 .00100
Diffusion (12) 320 948 0 01710
Diffusion (14) 324 4945 0 01711
Diffusion (15) 312 953 0 01716

5 Capacitance (28) 780 929 115 ,00127
Diffusion (12) 484 .940 0 00851
Diffusion (14) 486 .938 0 ,00851
Diffusion {15) 476 943 0 00854

6 Capacitance (28) 190 956 017 .00032
Diffusion (12) 178.8 .964 0 ,00045
Diffusion (14) 1788  ,959° 0 ,00045
Diffusion (15) 172 973 4} 200046

7 Capacitance (28) 702 976 065 .00019
Diffusion (12) 586 ,982 0 00194
Diffusion (14) 586 .980 0 00195
Diffusion (15) 582 984 1} 00196

sent the simple diffusion model with allowance for
an amount of dead volume into which diffusion is
negligibly slow.

As shown in these figures and Table 5, the 0.5C,
concentration appeared significantly before injection
of one pore volume, and C/C, at one pore volume
injected was appreciably above 0.5 for all runs.

Fig. 1 shows that the capacitance model repro-
duces the Run 1 profile significantly better than
the diffusion model. The 0,5C, concentration
appeared in the effluent at 0.942 pore volumes
injected, and considerable asymmetry is exhibited
by the profile. The dispersion coefficient D for
run 1 is 0.00057 sq cm/sec (see Table 3), while
Eq. 3 gives, for o dj =0.17,15

D = 0.5 (0.009) (0.17) = 0.000765 cm%/sec.

The dispersion coefficient of 0.00057 sq cm/sec
for Run 1 as well as the other dispersion coefficient
values listed in Table 3 were obtained by matching

1.0r ]" } .4_’_*_0_,_

o[ ——RuN+ ,@#‘1-/2 |
RUN

©.60f AL { } {

s - A o y=370 =90
AOF—— i 0=.58
2074 Jl & ey=905 F=958
0 PR DU S R O O O
76 10 112 124 136

I, INJECTED PV

FIG, 1 — CONCENTRATION VS INJECTED PORE
VOLUMES FOR RUNS 1 AND 2,
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TABLE 5 — BREAKTHROUGH CHARACTERISTICS

Run Il at C/Co = 0.5 C/Co atl=1
1 942 65
2 986 . 55
3 983 +55
4 934 775
5 932 820
6 96 +66
7 982 .65

the mathematical capacitance model to the data.
Since this model attributes a certain amount of
the mixing to capacitance effects, the dispersion
coefficient accounts for only part of the mixing.
Thus, these (Table 3) D values should be low in
comparison with coefficient values calculated from
Eqgs. 3 or 14 since those equations attribute all
the mixing to.the dispersion mechanism alone. In
this connection, it is interesting to note that a
larger d,, o value of 0.54 cm has also been reported
for Torpedo sandstone?® and that value employed
in Eq. 3 gives

D = 0.5(0.009) (0.54)=.00242 cm% sec.

Table 4 lists a y value of 90.5 determined for Run
1 from the diffusion model, Eq. 14. This y value

- gives a dispersion coefficient of

vL _ (0.0009)(23.5)
Y 90.5

This value is in close agreement with the 0.00242
value which is to be expected since they both
derive from equations and data wherein the total
mixing is attributed to dispersion alone.

The discussion immediately above leads to the
first, and perhaps most important, conclusion
reached in this study. In laboratory experiments
conducted to determine dispersion coefficients (in
connection with miscible flooding, for example),
the flow velocity v may be larger and the system
length L definitely will be smaller than in the
actual field case. Thus, the (laboratory) dimension-
less rate group (@) = KL/v may be sufficiently
small to result in a significant contribution to mixing
by capacitance effects.

