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A Mathematical Model Water Movement about
Bottom-Water-Drive Reservoirs

KEITH H, COATS *
JUNIOR MEMBER AIME

ABSTRACT

This paper presents the development and solution
of a mathematical model for aquifer water move-
ment about bottom-water-drive reservoirs. Pressure
gradients in the vertical direction due to water flow
are taken into account. A vertical permeability
equal to a fraction of the horizontal permeability is
also included in the model. The solution is given
in the form of a dimensionless pressure-drop quantity
‘tabulated as a function of dimensionless time, This
quantity can be used in given equations to compute
reservoir pressure from a known water-influx rate,
to predict water-influx rate (or cumulative amount)
from a reservoir-pressure schedule or to predict
gas reservoir pressure and pore-volume performance
from a given gas-in-place schedule, The model is

applied in example problems to gas-storage reser- -

voirs, and the difference between reservoir per-
formances predicted by the thick sand model of
this paper and the horizontal, radial-flow model is
shown to be appreciable,

INTRODUCTION

The calculation of agquifer water movement into or
out of oil and gas reservoirs situated on aquifers
is important in pressure maintenance studies,
material-balance and well-flooding ‘calculations.
In gas storage operations, a kaowledge of the water
movement is especially important in predicting
pressure and pore-volume behavior. Throughout this
paper the term ‘‘pore volume'’ denotes volume
occupied by the reservoir fluid, while the term **flow
model’’ refers to the idealized or mathematical
representation of water flow in the reservoir-aquifer
system. . .

The prediction of water movement requires selec~
tion of a flow model for the reservoir-aquifer system.
A physically reasonable flow model treated in detail
to date -is the radial-flow model considered by van
Everdingen and Hurst! In many cases the reservoir
is situated on top of the aquifer with a continuous
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horizontal interface between reservoir fluid and
aquifer water and with a significant depth of aquifer
underlying the reservoir. In these cases, bottom-
water drive will occur, and a threeedimensional
model accounting for the pressure gradient and
water flow in the vertical direction should be
employed, This paper treats such a model in detail
— from the description of the model through for-
mulation of the governing partial differential equation
to solution of the equa:ion and preparation of tables
giving dimensionless pressure drop as a function of
dimensionless time. The model rigorously accounts
for the practical case of a vertical permeability
equal to some fraction of the horizontal permeability.
The pressure-drop values can be used in given
equations to predict reservoir pressure from a known
water-influx rate or to predict water-influx rate (or
cumulative amount) when the reservoir pressure is
known,

The inclusion of gravity in this analysis is actually
trivial since gravity has virtually no effect on the
flow of a homogeneous, slightly compressible fluid
in a fixed-boundary system subject to the boundary
conditions imposed in this study. Thus, if the
acceleration of gravity is set equal to zero in the
following equations, the final result is unchanged.
The pressure distribution is altered by inclusion of
gravity in the analysis, but only by the time-constant
hydrostatic head.

The equations developed are applied in an example
case study to predict the pressure and pore-volume
behavior of a gas storage reservoir, The prediction
of reservoir performance based on the bottom-water-
drive model is shown to differ significantly from
that based on van Everdingen and Hurst's horizontal-
flow model, :

DESCRIPTION OF FLOW MODEL

The edge-water-drive flow model treated by van
Everdingen and Hurst! is shown in Fig. la. The
aquifer thickness b is small in relation to reservoir
radius 75, water invades or recedes from the field
at the latter’s edges, and only horizontal radial
flow is considered as shown in Fig, 1b. The bottom-
water-drive reservoir-aquifer system treated herein
is sketched in Fig, 2a and 2b. Here the aquifer
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thickness b is appreciable in relation to r;, water
flows into and out of the reservoir across a roughly
horizontal reservoir fluid-water interface, and flow
components in the vertical ditection exist. The
aquifer is considered as a right circular cylinder
of height b and exterior radius r,, with upper and
lower faces impermeable except for that portion
(r <rp) of the upper face intersected by the reservoir.
The aquifer formation is considered to have constant,
but unequal, permeabilities in the horizontal and
vertical directions, The case of an average vertical
permeability equal to a fraction of the average
horizontal permeability is a practical one in aquifers
riddled with thin, discontinuous shale streaks. This
fraction may be taken as 1.0, of course, for applica-
tions of this thick sand model to aquifers considered
homogeneous,

MATHEMATICAL CONSIDERATIONS

The partial differential equation governing un-
steady-state flow of a slightly compressiblie fluid in
the geometry shown in Fig. 2b appears as

)
R 02" b a °°
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where kg is the ratio of vertical effective permea-
bility &y to horizontal permeability & Definition of
the new variables,

