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ABSTRACI’

This paper presents tbe development and solution
of a mathematical model for aquifer water move-
ment about bottom-water-drive reservoirs. Pressure
gradients in the vertica2 direction due to water /low
are taken into account, A vertical permeability
equal to a fraction of the borizorztal permeability is
also included in tbe model. The solution is given
in the /orm o~ a dimensionless pressure-drop quarztity

“tabulated as a function of dimensionless time. This
quantity can be used in given equations to compute
reservor? pressure irom a known water-inf Iux rat e,
to predict- water-infkv rate (or cumulrrtiwe amount)
from a reservoir-pressure schedule or to predict
gas reservoir pressure and pore-volume performance
from a given gas-in-place schedule. Tbe model is
applied in example problems to gas-storage reser- ~
voirs, and the difference between resewoir per-
@rmances predicted’ by tbe thick sand model of
this paper and tbe horizontal, radial-flow model is
shown to be appreciable,

INTRODUCTION

The calculation of aquifer water movement into or
out of oil and gas reservoirs situated on aquifers
is important irr pressure maintenance studies,
material-balance and well-flooding calculations.
In gas storage operations, a knowledge of the water
movement is especiaUy important in predicting
pressure and pore-volume behavior. Throughout this
paper the term “pore volume” denotes volume
occupied by the reservoir fluid, while the term ~~flow
model” refers to the idealized or mathematical
representation of water flow in the reservoir-aquifer
s yst em.

The prediction of water movement requirea selec-
tion of a flow model for the reservoir-aquifer syetem.
A physically reasonable flow model treated in detail
to date is the radial-flow model considered by van
Everdingen and Hurst} In many cases the reservoir
is situated on top of the aquifer with a contiriuoua
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horizontal interface between reservoir fluid and
aquifer water and with a significant depth of aquifer
underlying the reservoir. In these cases, bottom-
water drive will occur, and a three-dimensional
model accounting for the pressure gradient and
water flow in the vertical direction should be
employed, Thi a paper treats such a model in detaiI
— from the description of the model through for-
mulation of the governing partial differential equation
to solution of rhe equa :ion and preparation of tabIes
giving dimensionless pressure drop aa a function of
dimensionless time, The model rigoroual y accounts
for the practical case of a vertical permeability
equal to some fraction of the horizontal permeability.
The pressure-drop values can be used in given
equations to predict reservoir pressure from a known
water-influx rate or to predict water-influx rate (or
curnulat ive amount) when the re servok pressure is
known.

The inclusion of gravity in this analysis is actually
trivial since gravity has virtuaIly no effect on the
flow of a homogeneous, slightly compressible fluid
in a fixed-boundary system subject to the boundary
conditions imposed in this study. Thus, if the
acceleration of gravity is set equal to zero in the
following equations, the final result is unchanged.
The pressure distribution is altered by inclusion of
gravity in the analysis, but only by the time-constant
hydrostatic head.

The equations developed are applied in an example
case study to predict the pressure “and pore-volume
behsvior of a gas storage reservoir. The prediction
of reservoir performance based on the bottom-water-
drive model is shown to differ significantly from
that based on van Everdingen and Hurst’s horizontal-
flow model.

DESCRIPTION OF FLOW MODEL

The edge-water-drive flow model treated by van
Everdingen and Hurst 1 is shown irt Fig. la, The
aquifer thickness h is small in relation to reservoir
radius r~, water invades or recedes from the field
at the kter’s edges, and only horizontal radial
flow is considered as shown in Fig. lb. The bottom-
water-drive reservoir-aquifer system treated herein
is sketched in Fig. 2% and 2b. Here the aquifer



thickness h is appreciable in relstion to r~, water
flows into and out of the reservoir across a roughly
horizontal reservoir fluid-water interface, and flow
components in the vertical direction exist. The
aquifer is considered as a right circular cylinder
of height b and exterior radius T=, with upper and
lower faces impermeable except for that portion
(r< ~) of the upper face intersected by the reservoir.
The aquifer format ion is considered to have constant,
but unequal, permeabilities in the horizontal and
vertical directions. The case of an average vertical
permeability equal to a fraction of the average
horizontal permeability is a practical one in aquifers
riddled with thin, discontinuous shale streaks. This
fraction may be taken as 1.0, of course, for applica-
tions of this thick sand model to aquifers considered
homogeneous.