In the field, however, with L typically hundreds
of times larger and v perhaps appreciably smaller,
the group (@) may be so large as to effect “‘instan-
taneous’’ mass transfer into stagnant volume,
thereby precluding any contribution to mixing from
capacitance effects. Thus, a danger arises from
attributing the total mixing observed in laboratory
flow tests to the dispersion mechanism alone., For
the dispersion coefficient thereby obtained may be
erroneously large as it accounts for mixing caused
by capacitance effects as well as by the dispersion
mechanism. For example, in the case of Run 1, the
cdpacitance model yielded a dispersion coefficient
of 0.00057 sq cm/sec, a value abour one-fourth
as large as the 0.00234 sq cm/sec coefficient
yielded by the diffusion model, Eq. 14 which
attributes all mixing to dispersion. The rate group
(a) was indicated to be 0.58 by the capacitance

D= = 0.00234 cm%/sec.
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model, the run flow velocity was 25 ft/day and core
length was 1 ft. Thus, in a field case, the rate
group (@) might be about

UKL . (500/)) . »nn
- =088 TS = 7250

assuming field values of L and v to be 500 ft and
1 ft/day, respectively.* At this (@) value, the
capacitance contributes negligibly to mixing so
that dispersion in the field would correspond to a
dispersion coefficient value of 0.00057 sq cm/sec.
The length of the “mixed zone'’ in the field would
be about half that predicted by using the larger
0.00234 sq cm/sec value (since mixed-zone length—
e.g., distance between 0.1 and 0.9 C/C, values—
is proportional to the square root of dispersion

coefficient). Thus, the capacitance effect may have

little importance in causing asymmetry or mixing at
field conditions but nevertheless may be very
important in interpreting laboratory data.

The experimental effluent curve for Run 2 is also
plotted in Fig. 1 in order to show the rather definite
effect of velocity. The observed later breakthrough
of the lower concentrations at the higher velocity
is in agreement with the ‘‘bundle of capillaries”
model prediction that, as velocity is increased, the
larger pores will experience turbulence and carry
relatively less solute, thus delaying breakthrough
of the lower concentrations.

The unsatisfactory fits obtained for Runs 2 and
3, shown in Figs. 2 and 3, do not justify attachment

*Obviously, data relating rate constant K to velocity would
be required here.

].d T M M o T l .
90|07=302 o=1.54 F=9186 i 9
oY=133 a=0 {=9952 i
.80 ' ‘ " T
70—+——T— X
0 L0F—+—+— /6"1
8 so} —— A —
40 f 1
30 . f ’

.20 b/

10 o /

FIG. 2 — CONCENTRATION VS INJECTED PORE
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VOLUMES FOR RUN 3,

of much significance to the apparent D values,
listed in Table 3. Ignoring the poor fit, we would
conclude from Table 4 that D was more than linearly

. . . Ly
proportional to velocity, since y = = decreased as

v increased; also the rate constant K was more
than linearly proportional to velocity between rates
of 0.009 and 0,0525 cm/sec since @ = KL/v in-~ -
creased by over 2.5 as v increased by a factor of
6 between Runs 1 and 2. For velocity above 0,0525
cm/sec, K was roughly proportional to velocity
since (a) remained essentially constant as velocity
was increased again by a factor of about 4 in Run
3. Substitution of convective mixing for diffusion
in stagnant volume of the type shown in Fig. 8b
might cause the rate constant to increase sharply
with velocity.- However, as stated above, the
relatively poor predictions attained in Runs 2 and
3 leave the discussion of this paragraph in the
realm of almost pure conjecture.

The fact cthat neither Run 2 nor Run 3 could be
matched might be caused by one or more of the
following:

1. A mechanism other than bed capacitance is
responsible, to a significant extent, for the asymetry
noted.

2. Bed capacitance is the mechanism in question
but obeys a transfer law other than the linear form,
Eq. 27.

3. Bed capacitance is the mechanism but the
discrete pore arrangement of the sandstone requires
a finite-stage model (e.g., Deans).

4, Bed capacitance is the mechanism and can be
represented by a differential model but different
boundary conditions (e.g., Eq. 7) should be used.
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Figs. 4 and 5 show the observed and calculated
profiles for the Alundum runs. As noted in Tables
3 and 4, D was essentially proportional to velocity
while K was less than linearly proportional to
velocity since (a) fell from 0.18 to 0,115 as v was
increased by a factor of 12. If K had been constant,
(@) would have fallen to about 0.015. The amount
of stagnant volume was unaffected by velocity.

