SeEHT

The Effect of Turbulence on Flow of Natural Gas Through
Porous Reservoirs

M R TEK

- MEMBER AIME

-~ ' K. H. COATS®
JUNIOR MEMBER AIME

ABSTRACT

The nature and the limits of validity of Darcy’s law as
applied to the flow of natural gas through reservoirs has
been considered in order to resolve some controversial
aspects of the effect of turbulence an pressure drops.

The equivalence between various concepts and view-
points advanced in the past by several investigators to
explain how and why a gas well does not necessarily per-
form according 1o Darcy's law is shown.

Starting with generalized equations of flow of fluids
through porous media, a partial differential equation has
been derived which accurately represents the flow at all
rates. This equation has been numerically solved using an
IBM- 704 digital computer.

The results permit plots of unsteady radial pressure dis-

tribution curves from which specific isochronal back- -

pressure curves imay be constructed. These back-pressure
curves show the effect of the 8 factor on the slope of the
back-pressure curve,

The calculations further indicate that the drainage radius
for a gas well in wrbulent flow propagates at a rate de-
pendent upon the rate of production at the wellbore, This
is quite different from the case with liguid flow or natural-
gas flow in laminar regime.

Additionally, the effect of reservoir mhomagenemes
and crossflow between layers of different permeability on
the back-pressure performance of gas wells has been con-
sidered. )

In light of the current numerical results the significance
and limitation of the rate of flow function Y proposed by
Smith has been discussed.

INTRODUCTION

" The relationship between the pressure drop ahd flow
rate in problems of fluid flow through porous media is

known to be affected by the nature of flow through the |

porous matrix, It has been observed by many that, for a
‘range of flow rates, the pressure drop remains proportional
to the rate of ﬂow When some flow rate is reached, how-
ever, it is usually observed that the pressure drop gradu-
ally begins to increase more than proportionally to the
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flow rate. It is well known that this phenomenon was first
observed by Osborne Reynolds in 1901 in experimenting
with flow through pipes. In his classical experiments,
Reynolds macls visual observations on the condition of
streamlines evidenced by injecting a dye into water flowing
through glass tubes. In these experiments, the abrupt
transition between steady, “streamline, laminar” flow
and unsteady random turbulent flow was found to be a
function of the dimensionless group (Dvp/i), now known
as the Reynolds number. During these experiments, in ad-
dition to observations on the nature of flow regimes, the
proportionality between flow rate and pressure drop in
laminar flow was contrasted with the nonlinearity between
these variables in turbulent flow.

Fancher and Lewis' reported data on various consoli-
dated and unconsolidated sands in 1933. Their conclusions
were that “, . .'the flow of fluids through these porous
materials closely resembles that through pipes; that there
is a condition of flow in porous systems. which resembles
viscous flow, another which corresponds to turbulent; that
the change from one type to the other takes place at a
definite and reproducible condition for each system”.

In 1947, Brownell and Katz® published a method to
predict the laminar and turbulent flow behavior from the
particle size, bed porosity and the particle sphericity, em-
ploying the friction factor-Reynolds number charts for
pipes. Several investigators have verified the work of

" Fancher, Lewis and Barnes and presented their data as

friction factor-vs-Reynolds number plots.*

The equation which would represent the pressure gradi-
ent over the whole range of velocity must have an added
term over that represented by Darcy’s law. Accordingly,
the pressure gradient necessary to sustain flow at the
velocity (v) through a porous medium may be represented
by the following equation, suggested by Forscheimer."

—£=p.—-+av°.......... (1

The nature and the range of validity of Darcy’s law has
been the subject of studies by many investigators over
the past years. While everyone seemed to agree on the
need for a quadratic correction term to Darcy’s law to
make it effective over the range of velocities, the concept

- of inception of turbulence and the use of the term “turbu-

lent flow” remained controversial,
. Some fluid dynamicists define turbulence as a flow

*References given af end pf paper., .
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regime where random fuctustions oceur with time in the
magnitude of velocity components. Because of the sgale
and geometrigs inherently found in consolidated porous
media, the afore-mentioned concepts of turbulent flow
field have been held by many to be incompatible with
conditions encountered in porous matrices. With large-
enough particles and pore sizes, on the other hand, it
must be clear that abrupt transition from streamline flow
to turbulent eddigs takes place and has been observed by
one of the authors,