MATHEMATICAL CONSIDERATIONS

The partial different ial equation governing un-
steady-state flow of a slightly compressible fluid in
the geometry shown in Fig. 2b appears asz

where k R is the ratio of vertical effective perme a-
bility k ~ to horizontal permeability & Definition of
the new variables,

y=z/rbfi . . . . . . . . . . .. (3)

tD=kt/@C @*, . . . . . . . . . * ● (4)

When the unitsgivm i. the Nomenclature are used, b = 6.33k t /pd crk,2.
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p(rZl, Y, ~D) = tJj(Y) - i%, Y} ~ D), ● ● ● (5)

aHows Eq, 1 to be written

The pressure pi (y) is the initial aquifer pressure
which is assumed to be constant except for the
vertical variation due to gravity. That is,

Pi(y) =po+p:z .”...... .0 (7)

where PO is a constant equal to the initiaI aquifer
pressure at the horizontal plane of the reservoir,
z = O (see Fi~. 2b).

Eq. G is ao~ved ‘here for the case of an infinite
aquif~,rl (i.e., r= = M) and for the ‘~constant rate
case wherein the rate of water flow acrosa the
reservoir-aquifer interface (z = O,r “<r~) is specified.
The basic solution is obtained for a constant rate
of water influx, while the general solution for an
arbitrary time-dependent rate is”obtained by applica-
tion of Duhamel’s superposition principle3 ‘to the
basic solution. The velocity of water flow vertically
into the reservoir is given by Dare y’s law as -

‘=+4$$-’42=0 .*”’o*“)
If this velocity is considered constant over the
area of the reservoir (O< r< ?b), then the volumetric
rate of water infiux, ew is given by

ew ‘%+($-’5-).2=09~9(’)
which is equivalent co
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FIG. 2a — B~TOM-WATER-DRIVE FLDW SYSTEM. ,
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()nrbk & aP
ew = P

@y= o*.... . .(10)

Thus, the boundary condition at z= Ofor the basic
(constant rate) solution is

. . . . . . . . . . . . . . . . . . . (11)

where ew is considered constant. The initial con-
dition and other boundary conditions corresponding
to impermeable lower boundaries, finiteness of
P at r = O and equilibrium at r = m ~e

p(fDjyso)=o$ . . . . .. i.... ( 12)

()“~

‘y y = b/rh JzT=O’’”’”’””’(13)
lim p(rD, y,tD)= t), . . . . . . .. 0(14)
rD+X

and

Iim p(rDj y. ~D) ‘finite , . . . . . . (15)
rD+ 0

The assumption of a constant influx velocity u
(Eq. 8) over the reservoir area r < ?b is actually
open to little objection since, if u were considered
a function of radius rD, the solution obtained would
show the same time dependence but would differ by
a multiplicative constant. Since the solution (Eq.
16) contains the multiplicative constant p/rfrbk @
the appearance of another constant is immaterial
for two reasons: (1) the factors k/~ rb and ~
ate not generally known exactly; and (2) the con-

--
stant p/nrbk~will be chosen in a practical case~

- by matching predicted pressures with available~
field data.

u The solution to Eq. 6 for the conditions of Eqs.-Z
~=
5 1I through 15 is derived in rhe Appendix and appears
q as

-.. .

Since this solution varies with radius TD, the
question arises aa to what value of rD between O
and 1 should be chosen for numerical evaluation
of P. Rather than choosing a single value of rD,
the sol ution E q. 16 was integrated over the radius
to obtain the “areal mean” dimensionless reservoir-
pressure drop.

I-I
1 ‘6 2~D p(rD# o, tD)drD

~(tD) = ~ –
?T(I)2 I . . (17) I

or I

2

[

‘X2tDe
P(tD) = 2 $: ~ coth Mx - ~

1
-(X2+azm)t~2x ‘== e-—

M
z d% . . ,(18)

~=1 %2 +%2

T was numerically integrated on an IBM 704
digital computer for several values of the parameter
M, and the results are listed in Table 1, Although
the integrations were carried out to a dimensionless
time of 1,600, the results can be approximated
quite closely * for tD > IO by

f’=A+i@@”””’”””” “ (19)

where A is a constant dependent upon M as shown
in Table 2 and Fig, 3. Val&,a of ~, for tD <10 and
for values of M not listed in Table_I, cqn be found
by interpolating between curves of P vs tD as shown
in ~ig. 4. cross plots of~ vs M with tD as parameter
would also serve this purpose.