Runs 6 and 7, shown in Figs. 6 and 7, resulted
in early breakthrough of the 0.5 C, concentration
and nearly symmetrical profiles. Run 6 was well
represented by the diffusion model (with bypassed
volume), with little improvement effected by the
capacitance model. The dispersion coefficient of
0.0274 sq cm/sec (Table 3) for Ottawa sand com-
pares with a value of

(0.251) (20.7)
78.8

given by the 178.8 y value (see Table 4) yielded
by the diffusion model, Eq. 14. The Wausau quartz
Run 7 was reproduced significantly better by the
capacitance model than by the diffusion model, as
shown in Table 4 and Fig, 7. The D value of
0.00193 compares with

_ (0.0654) (20.8)

- 2
D= 586 0.00232 cmsec.

given by the 58.6 y value yielded by the diffusion
model, Eq. 14. As shown in Table 4, stagnant
volumes of about 4,5 and 2.5 per cent are indicated
for the Ottawa sand and Wausau quartz sandpacks,

= 0.0291 em?/sec.
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ROLE OF HETEROGENEITY

The effect of heterogeneity in the sandstone
depends upon the meaning attached to the term. If
microscopic heterogeneity is meant, whereby certain
pores are bypassed by flow, then this is precisely
the cort of mechanism implied by the capacitance
models of Deans or this work. That is, a uniformly
distributed stagnant volume is equivalent to micro-
scopic heterogeneity. If, however, macroscopic
heterogeneity is meant, in the sense that regions
of the order of millimeters are of significantly
different permeability or pore structure, then none
of the dispersion models allowing analytical
solution to daté take heterogeneity into account,
Core description would be a formidable problem in
this case and numerical solution (finite-difference)
of the governing equations would be required.

PHYSICAL SIGNIFICANCE OF RATE GROUP KL/v

A physical significance may be attached to the
(2) values in Table 4 provided a representation of
the assumed stagnant volume is made. Fig. 8
sketches two extremes in the concept of dead-end
pore volume, Fig. 8a illustrating the type employed
in experiment by Fatt, et al.,2% and Fig. 8b repre-
senting *‘dimples’’ or pits in the walls of otherwise
uniform flow networks. If, following Fatt’'s steady-
state fluid flow concept, we suppose the diffusion
through the neck leading'to the dead space fo be
steady-state, then

ac*_ DoA *
-V 5t ° T (c-c)’. ...... (32)

where V, is volume of the stagnant space, and A
and [ are cross-sectional area and length, respec-
tively, of the neck leading to it. Comparison of 32
with 27 gives the equivalence .

X . DA - DAL (-}
- Vo ORa-= vV, 1 .. .(33)

If D, is 1.35 x 10-5 sq cm/sec (value for NaClin
water), then tbe (a) value of 0.58 (Run 1) gives

AL N €7
Vol 164 c_:m
G
PORE
£
{A) A
—_— 7N
PORE
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(8

FIG, 8 — IDEALIZED TYPES OF DEAD-END PORE
. VOLUME.,
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Microscopic examination of Torpedo sandstone
shows irregularly shaped pores of an average
cdiameter of 5 microns. Adjacent pore spaces are
separated by a low multiple (e.g., 2 to 4) of the
average pore diameter. Let the stagnant volume Vg
‘be spherical with a radius of 2.5 microns, and [ be
15 microns; then the neck radius r is given by Eq.
34, where A = nr2, as r = 0.023 microns. While this
seems rather small, little significance can be
derived from it without a more detailed knowledge
of the structure of arrangement of the pores. An
obvious question at this point is whether the
assumption of steady-state diffusion through the
neck is reasonable. A rough measure of the validity
of this assumption is the proximity to C, of the
concentration at the end of the neck at a time in
which the fluid travels a relatively short distance.
For example, let fluid of concentration C, reach
the neck at time zero. In 100 seconds, under Run 1
conditions, the fluid will advance 1 cm. In the
same time, the concentration at a distance [ (per-
pendicular to flow) will be, due to diffusion,

15x10% cm

C . )
= arfc ( )= erfc = = 0.973
Co 20 T 2/16%(100) '

which is sufficiently close to unity that sready-
state diffusion through the neck is a valid pre-
sumption, Undoubtedly, the concept of a mixed
stagnant volume having a uniform concentration
C* is in much greater error than that of steady
diffusion through a neck.

The fact that the (@) group values for the un-
consolidated sand Runs 6 and 7 are much less
" than the values for the consolidated cores is not
surprising. This would be expected from the fact
that the (a) group as given by Eq. 33 is proportiofial
o A(l-/)/V4 P, which is smaller for these uncon-
solidated cores for two reasons. First, (1~f) is
somewhat smaller for the unconsolidated cores
and second, the group A/Vsl has dimensions of 1/95
where £ is a length characteristic of the media.
Since this T will be greater for the *‘large’’ particle
sandpacks than for the sandstone and Alundum, the

value of (@) is further reduced.