D=1/ Th e o v o o v o v v o v o v (2)
y=z2/tp VER v cv e e (B

tp=kt/pperp2*, o v v e e e e D)

“¥hen the units given in the Nomenclatute are used, &p = 6,33k ¢/pdcry?,
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' FiG. 1b — IDEALIZED FLOW .MODEL FOR EDGE-
WATER-DRIVE SYSTEM.
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and

P(rp, y, tp) = pi(yy - plrp, v» tD)y « « . (5)
allows Eq. 1 to be written

% 1 op , &P _ op ©
orp? rp drp ay2 dtp Tt
The pressure p; (y) is the initial aquifer pressure

which is assumed to be constant except for the
vertical variation due to gravity. That is,

p‘.(y)=po+p~éz N )

where p, is a constant equal to the initial aquifer
pressure at the horizontal plane of the reservoir,
z = 0 (see Fig. 2b).

Eq. 6 is solved here for the case of an infinite
aquifer (i.e., 7o = o) and for the '‘constant rate
case’’" wherein the rate of water flow across the
reservoir-aquifer interface (z = 0,7 < 7p) is specified.
The basic solution is obtained for a constant rate
of water influx, while the general solution for an
arbitrary time-dependent rate is obtained by applica-
tion of Duhamel’s superposition principle3 to the
basic solution. The velocity of water flow vertically
into the reservoir is given by Darcy’s law as

pate (22 8
T 0z ch z=0

If this velocity is considered constant over the
area of the reservoir (0<r<rp), then the volumetric
rate of water influx, e, is given by

k,[dp g
2
ew,=m,,f(3;—r'§c—> S

z=0

e v e s (B

which is equivalent to
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¥1G, 2b — IDEALIZED FLOW MODEL FOR BOTTOM-
WATER-DRIVE SYSTEM,
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_ nrpk Ve (éf) . (10)
y=° .8 L] L] » -

fw = K dy

Thus, the boundary condition at z = 0 for the basic
(constant rate) solution is

P ey I
—_—, <
_a__P ﬂfbk kR 0_7‘D<1
) e v
y y:=0 0

y 1L7rp

L A L R R e e N N R L T T T (11)

where e, is considered constant. The initial con-
dition and other boundary conditions corresponding
to impermeable lower boundaries, finiteness of
P at r = 0 and equilibrium at 7 = e are

Prp, % 0)=0, + « v v ye... (12)

“[aP
op =0 v v v e .. (13)
(3>'>y = b/ry ViR <

lim Plrp, y, 2p) =0, « v v v v i .. (14)
Tp-00

and
B P, yap) =finice | .. s
deO .

The assumption of a constant influx velocity u
(Eq. 8) over the reservoir area r < r is actually
open to little objection since, if u were considered
a function of radius rp, the solution obtained would
show the same time dependence but would differ by
a multiplicative constant, Since the solution (Eq.
16) contains the multiplicative constant p/mryk VER,
the appearance of another constant is immaterial
for two reasons: (1) the factors &/p, rp, and VEg
are not generally known exactly; and (2) the con-
stant p/mrpkyEg will be chosen in a practical case
by matching predicted pressures with available
field data. .

The solution to Eq. 6 for the conditions of Egs.
11 through 15 is derived in the Appendix and appears

as
00 (x)
P(rp, o, tp) = E IO hx [coth Mx
-2, =00 (x24 g2 Mp .
e P 2 Ty g7 TOmiD Jolrpx) dx
Mx M -1 %%+ a2,

e 6 19
where y has been set equal to zero,

ew F' d

SE is .0502 e,/ rpk /&g Wheh units given in the Nomenclatute are used.
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M = b/ry\k R,

Since this solution varies with radius rp, the
question arises as to what value of 7p between 0
and 1. should be chosen for numerical evaluation
of P. Rather than choosing a single value of rp,
the solution Eq, 16 was integrated over the radius
to obtain the *‘areal mean’’ dimensionless reservoir-
pressure drop,

1
1 fO 2arp P(rp, o. tp)drp

P(tp) = & T .. an
or .
e 2 —x2tp
B(tp) = 2 Jo h—x(zﬂ [coth Mx — eMx

2 2
2 m = oo '%x + a m”D
- = > 1-2——5—— de . . .(18)
M m=1 X< + a,

P was numerically integrated on an IBM 704
digital computer for several values of the parameter
M, and the results are listed in Table 1. Although
the integrations were carried out to a dimensionless
time of 1,600, the results can be approximated
quite closely* for £p > 10 by '