WORKING EQUATIONS

Combination of Eqs. 5, 7, 16 and 17 yields

nvt’) o ,. —

‘D’v VmK

[

which gives reservoir pressure p as a function of

m 11(%J Coth ~x
p(7D, O, t~) = ~ fn ~

time for a constant rate of water influx eu The
constant n has been absorbed into other unit con-

“. L version factors to give the constant .0502: units of

1
the variables present are given in the Nomenclature.

_X2tD & ~=’m =2+ a2m )tD
e Application of DuhameI’s superposition principles_— _.~

Mx M
]O(rDx) d%

~=1 X2 .+ a2nJ to the constant-rate-case solution (Eq. 20)gives the
“variable-rate-case” solution

. . . . . . . . . . . . . . . . . . ( 16)

where y has been set equal to zero,

ew P*
E=_, t, , and

??TbRvRR ‘ Since AFi is defined as ifi + I - Ei end =~ as the

*E is .0502 .awp/r~k G Wheh units given m the Nomenclatwe are ustd,
Vhe errot between values of ~ tnb.lmd in Table 1,wid cdcu!ated hi Eq. 19is

km thmn 1 per cent at 1~-10end dec~asez rap dly with Incwsning time.
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TABLE 1 - DIMENSIONLESS PRESSURE DROP W
DIMENSIONLESS TIME FOR THICK SAND MODEL

~ VOlucs for Dlffwanf VakI.s of M

tD

Ti-
.2
.3
*4
05
1
2

:
5
6
7
8
9

10
12
14

1
20
24
28
32
36
40
45
50
55
60
70
80
90

100
120
140
160
180
200
220
240
260
280
300
330
360
390
420
450
480
510
540
570
600
650
700
750
800
850
900
950

1000
1050
1100
1150
1200
:250
1300
1350
MOO
1450
1500

M=,05

G
2,675
3*649
4*464
5.166
7.693

10.590
12,442
13.789
14.848
15.722
16.465
17.111
17.684
18.198
19,089
19,846
20.503
21.083
21.603
22.505
23.269
23.931
24,516
25.039
25.625
26.149
26.623
27.057
27.824
28,490
29,077
29.603
30.512
31.282
31.948
32.536
33.062
33.538
33*973
34*373
34.743
35.088
35.564
35*999
36.399
36.769
37.114
37.436
37*739
38.025
38.295
38,5S1
38,951
39.322
39.667
39,989
40.292
400578
40.640
41.105
41.34;
41.581
41.803
42.016
42.22U
42.416
42.605
42.787
42.962
43.132

Mn,l

-n
1.362
1.849
2,257
2608
3,871
5.319
6.245
6.919
7.448
7.885
8.257
8.580
8.866
9.123
9.569
9.947

10,276
10.566
10,826
1I.zn
11.659
11.990
12,282
12.544
12.837
13,099
13.336
13.553
13,937
14.269
14.563
14.826
15.281
15,665
15.998
‘16.292
15.556
76,794
17,011
17.211
17.396
17.568
17.806
18.024
18.224
18.409
18.581
18.742
18.894
19.037
19.172
19.300
19.500
19.685
19.858
20.019
20.171
20.313
20.449
20.577
20.699
20.815
20.926
21.032
21.134
21.233
21.327
21.418
21s05
21.590

M=*3

E
.536
.699
.835
.952

1.373
1.856
2,164
,23a9
2.565
2,711
2.835
2.942
3.038
3.123
3.272
3.398
3,508
3.604
3.691
3.841
3.969
4.079
4.177
4.264
4.361
4.449
4.528
4,600
4,728
4.839
4*937
5.024”
5,176
5.304
5.414
5.513
5.601
5.600
5,753
5,819
5.&31
5.938
6.018
6.090
6.157
6,219
6.276
6.330
6.380
6,428
6.473
6.515
6,582
6.644

.6.702
6.755
6.806
6.854
6.899
6.941
6.982
7.021
7.058
7.093
7.127
7,160
7*191
7.222
7,251
7.279~.’ 1550 43.296 21.672 7.306