VALIDITY OF STAGNANT
-FILM CONCEPT

The validity of Gottschlich’s work}3 in which
bed capacitance is presumed to be in the form of
a thin film on pore walls, will now be briefly
examined. If diffusion in a film of the order of a
few microns in thickness (pores are only 5 microns
in diameter) is important as a rate ‘effect, then the
concentration C/C, by diffusion at a distance of
several microns should be considerably less than
unity, over a period of time in which the fluid
travels a short distance. For Run 1, the fluid
advanced oaly 0,1 cm in 10 seconds. In this time
diffusion through a film 5 microns thick would have
raised the concentration at the far side of the
film to erfc (5 x 10“‘/2\/1?6:5 (10)), or to C/C, =
0.972, assuming a diffusion coefficient of 1075

MARCH, 1964 ' N

sq cm/sec. This indicates that diffusion into a
film would be an “‘instantaneous’ type of process
at Run 1 conditions, incapable of yielding the
extreme asymmetry noted.

DIFFERENTIAL FORM OF
DEANS' MODEL

The differential form of Deans’ capacitance =
model, Eq. 21, has been applied to the data of
Runs 1 through 7. The value of (¢) was obtained
from Eq. 24 and the experimental value of C/C,
at [ = 1, The term [ was then calculated for each
of a number of points spanning the effluent profile.
The value of Y is simply ay = a since y = 1 for
all measurements. The value of Z is

z=|—‘}7(1-f) N ¢ 5

Experimental values of C/C, and the previously
obtained Y value are employed to obtain Z from
a table of C/C, vs Z and Y (tabular representation
of Eq. 22), Eq. 35 and the experimental | values
corresponding to the C/C, values used then give
{ for each experimental (C/C,, I) point. A measure
of the ‘‘fit’’ between the model, Eq. 22, and the
data, is the constancy of f. The f values determined
for Runs 1, S, 6 and 7 were reasonably constant
at 0.9, 0.98, 0.945 and 0.96, respectively; and the
corresponding (@) values were 1.05, 0.25, 0.9 and
1.05. Table 6 lists the observed and predicted
(from Eq. 22) I values corresponding to selected
C/C, data points, As shown by Table 6, the major .
defect of Eq. 22 is its failure to account for the

diffuse profile between concentrations of zero and
-a
e 4,

TABLEG6 — PREDICTIONS FROM DIFFERENTIAL. FORM
OF DEAN'S MODEL

. 1
i Exparimental Eq, 22

Run c/C,

1 «35 90 90
+362 904 903

«390 O11 I11
. 64 994 995
794 1.086 ’ 1,081

. 95 1.32 1.281

5 78 - 987 - - 98
831 1,004 1.004
+870 1.024 1,028
908 1,054 1,060
959 1,22 1.132
6 +406 .938 945
485 956 959
/593 982 1982
686 1,007 ! 1.006
742 1,024 1.024

+827 1,057 1,061
919 1,118 1,128
96 1177 1.189

7 35 96 96
+362 96Y T e8!
+390 ’ 965 964

64 T 998 998
794 1,028 1.032
+95 1,108 T W2
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END EFFECTS

The possibility exists that end effects’ occurred
in the experiments reported herein. One way to test
this hypothesis is to repeat the experiments in
longer cores. Differences would, however, be ex-
pected since a length effect is actually pare of the
capacitance model. That is, if the group (a) = KL/v
is in such a range as to cause spreading due to
non-instantaneous mass transfer, then a change in
length will result in a change in concentration
profile through the change in (a). If K were
proportional to v, then the change in length could
not be offset by a change in v to maintain (a)
constant and determine whether L itself has an
effect. If end effects are held to cause the asymmetry
of Runs 1 through 5, then they are strangely absent
in Runs 6 and 7 where symmetry obtained. Also,
Carberry and Bretton noted end effects in cores
from 1/2 to 3 ft in length only at a Reynold’s number
in excess of 20. The Reynold’s number is about 2
for Run 6, less for the other runs.