1 _
Pe=A+—prlotp o oo vo .. (19

where A is a constant dependent upon M as shown
in Table 2 and Fig, 3, Values of P, for tp < 10 and
for values of M not listed in Table I, can be found
by interpolating between curves of P vs tp as shown
in Fig. 4. Cross plots of P vs M with tp as parameter
would also serve this purpose, )

WORKING EQUATIONS
Combination of Eqs. 5, 7, 16 and 17 yields

0502 ey,
p=p, ~ TLk :7ZR

which gives reservoir pressure p as a function of
time for a constant rate of water influx e, The
constant 7 has been absorbed into other unit con-
version factors to give the constant .0502; units of
the variables present are given in the Nomenclature,
Application of Duhamel’s superposition principle3

P(tp), « « « (20

‘to the constant-rate-case solution (Eq. 20)gives the

*‘variable-rate-case’’ solution

0502 L, 5
pi -..-.Po - ﬂm—% .é"o Ae' F,_, . -(21)

Since A%y is defined as &; 41 — &7 and &; as the

*The etror b values of P tab d in Table 1/and caiculated from E;1. 19is
less than 1 per cent et 1y =~ L0 and decreases rap:dly with increasing time.
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TABLE 1 ~ DIMENSIONL.ESS PRESSURE DROP V§

DIMEMNSIONLESS TIME FOR THICK SAND MODEL
P Values for Different Values of M

n

o1
2

90
100
120
140
160
180
200
220
240
260
280
300
330
360
390
420
450
480
510
540
570
600
650
700
750
800
850
900
950

1000
1050
1100
1150
1200
1250
1300
1350
1400
1450
1500
1550
1600

M=.05

M=,

M=3

1,433
2,675
3,649
4,464
5.166
7,693

10,590

12,442

13,789

14,848

15,722

16,465

17.1n

17.684

18,198

19.089

19.846

20,503

21,083

21,603

22,505

23.269

23.931

24,516

25.039

25,625

26,149

26.623

27,057

27,824

28,490

29,077

29.603

30,512

31,282

31.948

32,536

33,062

33,538

33,973

34,373

34,743

35,088

35,564

35,999

36,399

36,769

37,114

37,436

37,739

38,025

38,295

38,551

38,951

39,322

39,667

39,989

40,292

40,578

40.840

41,105

41,335

41.581

41,803

42,016

42,220

42,416

42,605

42,787

42,962

43132

43,296

43.454

741
1,362
1.849
2,257
2.608
3871
5.319
6,245
6,919
7.448
7,885
8,257
8.580
8.866
9.123
9.569
9.947

10,276

10,566

10,826
11.277
11,659
11,990
12,282
12,544
12,837
13,099
13.336
13,553
13,937
14,269
14,563
14,826
15.281
15,665
15.998
16,292
15.556
16,794
17,011
17.211
17,396
17,568
17,806
18.024
18,224
18,409
18,581
18,742
18,894
19,037
19,172
19,300
19,500
19,685

19,858

20.019
20,171
20,313
20.449
20.577
20.699
20.815
20,926
21,032
21,134
21,233
21.327
21.418
21.505
21.590
21.672
21.752
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«329
+536
+699
0835
952
1.373
1.856
2,164

2339

2,565
2m
2,835
2942
3.038
3.123
3,272
3,398
3.508
3.604
3.691
3.841
3.969
4.079
4177
4,264
4,361
4,449
4.528
4,600
4,728
4,839
4,937

5.024

5,176
5,304
5.414
5.513
5.601
5.680
5,753
5.819
5.881
5,938
6,018
6,090
6.157

6,219

6,276
6,330
6,380
6,428
6.473
6,515
6,582
6.644
6.702
6,755
6.806
6,854
6.899
6,941
6,982
7.021
7.058
7.093
7.127
7,160
7191
7.222
7,251
7,279
7.306

M=,5

.287

412

,509

591

661

914
1,204
1.389
1.523
1.629
1717
1.791
1.856
1913
1.964
2,053
2,129
2195
2.253
2,305
2:395
2,471
2,538
2,596
2,648
2,707
2,759
2,807
2,850
2,927
2,994
3,052
3.105
3,196
3.272
3,339
3,398
3,451
3,498
3,542
3,582
3,619
3,653
3,701
3,744
3,784
3.821
3,856
3,888
3918
3.947
3,974
4,000
4,040
4.077
4m
4143
4174
4202
4.229
4,255
4.279
4,303
4325
4346
4.367
4,386
4,405
4.423
4441
4,458
4.474