In an article on the flow of gases thmugh porous metals,
Green and Duwez* conclude that the onset of turbulence
within the pores appears unsatisfactory to explain devi-
ations from Darcy’s law. Cornell and Katz' reported
measurements on porous solids and introduced a “turbu-
lence factor” as the characteristic of the medium. In a
series of articles,’ Houpeurt showed -that deviations from
Darcy's law may be explained on the basis of kinetic
energy variations and the jetting of the fiuid through
orifice-like interpore passages.

Schneebeli” reported that some experiments of Lindquist
demonstrate that the onset of turbulence does not neces-
sarily coincide with conditions of deviation from Darcy’s
law. This view is also held by Hubbert.” A generalized

dimensionless form of the Darcy equation based on Hou- .

peurt’s concepts has been published by Tek.

Recently, a correlation between a parameter A (called
Darcy number) and the Reynolds number has been pre-
sented for consolidated and unconsolidated porous media
by Aldulvagabov.® This paper shows that, for Reynolds
numbers above 20, a family of curves was found which
approaches asymptotically the straight line A = constant,

- characterizing the quadratic law of resistance to flow. This
author also concludes that a special coefficient character-
“istic of the solid. is required to fully describe the flow
at high velocities.

COMPARISON BETWEEN VARIOUS TURBULENCE
FACTORS

CONCEPT OF TURBULENCE FACTOR g
Katz and Cornell' developed Eq, 1 with the constant

(@) represented by the product of the fluid density (p)

and a turbulence factor (B) characteristic of the solid.

_dL v+ﬁpv.‘..;.....§(2)

For gases, it is more convenient to express the pressure
gradient in.terms of the mass velocity W/A = pv, because
the mass velocity remains constant iu steady-state flow
and a given cross-sectional area ‘even though the gas may
be expanding. Accordingly,

—dP ®
p dL)=pv + Bp’v
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The values of integrals J ?Z"-dp.-.
0.2 ,

[‘)‘ul;lisshed by Nisle and Poettmann,” are tabulated also in

ef. 5.

When the pressure drop between Points 1 and 2 is not
high, an average value of the compressibility factor may
be used and the following equation may be derived. ‘

M@i—p) WE. 1
SRTAEW/A Atk ~ - @D

Flow data for a core specimen plotted in accordance with
this equation is shown in Fig. 1. It can be seen from this
figure and Eq. 7 that the intercept of the resulting straight
line is 1/k and the slope is the turbulence facior 8. Cornell
and Katz* correlated 8 with an electrical resistivity factor
related to the deviation of the flow path from a straight
line and a constant &, of the porous medium. These data
have been recorrelated by Janicek and Katz,’ resulting
in the plot of Fig. 2. By observmg that the resistivity factor
approximates 4/¢ and that k. is related to porosity and
permeability,

55 X108
B = kﬁll ¢3/l ?
the basis for the constant poresity lines on Fig. 2.

CONCEPT OF LITHOLOGY FACTOR ¢,

A generalized Darcy equation in the form of friction
factor-Reynolds number correlation was developed and
published by Tek® in the following form.™

d R.\ -
f—m(l+l,$)._. e e e e e . (B)
where I, = a dimensionless factor representing the particu-

_ lar porous medium called the “lithology factor”.

The friction factor f in the preceding was defined by

AP d
= -~ g B ¢
f P 2Lv M M R ( )
In combining Eqgs. 8 and 9 ong may write
dP _ "

HOUPEURT’S FLOW FACTOR '
Janicek and Katz® showed that Houpeurt's factor for
handling high-velocity flow was related to the turbulence

4

factor B as follows: 8 = iz
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TURBULENT FLOW——:DARCY FLOW—NON-DARCY FLOW -

While turbulence has been observed for fluids: flowing
through porous media having passages large enouglh to
permit visual observations, consolidated porous solids with
very small particles, pores and Jow permeability do not
permit visvalization of turbulent eddies. Various explana-
tions have been offercd to explain the pressure flow be-
havior with high fluid velocities.*"* :