. Crawford and Atkinson’s discussion of Von
Rosenberg's data (Ottawa sand) showed that his 2-
and 4-ft column data could be obtained closely by
superposition of the 1-ft column data. Thus (unless
effects cancel) not only does it appear that no end
effects were operative in Von Rosenberg's 1-ft
column but also that the importance of choice among
the boundary conditions 8, 9 and 10 is small (since
the superposition effectively ‘“‘mixes'’ these
conditions). .

EFFECT OF BOUNDARY CONDITIONS ON
DIFFUSION MODEL SOLUTIONS

Table 1 shows that a significant difference
exists between the finite-bed solution 15 and the
two infinite-bed solutions 12 and 14, even at y
values as large as 400. Table 4 shows that of the
three diffusion model solutions, Eq. 14 achieves,
in general, the best agreement with data, followed
closely by Eq. 12,

PHYSICAL VALIDITY OF
CAPACITANCE MECHANISM

The fact that a capacitance model matches data
better than the diffusion model is no “‘proof’’ that
capacitance with mass transfer is actually present
and operative. The simple fact that the capacitance
model possesses three parameters, compared with
two (including f) for the diffusion model, leads us
to expect better predictions from the capacitance
model. The discussion beneath Eq. 30 above,
however, suggests a telatively simple experimental
program for determining whether capacitance is a
physical or merely conceptual entity.

If a core is subjected to three displacements, at
very low, intermediate, and very high velocities,
then the effluent profiles at very low and very high

" velocities should be nearly symmetrical; and the
latter should be displaced to the left of the former
on a plot of C/C, vs I (with allowance or correction
for different values of D at the two velocities). The

concentration profile corresponding to an inter-
mediate velocity should exhibit asymmetry due to
the spreading caused by non-instantaneous mass
transfer. It is possible, of course, that an entirely
different mechanism might produce the same
behavior. Until such a mechanism is described,
however, the above described behavior would be
strong evidence in favor of the physical validity of
the capacitance mechanism.

CONCI.USIONS

If stagnant volume is a physical reality, then
dispersion coefficients determined by application
of a diffusion-type model to laboratory data may be
several times too large. Application of a capacitance
model to the data would separate the contributions
to mixing by capacitance and dispersion mecha-
nisms, yielding a more nearly correct dispersion
coefficient for use in field calculations.

Experimental effluent concentration profiles from
two consolidated cores exhibit considerable
asymmetry and early breakthrough of the 50 per
cent concentration. Profiles from two unconsolidated
cores show early breakrhrough of this concentration
but are nearly symmetrical.

The use of a differeritial capacitance model
gives a significantly better match of the data from
five of seven runs than can be achieved using the
standard diffusion model.

Effluent concentration profiles from two runs in
a 500 md Alundum core indicated about 7 per cent
of the pore space to be stagnant volume. The rate
constant for mass transfer into this volume appeared
to be linearly dependent upon velocity. Profiles
from a Torpedo sandstone core indicated 10 per
cent stagnant volume.

While the data and calculations do not ‘‘prove’’
the existence of stagnant volume, they indicate
that the capacitance concept is capable of explain-

_.ing the observed asymmetry and early breakthrough

of the 50 per cent concentration.

The existence of capacitance effects might be
verified by 'comparing effluent concentration
profiles from a core over a large velocity range. -
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NOMENCLATURE
rate group, KL /v,
concentration in mobile fluid,
feed concentration,
concentration in stagnant fluid,
Laplace transfer of C, .
d, = particle diameter, cm,
B dispersion coefficient, sq cm/sec,
), = molecular diffusion coefficient, sq cm/sec,

I |

[

o
mn o
<
0o

criterion of deviation between observed and
calculated concentrations (Eq. 31),
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F = formation resistivity factor, :

f = fraction of pore space occupied by mobile
fluid, ;

1, = modified Bessel function of first kind, zero
order,

{ = pore volumes injected, wt/L,

] =V/f,

K = rate constant,

L = core length,

P, = Peclet number, udp/D,
R, = Reynold's number, vdpp/y,
t = time,
u = superficial velocity (based on core diam-
eter),
v = average interstitial velocity, cm/sec,
x = distance from inlet end of core,
y = dimensionless distance, x/L,
Y = ay,
z=4q-y,
1~/
o = number of particles per *‘mixing cell’’,
¢ = porosity,
p = fluid viscosity,
p = fluid density,
y = vL/D.

1,

3.

4

5,

6.

7
8.