7.33291 4.490

M=,7

.285
.383
454
512
562
743
950

1.082

1178

1.254

1.316

1.369

1.416

1.456

1,493

1.557

1611

1.658

1.699

1.736

1.801

1.858

1,903

1.944

1.982

2,024

2061

2,095

2,126

2,181

2228

2.270

2,308

2,373

2.428

2,475

2,517

2.555

2,589

2,620

2,649

2,675

2.700

2,734

2,765

2793

2,820

2.844

2,867

2,889

2.909

2,929

2.947

2.976

3.002

3.027

3,050

3,071

3,092

31

3129

3,147

3,163

3,179

3.194

3,209

3,223

3,237

3,250

3.262

3.274

3.286

3,300

M=.9

«285

377

436

483

522

663

824

927
1.001
1.060
1.109
1.150
1.186
1,218
1,246
1.296
1,338
1.374
1.407
1.435
1.486
1,528
1,565
1.597
1,626
1.659
1,688
1.714
].738
1.781
1.818
1.851
1.880
1.930
1,973
2,010
2,043
2,072
2,099
2,123
2,145
2,165
2,185
2,211
2,235
2,257
2,278
2.297
2,315
2,332
2.348
2,363
2,377
2,399
2,420
2.439
2.457
2,474
2.490
2,505
2,519
2,532
2,545
2.558
2,570
2,581
2.592
2.602
2.612
2,622
2,631
2,641
2,649

M=1.0

«285

377

A36

483

«521

.6‘8

792

+885

952
1.005
1,049
1,086
L1e
1,147
1.173
1.217
1.255
1.288
1.317
1,343
1.388
1.426
1.459
1.489
1.515
1.544
1.570
1.594
1.616
1.654
1.687
L.717
1.743
1.788
1.827

1.860 -

1.890
1.916
1,940
L961
1.981
2,000
2,017
2,041
2,063
2,083
2,101
2,119
2,135
2,150
2.164
2,178
2.190
2,210
2,229
2,246
2,262
2.277
2,292
2,305
2,318
2,330
2,342
2,353
2,364
2,374
2,384
2,393
2,402
2411
2,419
2,428
2,436

TABLE 2 — DEPENDENCE OF A UPON M

M A
W05 . 00 0 v s s 65644
0 040 s 0 e o 33065
30 ¢ 0 a0 v .. 1.1846
S0 . 408 s 0 o 0.8010
J0 4 0 s e s e e 0.6622
F0 40040 s o 06000
100 o o v a0 o s 059

average rate of water influx during the time increment
from (i — 1)At to iAt, & is simply

e (Vimy ~Vi)/A2 . o v v 0 000 L (22
and

AZ; = Byyy — 8y = (2V; = Viog ~Vi W
= AV,/At,

Therefore, Eq, 21 can be written as

0502 =il =
Py = bo —rbla \/EAE i§0 Avipf-—a'
e e e e e e e e e e . (23)
and gives reservoir pressure p as a function of
time for an arbitrary, time-variant water-influx
tate or, equivalently, reservoir pore volume variation.
The solution for the case of constant reservoir
pressure, while not obtained directly bere, can be
approximated by re-arranging Eq. 23 as

, i=j-2
_ - _ _.0502 =
bo -~ pj = Op = mk VERAL ;'z'o AV Py
+ (Vg ~Vi2)Py -V 131].
and ‘

i=j-2 :
Vj =—.I—,l—[ -Eo AV,- Pj—l + (2Vi_1 -~ V’-._z)

1 i=
20
10
Iy
6.0 AN

4.0
20 \
A 10 N

~ N MO

0 2 4 6 8 10
Mo
FIG. 3 — PLOT OF 4 VS M FOR THICK SAND MODEL.
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FIG. 4 — P AS A FUNCTION OF tp, AND M.

~ rpk VERAL Ap g
Pl"—"'oj_o'f_#——]' e e e e (248

Eq. 24 gives the resetvoir pore volume V as a
function of time when the reservoit pressure p is
held at a constant value less than p, by A, The
cumulative volume of water influx into the reservoir
is, of course,

Wem Vo =Vj v o oo ve v v (29)
EXAMPLE PROBLEM 1

A gas storage teservoir has been created by in-
jection of gas into an aquifer formation. The field
has been grown to a radius r, of 3,000 ft and has
been shut in for a period of time sufficient to allow
the reservoir and aquifer pressure to reach an approx-
imately uniform value of 1,080 psia. Estimate the
reservoir pressure as a function of time which must
be maintained to grow the gas bubble at a constant
rate of 80 Mcf of pore volume/D. The aquifer for-
mation is 550-ft thick, core data indicate a permea-
bility ratio kp of .37, and water-pumping tests
indicate an effective aquifer horizontal permeability
of .310 darcies. Other available data are ¢ =
¢=7x%x1078 1/psi, p=1 cp.