Fluid particles passing through a porous bed are subject
to accelerations and decelerations as they pass through con-
strictions and enlargements alternately. In laminar or
viscous flow, characterized by Darcy’s law, the kinetic
energy of the particle is reversibly interchanged with the
pressure energy during the acceleration and deceleration
processes. At the velocity where pressure drop becomes
more than proportional to the velogity, this interchange
includes significant irreversibilitics. What js the nature of
the irreversibilitics? They can only be dile to extra fluid
motion consuming energy, i.e., exira motipn above that
occuring in the laminar flow path. Some investigators
refer to this phenomenon as kinetic effects, and the authors
agree that the extra fluid motion is caused primarily by
the inertial effects in the deceleration process, and quite
likely in the absence of turbuient eddies. This phenomenon
has been referred to by some investigators as “nop-Darcy”
flow. If one assigns the extra mction of the fluid as the
cause of the extra pressure loss, then the term “turbulent
flow” is justified because, in true turbulent flow in pipes,
it is the extra cousumption of energy which is significant
to the engineer. Hence, many investigators in the field use
the term “turbulent flow” simply to designate a condition
of velocity such that increases in pressure drop for liquids
or difference of squares of pressures for gases are more
than proportional to increases in flow rates. That is the
procedure followed here,

EFFECT OF TURBULENCE IN RADIAL

STEADY-STATE FLOW THROUGH GAS RESERVOIRS
Elenbaas and Katz® using the friction factor-vs-Reynolds

number plots developed by Brownell and Katz® showed
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in 1948 that by graphical integration of the general flow
equation through ~orous media one can develop a back-
pressuré curve relating (2 — p,") to g, for a given gas
well. Their results clearly show the deviation of the slope
of the back-pressure curve at high flow rates from unit
slope corresponding to Darcy flow regime.

For radial steady-state flow when the generalized flow
equation (Eq. 2) is integrated, the following radial tur-
bulent gas-flow equation may be derived with field units.

s oa uZTg,, {nr\  3.061 X 10°8Gq,'ZT
P .7 1,424-"————,"‘ ln(;: )+ h’

(l_i,.,.....'...(m

r r

Using Eq. 11, back-pressure curves were computed for
a 0.6-gravity gas and a temperature depth-pressure rela-
tionship for determining properties of the gas. Perme-
ability and initial reservoir pressure (and, hence, tempera-
ture) are parameters on the chart of Fig. 3. This chart
directly relates the back-pressurg curve to formation per-
meability.

EFFECT OF RESERVOIR INHOMOGENEITIES ON
SLOPE OF BACK-PRESSURE CURVE

It is recognized that the steepness of the back-pressure
curves on Fig. 3 is less than that found in actual cases.
Accordingly, turbulence may be an insufficient explanation
for the high values of the slope (I/n) sometimes found
for gas wells. The question arises as to whether inhomo-
geneities could cause steeper curves, Calculations are made
for a given millidarcy-foot product, assuming first homo-
geneous sand and then layered sand of different permea-
bilities.
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Consider a back-pressure curve calculated from: Egq. 11
for a gas well and reservoir having the following properties:
ro = 1736, M = .6(29) = 174, 0 = 0125¢p, T =
S40°R, p, = 14.7 psia, ¢ = 0.18, r, = 1,320 ft (160-acre
spacing), and z = .92. Insertion of these data into Eq. 11
yields

. .
pF—pt=T3 X m",‘f—;c +2.82 X m-'f'n;f- .. (12)
In these calculations g, is given in million cubic feet.
Two cases are considered. In Case I, ki is 10,000 md-ft
and the reservoir is considered homogeneous, with k = 100
md, h = 100 ft. Thus Eq. 12 becomes

PP =17300g, + 17647 . . ... . (13)

where 8 = 6.2 X 10" from Fig, 2 for k = 100,-¢ = .18.
Eq. 13 is plotted in Fig. 4. The reciprocal slope of the
back-pressure curve is shown on Fig. 4 to be close to 1.0
at low rates of flow, and significantly less than 1.0 (.874)
at higher rates. For the case 8 = 0, of course, the slope
would be 1.0 for all rates. o