44=.5 M=,7
——
.287 .285
.412 ,383
,509 ●454
.591 .512
.661 .562
.914 ●743

1.204 .95a
1.389 1.082
1.523 1.178
1.629 1.254
1.717 1.316
1.791 1.369
1.856 1.416
1.913 1.456
1.964 1.493
2.053 1.557
2.129 1,611
2,195 1.658
2.253 1.699
2.305 1.736
2.395 1.801
2.471 1.855
2.538 1.903
2.596 1.944
2.648 1.982
2.707 2.024
2.759 2.061
2.807 2.095
2,850 2.126
2.927 2,181
2.994 2.22B
3.052 2.270
3.105 2.308
3.196 2.373
3,272 2.428
3.339 2.475
3.398 2.517
3.451 2.555
3.498 2,589
3.542 2,620
2582 2.649
3.619 2.k75
3.653 2.700
3,701 Z734
3.744 2.765
3.784 2.793
3.821 2.820
3.856 2.844
3.888 2.867
3.918 2.889
3.947 2.909
3.974 2.929
4.000 2.947
4.040 2.976
4.077 3.002
4.111 3.027
4.143 3.050
4.174 3.071
4.202 3.092
4.229 3.111
4.255 30129
4.279 3.147
4.303 3.163
4.325 3.179
4.346 3. ~94
4.367 3.209
4,386 3.223
4,405 3.237
4.423 3.250
4.441 3.262
4,458 3,274
4.474 3.286

M=.9 M.i.fl

=5 z
.377 ●377
.436 .436
.483 .483
.522 .521
.663 .648
.824 .792
.927 .885

1.001 .952
1.060 1.005
1.109 1,049
1.150 1,086
1.186 1.118
1,218 1.147
1.246 1.173
1.296 1.217
1,338 1.255
1.374 1.288
1.407 1.317
1.435 1*343
1.486 1.388
1.528 7.426
1*565 1.459
1*597 J.489
1.626 1.515
1.659 1.544
1.688 1.570
1.714 1.594
1*738 1.616
1,781 1.654
1.818 1.687
1.851 1.717
1.880 1.743
1.930 L788
1,973 1.827
2.010 1.860
2.043 1.890
2.072 1.916
2.099 1.940
Z 123 1.961
2.145 1.981
2.165 2.000
2.185 2.017
2.211 2,041
2.235 Z063
2.257 2.083
2.278 2.101
2,297 2.119
2.315 2.135
2.332 2.150
2.348 2.164
2.363 2.178
2.377 2.190
2.399 2.210
2,420 2.229
2.439 2.246
2.457 2.262
2..474 2.277
2.490 2.292
2.505 2.305
2.519 2.318
2.532 2.330
2,545 2.342
2.558 2.353
2.570 .2.364
2,581 2.374
2.592 2.384
2.602 2.393
2.612 2.402
2.622 2411
2.631 2.419
2.641 2.428

1600 43,454 21.752 7.33291 4.496 i10300 2;iIi9 2.436
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TABLE 2- DEPENDENCE OF A UPON M I

.05 . . . . . ..6S644

.10 . . . . ...3.3065

.30 . . . . ...1.1846

.50, . . . ...0.8010
,70..,....0,6622
.90 .,.....0,6000

l.oo, *.. ,., o&59ll

avetage rate of water influx during the time increment
from (i - l)At to iAt, ~ is simply I

ZiI=(Vi-I-Vi)/At. . . . , . . . . . .(22) I
and I

Therefore, Eq. 21 can be written as I

. . . . . . . . . . . . . . . . . . . (45)

and gives reservoir pressure p as a‘ function of
time for an arbitrary, time-variant water-influx
rate or, equivalently, reservoir pare volume variation.

The solution for the case of constant reservok
pressure, while not obtained directly here, can be
approximated by re-arranging Eq. 23 as

,and

6.0 *

4,0

2.0 \
A l,o ~

.6 - I
I

,2 I I I
I

0246810

FIG, 3 — PLOT OF A VS M FOR THICK SAND MODEL.
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FIG. 4 — ~ AS A FUNCTION OF :D AND M.

Eq. 24 gives the reservoir pore volume V as a
function of time when the reservoir pressure t is
held at a constant value less than pa by Ap. The
cumulative volume of water influx into the reservoir
is, of course,

We= Vo-Vj . . . . . . . . . . . . .(25)

EXAMPLE PROBLEM 1

A gas storage reservoir has been created by in-
jection of gas into an aquifer formation. The field
has been grown to a radius rb of 3,000 ft and has
been shut in for a period of time sufficient to allow
the reservoir and aquifer pressure to reach an approx-
imately tiiform value of 1,080 psia. Estimate the
reservoir pressure as a function of time which must
be maintained to grow the gas bubble at a constant
rate of 80 Mcf of pore volume/D. The aquifer for-
mation is 550-ft thick, core data indicate a permea-
bility ratio k R of .s7, and water-pumping tests
indicate an effective aquifer horizontal permeability
of .310 darcies. Other available d~ta are @ = .17,
c . 7 x 10-6 l/psi, p ~ 1 cp.