SOLUTION

Since the rate of water movement is specified to
be constant and bottom-water drive exists, the
constant-rate Eq. 20 will be employed. The value
M is

M= b/rb\/k R™ 550/3000 /.37 = 0.3,

so that P values corresponding to M = .3 will be
tead from Table 1. If pressures are calculated at
30-day intervals, then at the end of i 30-day neriods,

: 6.33% At
DTy ¢ ery?
'6.33 (.310) (30)
1(.17)(7x1076)(3000)2
= 5-5 1.

18

Interpolation in Table 1 at M = .3 then yields the
first three columns of Table 3. From the data given,

.0502 2 ewlt .0502(~80, 000)(1)
ok VER  3000(.310) v.37
where ey, is negative because the bubble is being

grown and water is moving away from the reservoir,
Eq. 20 now becomes

~7.1

p =po+7.1P =108 + 7.1 B,

which allows calculation of the last column in Table
3. The required gas-injection schedule could be
calculated from the gas equation of state n=pV/zRT
where p is reservoir pressure, V is reservoir pore
volume, nis gas inplace and 2 is the compressibility
factor (the reservoir pore volume V, at '*zero time"',
when uniform pressure of 1,080 exists, would have
to be known).

Egs. 20, 23 and 24 are the basic *‘working equa-
tions’' allowing calculation of reservoir pressure
or volume from knowledge of the water-influx rate
or reservoir pressure, In general, however, neither
the influx rate nor reservoir pressure is known in
advance; rather, a fluid-in-place (oil or gas) schedule

. isknown or specified and an estimate of the reservoir

performance (pressure and/or pore volume vs time)
is desired. In this case, a relationship is needed
between fluid in place, pore volume V and reservoir
pressure p, i.e., a'material-balance equation. In the
case of gas reservoirs, this material balance is
exceptionally simple and will be used in conjunction
with Eq. 23 to yield a pressure-explicit equation for
use in solution of the problem just stated. For a
gas reservoir,

v, =nRT(Z\", . ... ... ... (6)
f i(p)i

and since z can be represented as a linear function
of pressure over normal operating pressure ranges,

zZj =a + bp/
and

Vi=mRT(b + a/py) v v v v v v v v . (20)

*The assumption is implied hete that the r pis ially uniform
so that ; in Eq3. 26 and 23 are in the same pressure,

TABLE 3
" Time —_ Reservoir
(months) tn P Prossure p (psi)

[1] 4] ] 1080

1 5.5 2,638 1098.7
2 1 3.197 1102.7
3 165 3.532 1105.1
4 22 3.766 1106.8
5 27.5 3.953 1108

[ 33.0 4,103 1109.1
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Eq. 23 can be written

=2
L0502 p [‘é

v, B,_
rpk VRRAL =0 Av, -t

P =bo

+ (2Vj-1. - Viwz)ﬁl ~V; ?1], . . (28)

and elimination of Vi between Eq. 27 and Eq. 28
yields a quadratic in p; which gives

pi=C,+D’............-(29)

where

f=j2

* 1 - .

C¢; = ?[po + FP1RTbn; ~ F( .20 AV;Pjy
fe=

+ (2V,_.1 - Vj_2)$1>] ’
D; = C} + FP{RTn;a,
and

F = ,0502 p/rpk \ER At

Eq. 29 allows direct calcvlation of gas reservoir
pressure at successive times of At,2A¢, 3Ae, ., . .,
for any given gas-in-place schedule n;. Coats, Tek
and Katz? derived an equation similar to Eq. 29
from the constant-rate-case solution given by van
Everdingen and Hurst! for horizontal, radial aquifer
water flow.

EXAMPLE PROBLEM 2

A newly discovered gas reservoir is to be con-
verted to storage use after a period of production.
The projected schedule of cumulative gas production
. is plotted in Fig. 5. The following data are available

=1 -
*For j=1, 1£o AVi Py ;=0

vl-? =y =V,

/ ij {,

12

8

i %

10" GP - SCF
S (o)
i
——

N

0 40 80 120 160 200 240 280
TIME - MONTHS

FIG. 5 — CUMULATIVE GAS PRODEJCTION' AS A
FUNCTION OF TIME,
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from various testsand sources; V, = 4.4 x 108 cu ft,
Po = 466 psia, ry = 1,880 ft, k£ = .0296 darcies,
p=1.2 cp, RT = 5,570 psia cu ft/Ib mole, ¢ = 0.2,
¢ =7 x106 1/psi, b = 565 ft, kp = 1.0, a = .998,
and b = ~ .00016, Estimate the pressure and pote-
volume behavior of the reservoir using the thick
sand model, and compare this behavior to that
predicted by the horizontal, radial-flow model.