In Case II, ki is again taken as 10,000 md-ft, but the
reservoir is considered stratified into a zone 8-ft thick
with k = 1,000 md, and a zone 92-ft thick with k = 21.7
md. If the pressure distribution in the reservoir during
production were truly steady-state, then no crossflow
would exist between the layers and Eq. 12 could be applied
separately to- each layer. Although such a steady state

may not be actually attained, it will be assumed in order’

to gain an indication of the effect of stratification on back-
pressure curves. For the 8-ft zone, 8 = 4 X 10° 1/ft for
. k=1,000 md and ¢ = .18 (from Fig. 2), and Eq. 12
becomes i

pi—p. =9140q,+177g; . . . . . (14)
For the 92-ft zone, B = 4.5 X 10° for £ = 21.7 md and
Eq. 12 becomes ot .

P’ —po"=36500¢q, +1494° . . . . . (15)

For a given value of (p’ — p,’), the production rate
from the 8-ft zone is calculated from Eq. 14, that for the
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.92-ft zone is calculated from Eq. 15 and these two rates

are added together to give the total production rate. This
total rate g, is plotted in Fig, 4 as “Case II”.

-The reciprocal slope of the back-pressure curve -for
Case I is again seer to be nearly 1.0 at low rates, and
significantly lower than 1.0 at higher rates, At rates of
30 to 80 MMcf/D, the reciprocal slope of the stratified
reservoir is seen to be .80 as compared with .874 for
the homogensous formation. Thus while turbulence, as
represented by the B factor, lowers the reciprocal slope,
stratification can be an added factor tending to decrease
it further. A more severe degree of stratification or frac-
turing would tend to increase the difference in reciprocal
slopes of the two curves at high flow rates. Since gas pro-
duction involves unsteady-state flow to a degree, crossflow
occurs in stratified systems and such crossflc.- is likely

_ to magnify the effect of turbulence on the slope of the

back-pressure curve. :

UNSTEADY.STATE FLOW OF GAS INCLUDING.
EFFECTS OF TURBULENCE

The treatments of unsteady-state gas flow have been
presented using Darcy’s law to represent the flow relation-
ships,?™ The unsteady-state calculations have been nec-
essary to understand the behavior of tight formations. The
isochronal procedure” is based on the concept of equal
radii of drainage at equal flow times. The unsteady-state
flow relationships have been used to determine in situ
formation properties from well data. Smith" used a “rate-
of-flow function” empirically to correet a correlation”
involving only Darcy’s law. In this paper, unsteady-state
flow is calculated with the generalized flow equation in-

«cluding the turbulence factor.

DERIVATION OF EQUATIONS .
When the generalized relationship of Eq. 2 between the

* pressure gradient and the superficial velocity is combined

with the continuity equation and the equation of state for
natural gas, the followinyg equations result.

1 gt e ’

_-é-’-';—qna--rtﬂ-b—, N T § 1)
and

13g. 10oP

oo POty an
where g, = 50.2 X 10° g, p P, Tz/hkp;* T,, dimensionless
flow rate in field units,
P = p/p, dimensionless pressure,
r» = r/r., dimensionless radius, and

2.634 X 10-"%’% dimensionless time.

In deriving Eqs, 16-and 17, a horizontal disk-shaped
porous medium of constant thickress is assumed. The
viscosity of the natural gas and the compressibility factor
Z are also assumed to be constant,

In Egq. 16,
- »BMKEp/ :

| B=537X10 Tzgr: © - - - B
Eqs. 13 and 17 are two simultanecus partial differential
equations in the dependent variables Q and P, which must

be solved along with the following boundary conditions.
‘qo=qg¢at’n=lno,tn>o. « s s s s s ('9)
G=0atn="",530 .. .... (0
The equations and the boundary. conditions, Egs. 16
through 20, are for constant terminal rate for a radial

b
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flow mode! with closed exterior boundary. Initiall 5
equal to unity throughout the reservoir and g, =

A solution 10 Eqgs. 16 and 17 may be obtained by using
the transformation x = In r,.