9
10,

11,
12,

. 18,
14.
15,

16,
17
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APPENDIX A

SOLVING EQ. 1 FOR TWO SETS OF
BOUNDARY CONDITIONS

FOR BOUNDARY CONDITIONS 8

Eq. 1 can be solved for boundary conditions 8 by
taking the equation’s Laplace transform with
respect to ¢ and inverting the solution to the
resulting ordinary differential equation. The inver-
sion (which results in Eq. 11 is made by using
formula 19, Appendix E of Ref, 18 and formula 11,
Appendix B of Ref. 17.

FOR BOUNDARY CONDITIONS 9

By a. similar transformation and inversion, Eq. 1
can be solved for conditions 9. After Laplace
transformation of Eq. 1, an ordinary differential
equation results. Solution of this differential
eguation and application of cond’tions 9 yield a
transform of the form:

21 .t Ind. & Eng. Chem. (1947) Vol. 40,

€, 1 ghvsre® (A-1)
Co 8 gfvstar
With s replaced by p — @2 this becomes:
‘ § . | e"kV [
c '—-2 7__;- « s (A'Z)
p-a pta

Carslaw and Jaeger give the inverse of

e-k\/ p

v———————

Vo th

Sev———

p~a

with the restriction that b? # a Of course, this
restriction is not met by Eq, A-2, where the terms
corresponding to a and b2 are prec;sely equal.. If,
however, the limit as a approaches b2 of Carslaw
and Jaeger's inverse transform is taken, then the
result (modified for the substitution s =p — &)
satisfies Eq. 1 and conditions 9.-Thus, the solution
to Eq. 1 for conditions 9 isobtained rather simply
as Eq, 13.



APPENDIX B

SIMILARITY BETWEEN DEANS’
MODEL AND DIFFUSION MODEL

Klinkenberg2! notes that for Z>1 and Y>2,
Eq. 22 becomes, to a close approximation,

c=-|§-[_!+erf(\f'z-\/—+
L .
8\I'Z'+8\/7)] C e e e e e (B-1)

For Z =Y (le.,, x vt or y =) and for large Z

and Y, Eq. B-1 reduces to
g .L va_ y-I,y. .
G~ 7 e t2imn VT

which is nearly identical to the diffusion model
solutions 12, 14, and 15 provided that

(B-2)

- v B-3)°
‘ly-l“_f e v e s . (B-3)
or
v2 (1-£)2
A B-4
D K (B-4)

Eq. B-4 is the same equivalence developed by
Deans through the limiting form of his solution to
Eq. 21 for an input concentration pulse, If K is
proportional to velocity then B-4 predicts that the
dispersion coefficient will be linearly proportional
to velocity.

APPENDIX C
SOLUTION OF EQS. 29 AND 30

The Laplace transformation of Egs. 29 and 30

and the solution of the resulting ordmary differential

equation give

i

- Yy
Cly,s) 2 -31 /i+%
= 2e

Co

(It aks+Tp ;))

3(I+\/l'r4s (l'ra/(s-s- )))

« « (C-1)

where C (3,5) = [T &SI C (,]) d] is the Laplace
0

transform of C.
As covered in detail by Churchilll” the inverse
transform of C()./,s) is given by

a4

a+if im

Cly,d) = =L lim e Cly,s)ds,

e » +(C-2)

where s is the complex quantity a + iZ, If T (v,8) is
expressed in the form

C(y,s) =p+iq,

then C-2 can be written

(*2}

C( 'J) aJ . 1
é =%/ (pcos ZJ - qsin ZJ)dZ
t Vo

(C-3)
where Z is real. Any a>0 is admissable here and

for y = 1, a=1, and for C given by C-1, Eq. C-3
becomes:

AT 8
C(J) 29" (I Vpcos S
CO m |2 + 022

(a; cos(ZJ-w) + ap sin(ZJ-w)) dZ

......... (C-4)
where
6 =tan” viu
2
u=|+‘7i(|+ ba * afi +Z7)
(14b)2 + Z2
_ 42 b
Y U+ 22
p=vu? + 2 -
b =af/(l-f)

ap=Z(I+Vpcos -Q) + \/Fsih—g—

The solution C-4 was numerically evaluated by
Simpson’s rule of numerical integration at a ‘‘cost’’
of about 30 seconds of IBM 7072 time for each
value of J. Kk
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