SOLUTION

The production schedule plotted in Fig. 5 consists
of monthly values of cumulative gas produced over
a period of 254 months. A time increment At of one
month, or 30.4 days, will be chosen therefore. From
the data and Eq. 27,

ny = Vo /RT (b + a/p,)
= 4.4 x 108/5570(~.00016 + .998/466)
= 39.9 x 106 1b mole.

The gas in place. at time jA? is then

ny=ng~Gpiphase/RTage
=n, =~ Gp;[15.025/10.73 (520)]

where Gp; is the cumulative standard cubic feet of
gas produced at the end of j months. An IBM 704
computer program was written to accept the gas-
production schedule, the afore-mentioned data,
and a table of P values vs dimensionless time ¢p
for M = b/ry, \JER = 565/1880 (1) = .3 to calculate
the gas-in-place n;; and solve Eq. 29 for the predicted
pressuce p These pressure and the corresponding
pore volumes, calculated from Eq. 27, are plotted
as the solid curves in Figs. 6 and 7.

. The variable-pressure-case solution for the
horizontal, radial-flow model! is

i=7~1
W, = mheery? ,.‘_é-__o ApiQj—i

where Ap; =p;1 — Pyi1, Mpp = po ~prand Qj—;
is the dimensionless influx quantity Q at tp= (j=3)
Atp tabulated by van Everdingen and Hurst. Com-
bination of this equation with Figs, 25 and 27 gives
a pressure-explicit equation4 similar ro Eq. 29,
Solution of this equation for the same data previously
given, the same gas-in-place schedule and for an
infinite (in radial extent) aquifer gave the dashed
curves shown in Figs. 6 and 7. '

DISCUSSION AND CONCLUSIONS

Eq. 16 or Eq. 20 is, to the author’s knowledge,
the only solution available to the diffusivity equation
governing aquifer water movement about a bottom-
water-drive reservoir.' While this solution is valid
for radially infinite aquifers, other solutions can
be obtained by use of finite Hankel transforms
(see Appendix) for aquifers of various degrees of
finiteness. Example Problem 2 shows that significant
differences may arise between field performances
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predicted by the thick sand and horizontal radial-
flow models. Figs. 6 and 7 show quantitatively the
differences between reservoir pressures and pore
volumes calculated from the two models.

In recent years increasing emphasis has been
placed on the “‘resistance-curve” technique as
opposed to the flow-model approach. The latter
approach by necessity involves various idealizations
pertinent to reservoir and aquifer geometry and
aquifer homogeneity. The objection thus arises
that most practical cases violate significantly one
or more of these idealizations., The resistance-
curve method meets this objection by requiring no
assumptions concerning aquifer geometcry and homo-
geneity but, rather, involves the determination of a
resistance-curve analogous to the P vs ¢p curve of
this paper or the Q; vs ¢p function of van Everdingen
and Huestl directly from field data. The paper by
Hutchinson and Sikora® is an example of this method.

It is the author’s opinion that the resistance-
cuwrve method will, in the long run, replace the
model approach with resultant increased ease

and accuracy in calculation of water movement.-

However, this method has been of little value to
date in studies of edge-water-drive gas fields
carried out at the U. of Michigan, and requires
development far beyond its present state, Various
degrees of success in matching field behavior have
been achieved by use of the horizontal radial-flow
model, reflecting the various degrees to which the
edge-water-drive fields studied satisfy the idealiza-
tions involved in that model. At the present time,
flow models provide a useful tool in’ prediction of
reservoir performance and, in the future, should
remain useful as standards for comparison to
resistance curves obtained from field data by a
reliable method. For example, conclusions pertinent
to aquifer geometry and/or extrapolation (in time)
of resistance curves might be accomplished by
comparing these curves to those corresponding to
various models.
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NOMENCLATURE
a = constant in equation 2 = a + &p, dimen-
sionless
b = constant in equation z = @ + bp, 1/psi

¢ = compressibility of aquifer water and for-
mation, 1/psi

= e b/mpk Vg
w = rate of water influx, cu ft/day

average rate of water influx from time
(i ~1)At to iAt, cu ft/day

Az = 7yyq ~F

]
m
[

0
s,
[ ]

n
n
n

conversion constant, 32.17 ft-lb mass/
1b force-second?