P .
woeTEe L@l
09, e F .
%= P o e s e e e e . (22)

This transformation permits closely spaced radial ingre-

ments near the wellbore, corresponding to equally spaced
increments in x. Solving far ” from Eq. 21, and sub-

stituting in the Eq. 22, yields

Pe™ &P BPévq, oFF
I+ 2Be-fq,,)ﬁ”+ T+ 26eg o ' )
. or
cf“+o—a—’f.........(z4)
ox ot

Eq. 24 may be replaced by the following implicit finite-
difference form.

c® p e (2 cw A% Ax® P 2(641)

LD ) maelnel ", Re3 A‘ L3 L
“ Ax
+c"¥ 21 w o _AX
C m.onel P m-1,me3 Ax‘ D ",A43 Atn P’ M
e e . (25)

where x = maAx,
tp = nA‘D, and
i = the index of iteration.

The coefficients C and D are evaluated at the new time
step but at the previous iteration (). Eq. 25, when written
form=12...... M, (where MAx = x, = Inr,/r.),
constitutes a tridiagonal matrix which is solved by a method
given by Richtmyer.” Eq. 21 is solved for each time step
recalculating the coefficients C and D at each new iteration
until the maximum change in P,

,(M) o)
Max n,-u - Pn,ul 4
is less than a prescribed tolerance e.

The calculations were programmed for and performed
on an IBM 704 computer. The case of a finite reservoir
with a ratio r,/r, = 128 was treated; the boundary con-
ditions at r, and r, were obtained by simply inserting
g = 0 and g, = q,,, respectively, into Eq. 21, The dimen-
sionless time increment Af, was incieased from 0.001 early
in the calculations to 10 when 1, ¢«xceeded 120, Twenty-
five spatial increments and a tolerance of 5 X 10 were
employed in the calculations.

DISCUSSIONS OF RESULTS

Fig. 5 represents a typical set of iscshronal back- ’

pressure curves obtained for a given value of B coefficient
and for several values of dimensionless time t,. The curves
in Fig. § are for the generalized case where the effect of
turbulence factor has been included in the unsteady state.
The partial differential equations have been solved nu-
" merically without resorting to any linearization technique.
For the sake of simplicity, however, the z faetot,hag been
treated as a constant evaluated at static reservoir condi-
tions. The parallel trend and gradual shifting of the curves
. tothe leftastimegoesonatenoted

A typical set of baek-pressure curves mdxcatmg the
effect of 8 factor on the slope is ﬂlustrated in Figs. 6 and

JULY, 1962

A may be noted, as expected, thht the increase in B

resplts in increased reciprocal slopes for a given ﬂow rate
and given value of time.

Eq. 2 gives the pressure gradlent ( - g—’;')as a funetion
of velocity inciuding the turbulent contribution 8pv'
Integration of this equétion between T where p = p,, and
r, where p = p, yields.

@ BMKp/
2RuTZ

(-—-— ..........(26)

Eq. 26 is valid for steady-state gas flow between a point
in the reservoir radius r, and the wellbore radius r,.. The
term @, it a dimensionless production rate and p, is shut-in
reservoir pressure at the time when production is begun.

Aronofsky and Jenkins* replaced r, p; in Eq. 26 by r,,
P., dropped the term containing g,°, and used the resulting
equation

1
ln-'—_—+—-[(Pa/Pr)’“(Pe/P:)’] e . 27
» [

to define a “drainage radius” r,. The pressure p, is the
pressure the reservoir would attain if it were shut in and
allowed to equalize. As gas is produced, p, will thus de-
crease; use of a material balance yields Eq. 18.
P-/P/ =1~ qpo ) (28)

where 4 = 2634 X 10™ kpa/pdr.’, a dimensionless time.