SOLUTION

Since the rate of water movement is specified to
be constant and bottom-water drive exists, the
con stant-rate Eq. 20 wi H be employed. The. va Iue
M is

M = h/7&~= 550/3000 ~= 0.3,

so that ~ values corresponding to M = .3 will be
read from Table 1. If pressures are calculated at
30-day intervals, then at the end of i 30-da~ yriods,

t)-)=i

. i

.

.1s

6.33k At
~ $ crb2

6.33 (.310) (30)

1(.17)( 7X1O+)(3OOO)2

5.5 i.

Jnterpol@on in Table I at M = .3 then yields the
first three columns of TabIe 3. From the data given,

,0502 ewp ~ ,0502(+0,000)(1) = -7 ~

‘b~ % 3000(.310) l/z?7 “

where ew is negative because the bubble is being
grown and water is moving away from the reservoir.
Eq. 20 now becomes

p= Po+7.1P=1080+7.1~,

which allows calculation of the last column in Table
3, The required gas-injection schedule could be
calculated from the gas equation of state n u pV/zRT

where p is reservoir pressure, V ia reaervoit pore

volume, n is gas in place and z is the,compressibility
factor (the reservoir pore volume V. at “zero time”,
when uniform pressure of 1,080 exists, would have
to be known).

Eqs. 20, 23 and 24 are the basic “working equa-
tions” allowing calculation of reservoir pressure
or volume from knowledge of the water-influx rate
or reservoir pressure. In general, however, neitht=r
the influx rate nor reservoir pressure is known in
advance; rather, a fIuid-in-pIace (oil or gas) schedule
is known or specified and an estimate of the reservok
performance (pressure and/or pore volume vs time)
is desired. [n this case, a relationship is needed
between fluid in place, pore volume V and reservoir
pressure p, i.e., a’ matetial-balance equation. In the
case of gas reservoirs, this material balance is
exceptionally simple and will be used in conjunction
with Eq. 23 to yield a pressure-explicit equation for
use in solution of the problem just stated. For a
gas reservoir,

()*Vf=rLf RT ;,,.....,.. ., (26)

and since z can be represented as a linear function
of pressure over normal operating pressure ranges,

zj=a+bpj

and

Vj = rziRT(b + a/pi) . . . . . . . . . (27)

Whe .ssumption is Implied hete that the resendr pressure P is essentially uniform
so that p{in Eqs. 26 and 23 we in the same pressure.

Time
(months)

o
1
2
3
4
5
6

tJJ

o
5,5

11
16,5
22
27,5
33,0

TABLE 3

F

o
2.638
3.197
3.532
3.766
3.953
4.103

Rosorvdr
Pressure p (psi)

1080
1098.7
1102.7
110!L1
1106*8
1108
1109.1
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J3q. 23 can be written

and elimination of Vj between Eq. 27 and Eq. 28
yields a quadratic in pi which gives

Pi =Ci+Di . . . . . . . . . . . . .(29)

where

1+ = C; + F~l RTnia,

and

F = .0502 #@ G At.

Eq. 29 allows direct calculation of gas reservoir
pressure at successive times of At, “2At, 3At, . . . .
for any given gas-in-place schedule ~. Coats, Tek
and Xstz4 derived an equation similar to Eq. 2!2
from the constant-rate-case solution given by van
Everdingen and Hurst 1 for horizontal, radial aquifer
water flow.

EXAMPLE PROBLEM 2

A newly discovered gas reservoir is to be con-
verted to storage use after a period of production.
The projected schedule of cumulative gas production
is plotted in Fig. 5. The following data sre available

1=-1
wor~- 1, ,~0AVJ ~,-, ,0,

~,-z -E* !sVo

12

8
L
LJ4

=-0o
%04

8

12
0 40 80 120 160 200 240 280

TIME - MONTHS

FIG. 5 — CUMULATIVE GAS PRODUCTION AS A
FUNCTION OF TIME,

MA RCR, 1962

from various tests and sources; V. = 4.4 x 108 CU &,
PO = 4645 psi% rb = 1,8S0 ft, k = .0296 darcies,
p = 1.2 cp, RT = 5,570 psia cu ft/lb mole, t$ = 0.2,
c = 7 x 10+ I/psi, h = 565 ft, kR = 1.0, a = .998,
and b = -.00016. Estimate the pressure and pore-
volume behavior of the reservoir using the thick
sand model, and compare this behavior to that
predicted by the horizontal, radial-flow model.