b = aquifer thickness, ft
Bessel functions of first kind, of order 0
1, respectively

k = aquifer formation permeability in hori-
zontal direction, darcies

]
o
-y
-y
n

kp =ratio of vertical-to-horizontal aquifer
permeability

k, = aquifer formation permeability in vertical
direction, darcies

M = parameter, A/rp\ER

nj = gas in place in reservoir at time jAz, Ib

mole
p = pressure, psia
p;(¥) = initial aquifer pressure, psia
p; = reservoir pressure at time {A¢, psia

po = initial aquifer (and reservoir) pressure
at reservoir depth, psia

P = dimensionless pressure-drop function
P, = value of P ot tp = iAtp
’ -
Apy = pi~1 ~Pis1

r = radius, ft
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" 96 - _ __MODEL__; a AN
92 X N ——
v 88—
Vo g4 X [ :
R 2
: M o >~ RADIAL FLOW
76— o f MODEL—
I

72
0 40 80 120 160 200 240 280
TIME - MONTHS

FIG. 7 — RESERVOIR-PORE-VOLUME RATIOC AS A
FUNCTION OF TIME.
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rp = dimensionless radius, r/7y

ry = radius of reservoir, ft

re = exterior radius of aquifer, ft

R = gas constant, 10.73 psia-cu ft/Ib mole-"R
t = time, days

At = time increment, days

tp = dimensionless time, 6.33 llat/;u;‘x:rg,2
T = reservoir temperature, °R
u = velocity of aquifer water flow, ft/day

V = reservoir pore volume, cu ft

V; =1eservoir pore volume at time iAt; cu ft,

Vor =V,
AVy =2V; = Viq = Via1 AV, =V, = Vg

V, = initial reservoir pore volume, cu ft

W, = cumulative water influx, cu ft :
y = dimensionless vertical distance, z/rpVkR
~ = vertical distance co-ordinate, ft, or gas

compressibility factor, dimensionless

p = density, b mass/cu fe

¢ = aquifer formation porosity

Ay = mr/M
i = aquifer water viscosity, cp
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APPENDIX

The solution to Eq. 6 for conditions of Egs. 11
theough 15 is obtained by use of the infinite Harkel
transform® defined by

Ux, y, tp) = foquP(TD- ¥ tplo(xrpldrp . (30)
P
Followmg Sneddon, the Hankel transform of —; 2
1 9P g
p Orp

_:[: <~_——gr -lD Ear—-—) Jo(xrp)drp =—x2U(x,y,tp),
e e B ) )

MARCH, 1962

so that multiplication of both sides of Eq. 6 by
mpJo (¥rp)drp and integration from zero to « yields

ﬂ ..“2[] = _.(.9__[_,.’
ay? . oty

Solution of Eq. 32 by separation of variables,
U(x, v, tp) = Y(y) 0(t p), yields

» o e o s & » & » (32)

U = A cosh xy + B sinh xy
2,
+ e~Mip (C cos yM2 -x2y
+ D sin \/Az'-x2y> S (33)

In order that Eq. 11 be satisfied,

CLA f(x)
ayy=0

where ]-'-(x) is the Hankel transform of f(rp), so that

- ~AZ
Bx + DM -x2¢ ‘D-—f(x)

o0

= fo rpf(rp) ] o{%rp)drp
1 J1(x)

x 14

=-fE]o(er)derD = ~F .. (34)

and D must equal zero and B must be - E I (x)/%>
if Eq. 34 is to hold for all time. Thus, Uis riow
given by

%) .
5 sinh xy

2
+ Ccos YA2-x2y M .

In order that Eq. 12 be satisfied,

au
0 yon

E
U = A cosh xy ~

=0

= A sinh Mx ~

E
flx("> cosh Mx —C A2 —~x2
. sin (\/)Lz -x2 M) e—)‘zln,

which requires

cothMx . . . . .. . ..

£] (x)
A = T

Thus, U is now give?: by

U= E], (%) {cosh [x(M—y)]}

x2 sinh Mx
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=00
+ T Cpcosamy e
m=0
where A2 =x2 +a,? and the summation is imposed
in order to satisfy the initial condition of Eq. 12.
This initial condition is U(x,y,0) = 0 or

Matb 37

m=0o0 - EJ1(x) cosh [,r(M:y)]
C = -
,,,E_:__o m COS GmY x2 sinh Mx
C ke et e e e e e e e e s +(38)

The terms cos a,y form an orthogonal set over the
interval (0, M), so that multiplication of both sides
of Eq. 38 by cos (a,y)dy and integration from 0
to M yields

Co = - 2E]; (x)
T (@t xYMx !
and
Ejj (x)
o=~ " -

The final solution for U now appears.