SOLUTION

The production schedule plotted in Fig. 5 consists
of monthly va Iues of cumulative gas produced over
a period of 254 months. A time increment At of one
month, or 30.4 days, wiI1 be chosen therefore. From
the data and Eq. ’27,

no = Vo/RT (b + a/po)

. 4.4 x io8/5570(-.000l6

= 39.9 x 106 lb mole,

+ .998/466)

The gas in place at time jAt is

‘~ =no - ‘pj Phase /R Tbase

then

. n ~ - G~i [15.025/10.73 (520)]

where G i is the cumulative standard cubic feet of
igas pro uced at the end of j months. An IBM 704

computer program was written to accept the gas-
production schedule, the afore-mentioned data,
and a table of ~ values vs dimensionless time fD
for M = b/?b & = 565/1880 (1) = .3 to calculate
the gas-in-place ni; and solve Eq, 29 for the predicted
pressure py These pressure and the corresponding
pore vohtmes, calculated from Eq. 27, are plotted
as the solid curves in Figs. 6 and 7.

The variable-pressure-case solution for the
horizontal, radial-flow modell is

i
~= -1

we = tlb#lCTb2 ~=o ApiQj-i

where @i =p~-1 - Pi+l* APo GPO -Pland Q~-i
is the dimensionless influx quantity Q at tD = (j= z)
AtD tabulated by van Everdingen and Hurst. Com-
bination of this equation with Figs. 25 and 27 gives
a pr~sswe-explicit equstion4 similar to Eq, 29.
Solutlon of this equation for the same data previously
given, the same gsa-in-place schedule and for an
infinite (in radial extent) aquifer gave the dashed
curves shown in Figs. 6 and 7.

DISCUSSION AND CONCLUSIONS

Eq. 16 or Eq. 20 is, ‘to the author’s knowIedge,
the only solution available to the diffusivity equntion
governing aquifer water movement about a bottom-
water-drive resetvoir. While this solution is valid
for radially infinite aquifers, other solutions can
be obtained by use of finite Hankel transforms
(see Appendix) for aquifers of various degrees of
finiteness. Example Problem 2 shows that significant
differences may arise between field performances
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~edicted by the thick sand and horizontal radial-
flow models. Figs. 6 and 7 show quantitatively the
differences between reservoir pressures and pIJre
volumes calculated from the two models.

In recent years increasing emphasis has been
placed Ott dir? “resistance-curve” technique as
opposed to the flow-model approach. The latter
approach by necessity involves various idealizations
p&netit to reservoir and aquifer geometry and
aquifer homogeneity. The objection thus arises

that most prsctical cases violate significantly one
or more of @ese idea Iizations, The resistsnce-
curve method meets this objection by requiring no
assurqtkms concerning aquifer geometry and homo-
gwreity but, rather, involves the d~ermitmtion of a
resistance-curve ana fogous to the F’ vs t~ curve of
this paper or the ~ vs tD function of van Everdingen
and Hurstl directly from field data. The paper by
Hutchinson and Sikoras is an example of this method.

It is the author’s opinion that the resistance-
curve method will, in the long run, replace the
model approach with resultant increased ease
and accuracy in calculation of water movement.
However, this method has been of Iittle vaIue to
date in studies of edge-water-drive gas fields
carried out at the U. of Michigan, and requires
development far beyond its present state. Various
degrees of success in matching field behavior have
been achieved by use of the horizontal radial-flow
model, reflecting the various degrees to which the
edge-water-drive fie Ids studied satisfy the idealiza-
tions involved in that mode L At the present time,
flow models provide a useful tool in’ prediction of
reservoir performance and, in the future, should
remain useful as standards for comparison to”
resistance curves obtiined from fie Id data by a
re Iia bIe method. For exampIe, cone Iusions pertinent
to aquifer geometry and/or extrapolation (in time)
of resistance curves might be accompIi&hed by
comparing the se curves to those corresponding to
various mode 1s.
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NOMENCLATURE

a = constant in equation z = a + Ap, dimen-
sicmlesa

b = consumt in equation z = a i- bp, I/psi

c = compressibility of aquifer water and for-
mation, l/psi

E =~p/rrTbk&

ew = rate of water influz, cu ft/day
~; = average rate of water influx from time

(i- l)At to iAt, cu ft/day

li=~ = Ft+l - z~

gc = conversion constant, 32.17 ft-lb mass/
lb force-second2

b = aquifer thickness, ft

Jo# J1 = Bessel functions of first kind, of order O
1, respectively

& = aquifer formation permeability in hori-
zonrsl direction, darcies

kR = ratio of vertical-to-horizontal aquifer
permeability

kv = aquifer formation permeability in vertical
direction, darcies

M =“parameter, hlrbfi

‘f = gsa in place in reservoir at time jAt, lb
mole

p = pressure, psia

pi(y) = initial aquifer pressure, psia

Pi ==reservo~ pressure at time iA4 psia
p. = initial aquifer (and reservoir) pressure

at reservoir depth, psia

~ = dimensionless pressu:e-drop function
fiv = Vfikle of ~~t tD = i&~

‘Pi = Pi-1 ‘-#i+l
r = radius, ft

o
TIME - MONTHS

FIG, 7 — RESERVOIR-PORE-VOLU~ RATIO AS A
FUNCTION OF TIME.
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rD = dimensionless radius, drb

?b = radius of fese~oh, ft

re = exterior radius of aquifer, ft
R = gas constant, 10.73 psia-cu ft/~o mole-~

t C=time, days
At = time increment, days

t D = dimensionless time, 6.33 kt/@crb2

T = reservoir temperature, “R
u ~ velocity of aquifer water flow, ft/day

V = reservoir pore volume, cu ft
vi = reservoir pore volume at time iAt; cu ft,

v-l = V.

AVi = 2vi - Vj-1 - Vi+l; AVO = V. _ VI

V. = initial reservoir pore volume, cu ft

We = cumulative water influx, cu ft

y = dimensionless vertical distance, Z/rbfi
-e = vertical diatsnce co-ordinate, ft, or ges

compressibility factor, dimensionless

P = density, lb mass/cu ft
, @ = aquifer formation porosity

a ~ == mrrjM

p = aquifer water viscosity, cp
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APPENDIX ‘

The solution to Eq. 6 for conditions of Eqs. 11
through’1 5 is obtained by use of the infinite Hackel
transfolm6 defined by

f&& y, tD) = ~’@,p(?~? Y, tD)~O(WD).f?D . (3°)

r#P
Following SneddonS die Hankel transform of —

arD* +
1 ap is.—

rfj C%D

~’”(%+:$)]0 (XrDh% ‘-*2@#y0 CD),

. . . . . . . . . . . . . . . . . . (31)

MARCH, .1962

so that multiplication of both sides of Eq. 6 by
lD~o (%rD) drD and integration from zero to w yields I

Solution of Eq. 32 by reparation of variables,
U(x, y, t“) = Y(y) $ (t ~, yields

.1
U = A cosh XY + B sinh XY I

+Dsin&2-x2y) . . . . . . . (33)

In order that Eq. 11 be satisfied,

au
%Y=o=~(x)

,“

where ~(x) ia the Hankel transform of /(rD), so that

-A%D
Bx + D ~~”z e = f(x)

/ l\-/

=-J EJO(wD)rDcffD = -E ~ , . . (34)

I
I

and D must equal zero and B must be - EJl (%)/%2
if Eq. 34 is to hold for all rime. Thus, U is rtow

given by ‘1
E]l (x)

Ci=Acoehxy-r sinh xy

+ CCos -y e42*D 0

In order that Eq. Is be satisfied. I

(UI= a
ay

y=hl

E]l (x)
=Asinh Mx-—

x
cosh Mx-C ~~

which requirea I
A _ ~h (%)

-—coth Mx ..:.. . . . .. (35)X2 ~s I
w=’rrnr/Mzam,rrr=O, 1,2, . . . . . . . . .

. . . . . . . . . . . . . . . . . . .(36)

Thus, U is now give% by I



. !,,
. ,*

m==
+ X Cm COSt2~ye -A2mtJJ

. . . . (37)
m=o

where A ~ =X2 + a~ and the summation is imposed
in order to satisfy the initial condition of Eq. 12.
This initial condition is C@, y, 0) ~ O or

m=w EJ1 (x) cosh b (M =y)]
X Cm cos ad = -~ —

m=O sinb Mx

. . . . . . . . . . . . . . . . . . . (38)

The terms cos ad form an orthogonal set over the
interval (0, M), so that multiplication of both sides
of Eq. 38 by cos (a~)dy and integration from O
to M yields

2EJ1 (x)
cm=-

(am2+ x2)Mx ‘

and

EJ1 (X)
co =-—

Mx3 “

TIM final solution for U now appears.