" EJ; (x) Ycosh [x(M-y)] e-“zt.n
%Ystp)= %2 sinh Mx M-

m—oo —Az ‘D

_2z 3 -ETTTcos amy} . (39)

M m=0 a  +x

Since the Hankel inversion integral is®

P(rp.y. tp) = f:x Uz, y, tp)Jo rpx)dx, . . (40)

the final solution for P is

—~x2g
oo J; (x) coshlx(M~y)] %P
P(rp, . tp) =Efo % {sinh Mx | Mx

2y mave e—(:e""+afn )tD
-—— X ——a—— cosa,y

M m=1 x2~+ a"?

Jo(rp x)dx,

which becomes identical to Eq. 16 when y is set
equal to zero, * Kk
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DISCUSSION

J. E. WARREN
MEMBER AIME

The mathematical problem considered by the
author can be given another physical interpretation
which is of some practical significance. The alter-
native physical problem involves the approximate
behavior of a single well which is producing at a
constant rate through an axially symmetric, hori-
zontal fracture of infinite flow capacity which is
located at the center, top or bottom of 2 uniformly
thick, horizontal, homogeneous, anisorropic reser-
voir of infinite lateral extent which contains a
single, slightly compressible fluid. Using Coats’
asymptotic results, the wellbore pressure in the
fractured system is given by the following equation.

162.5 g B

.00633 &k ¢

1

kb {og<¢pcrw2>
+.351 + .87 S*}; t>1580 ¢ pc r/z/k
P ¢ 9

MA(M/2) ~1n (5 /1,,) - 4045, center,

2MAM) ~ 1n (ry/r,) — .4045, top or
‘bottom,

.pw-:pl—.

where S* =

geometric constant (numerical values
are given in Table 2 of the subject
paper),

b R7E, /7fv

permeability in the horizontal direc-

A(M)

M
k

tion, and -

k, = permeability in the vertical direction.

It is obvious that Eq. 1 differs from the usual
equation for radial flow into a wellbore by the
geometric parameter §*; this result is in accord

IReferences given at end of paper,

s#Standard AIME nomenclature iz used unless otherwise in-
dicated; units are psi, STB/D, cp, md, ft, reservoir bb1/STH,
(psi)™! end days.

DECEMBER, 1962

GULF RESEARCH & DEVELOPMENT CO.
PITTSBURGH, PA.

with the basic assumption made by Hartsock and
Warren? in a prior steady-state study of fractured
systems. Transient S*-values based on Coats’ re-
sults and steady-state values computed by the
method of Hartsock and Warren are compared in
Fig. D-1; the small, systematic deviations from the
ideal correlation are the result of the nonuniform
distritution of the flux over the fracture surface.

Because of the mathematical equivalence of the
two physical problems, the following supplementary
conclusions can be drawn.

1. By including the pseudo-skin resistance §*,
the performance of a reservoir with a bottom-water

FOR ALL STEADY-STATE CASES , FLOW
CAPACITY OF FRACTURE = 125,000 kh

FRACTURE IN CENTER OF FORMATION
6.8

*
(=]
T

~S"{TRANSIENT)
o
—

4.0F

3.
60 (2]

1
40 a8 50 55
-8 (STEADY-STATE)

FIG. D-1— COMPARISON OF TRANSIENT AND STEADY-
STATE RESULTS. © -
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drive can be asymptotically approximated by utiliz-
ing conventional methods which assume radial in-
flux; the values of A(M) given by Coats can be used
for limited aquifers if the external radius of the
aquifer is at least four times as large as the radius
of the region initially occupied by oil, r,, and ¢ >
1580 ¢ pc r,2/k.

2. If the rar‘xus of a high- capac:ty fracture is
less than one-fourth of the drainage radius, the
steady-state values of §* controls the performance
of the well for £ > 1580 é p c 74 2k, post-fracturing

production tests will indicate erroneously high Pl's

if the dutatxon of the production penod is less than
1580 ¢ p ¢ 7 2/k.
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AUTHOR’S REPLY TO J. E. WARREN

The equivalence pointed out between the bottom-
drive reservoir and fractured well problems is of
significant interest and is an outstanding example
of consolidation of distinct research results into a
more meaningful whole. Only one observation is
made here, Warren’s Conclusion 1 states that
bottom-drive reservoir performance can be asymp-
totically approximated by conventional methods
involving radial influx if the §* factor is included.
This conclusion applies with more meaning to the
fractured well problem where production rate is
held constant. In the case of a reservoir (especi-
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ally gas-storage reservoirs where cycling occurs),
the production (influx) rate may vary considerably
with time which requires that superposition be
applied to Eq. 1. The result of this superposition
is that dimensionless pressure-drop values at small
times are required and these values cannot be

-approximated by the asymptotic expression em-
" ployed in Eq. 1. Recourse must then be made to an

equation such as Eq. 21 of the subject paper, and
P values at dimensionless time less than 10 must

be obtained from the tables. '
——
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