{

E]l (x) cosh L(M -y)] e=2:D
U(X,y,tD) =~

sinh Mx IV’.

m-m -A: tD
2x~e

.- ~ ~ .O am2+x2
cos am y

\

. (39)

Since the Hankel inversion integral is6

P(r~, y, t~) = JJxI!)(x, y, t~)jo (r~x) d%, . . (40)

the final solution for P is

{

M ~1(x) cosh[%(M-Y)] e-x2$JJ
P(rD, y, tD) = E&~

sinh Mx: . Mx

which becomes identical to Eq. 16 when y is set
equal to zero. ***

--
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I
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I
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(Published on Page 44)

DISCUSSION

J. E. WARREN
MEMBER AIME

The mathematical problem considered by the
authori can be given another physical interpretation
which is of some practical signi~lcance. The alter-
native physical problem involves the approximate
behavior of a single well which is producing at a

constant rate through an axially symmetric, hori -
zontal fracture of infinite flow capacity which is
located at die center, top or bottom of a uniformly
thick, horizontal, homogeneous, anisomopic reser-
voir of infinite lateral extent which contains a
single, slightly compressible fIuid. Using Coats’
asymptotic results, the wellbore pressure in the
fractured system is given by the following equation:

}
+ .351 i- .87 s* ; t,~ 15804 p C r~/k

. . . . . . . . . . . . . . . . . (l)**

{

MA(M/2) -in (~irw) -“.4045, center,
where S* =

2MA(M) - In (rf/rW) – .4045, top or
bottom,

A(M) = geometric constant (numerical vaIues
are given in Table 2 of the subject
paper),

M = bm~rf,

k = permeabili~ in the horizontal direc-
tion, and- ,,

kv = permeability in the vertical direction.
It is obvious that Eq. “1 differs from the usual

equation for radial flow into a wellbore by the
geometric parameter S*; this result is in accord

lRef~~e~ce*@“emat end clf paper.

m*&and=rd Mh.fE nomenclature is used unless otherwise irk

dfcate& units are PSI, STB/D, sp, md, ft, reeervdr bbl/STB,
(pSi)- 1 and days.
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with the baaic assumption made by Hartsock and
Warrenz in a prior steady-state study of fractured
systems. Transient S*-values based on coats’ re-
sults and steady-state values computed by the
method of Hartsock and Warren are compared in
Fig. D-1; the small, systematic deviations from the
ideal correlation are the result of the nonuniform
distrilwtion of the flux over the fracture surface.

Because of the mathematical equivalence of the
two physical problems, the following supplementary
conclusions can be drawn.

1. By including the pseudo-skin resistance S*,
the ~krformance of a reservoir with a bottom-water

FORALL STEAOY-STATECASES, FLOW
CAPACITYOF FRAGTUREs 125,000 kh

FRAOTURE IN CENTER OF FORMATION
/
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FIG. D-1- COMPARISON OF TRANSIENT AND STEADY-
STATE RESULTS. ..’
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drive can be asymptotically approximated by utiliz-
ing conventional methods whic,h assume radial in-
flux; the values of A(M) given by Coats can be used
for limited aquifers if the external radius of the
aquifer is at least four times as large as the radius
of the region initially occupied by oil, ro, and t ~
1580$ p c ro2/k.

2. If the rar!ius of a high - capacity fracture is
less than one, fourth of the drainage radius, the
steady-state values of S* controls the performance
of the well for t ~ 1580 @ p c r~21k; post-fracturing

AUTHOR’S REPLY

The equivalence pointed out between the bottom-
drive reservoir and fractured weIl problems is of
significant interest and is an outstanding example
of consolidation of distinct research results into a
more meaningful whole. Only one observation is
made here. Warren’s Conclusion 1 states that
bottom-drive reservoir performance can be asymp-
totically approximated by conventional methods
involving radial influx if the S* factor is included.
This conclusion applies with more meaning to the
fractured well problem where production rate is
held constant. In the case of a reservoir ( especi-

production tests will indicate erroneously high Pi’s
if the duration of the production period is less than
1580 q!rp c ri2/k.

1.

2,
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ally gas-storage reservoirs where cycling occurs),
the production (influx) rate may vary considerably
with time which requires’ that superposition be
applied to Eq. 1. ‘ihe result of this superposition
is that dimensionless pressure-drop values at small
times are required and these values cannot be
approximated by the -asymptotic expression em-
ployed in Eq. 1. Recourse must then be made to an
equation such as Eq. 21 of the subject paper, and
~ values at dimensionless time less than 10 must
be obtained from the tables. ‘
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