Thus, Eq. 27 becomes

Ta 1
In—=-—[(1 —g,0)"—

- - I( a 6)

(o/p)" ~ (p.,/p,r = g ln-:—‘ +

Pe/p)1. . . . (29)
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Aronofsky and Jenkins;' numericaily solved the unsteady-
state gas-flow equation derived from Darcy's law,

& 19" 24pdp
5.?.-;’—-5;--,‘—3-'-........(30)

and inserted the golution in terms of ¢, and p, into the
right-hand side of Eq. 29. Their result was that Inr,/r.
was closely given by the equation

2 .
1n7'.:—5p,—2:,(%) =p,—26. . . . (1)

Smith,” in an attempt to account for deviations from
Darecy flow, modified Eq. 29 to read

l N .
Y, + m{i=q—(u - @0~ (/P . (32)
© i
where Y, was claimed to be a dimensionless function of
flow rate, and the assumption was made that In ;ﬁ- is still

given by Eq. 31.

" In the preceding section, equations are developed which
govern unsteady-state gas flow when turbulence is taken
into account. These equations have been solved numeri-
cally to obtain the relationship between g, p., and 8
which appear in the right-hand side of Eq. 29. Insertion
of these calculated quantities into Bq. 29 then gives
In (r./r.) as a function of time.

In Figs. 8 and 9, In (r,/r,) is plotted vs time with B
and g, as parameters, These figures show .that In(r./r.),
as defined by Eq. 29, depends upon g, when turbulence
or non-Darcy flow is taken into account, Since Smith
substituted In(r./r.) from Eq. 31 into Eq. 32, his Y(q)
function must account for or absorb the differences in
time-dependency of In r,/r, shown in Figs. 8 and 9.
These figures also show that the curve of In(r,/r.) .vs
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Fic. '6—Errect oF TURBULENCE oN ISOCHRONAL
Back-pressure CURVES, 2, =~ 3.5,

time is shiffed by or dependent upon the factor 8. Thus,
the Y(q) function should be denoted as Y(q, 1, B),
since all three of these variables affect Y. It should be
noted that, where isochropal testing is employed and a
single well is involved, 1, and B are fixed and ¥ reduces
to a function of flow rate only. However, the values of
¥Y(q) calculated as described by Smith will depend upon
the time duration of the isochronal test provided stabili-
zation has not occurred. At stabilization, In (r./r.), aad
therefore Y, ceases to be time-dependent, as shown in
Figs. 8 and 9.

NOMENCLATURE

A = cross-sectional area to flow, sq em

a = a constant for a given porous medium, b
. mass/ft'
B = aconstant (B = 5.37 X 10® BMKk’p//Tzu'r,)
C = constant function of flow rate and pressure, di-
mensionless’

D = constant function of flow rate and pressure, di-
mensioniess; also, diameter in Reynolds number

d = mean particle diameter, ft
d() = denotes total differentiation
f = friction factor, dimensionless
G = gag gravity, dimensionless .
k = permeability, md
L = length of the flow path, ft
I, = lithology factor
M = molecular weight of the gas, lb/lb mole
P = pressure, psia
" P ="dimensionless pressure

tp = 480

.;_‘“..-las

> 7y
N3 o " 0

o
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Fic. 7—Egrect or TuRBULENCE oN ISoCHRONAL
BACK-PRESSURE :Cm:s. 8, = 450,
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£, = base pressure, psia o. = flowing sand-face pressure, psia
2. = pseudoreduced pressure p. = van Everdingen-Hurst dimensionless pressure
2. = pseudocritical pressure, peia drop
p; = initial static formation pressure, psia : 4. = rate of production, Mscf/D
10/
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b= dimensionless flow rate

R = gas constant, R = 1.544 ft.x- lb-foree/lb-tmle
°R absolute
= Reynolds number R, = (pvD/p), dzmcnmnless

r, = well radivs, ft

= radivs of exterior boundary of reservoir, ft

r, = drainage radius, ft

ry = dimensionless radius, r/r.

T = formation temperature, ‘R

¢ = actual time, hours

= dimensionless ume. 2634 X 107 ———

7, = base temperature, R absolute
v = fiuid velocity, ft/sec
W = mass flow rate, gm/sec
x=lnnr

Z = compressibility factor, dimensionless
B = turbulence factor, ft™

A = incremental quantity

p = density of fluid, b mass/cu ft

» = gas viscosity, cp

¢ = porosity, dimensionless

¢ = dimensionless time, 2.634 X 10 k

i
pors
¢ = Houpeurt flow factor, md X ft* '

kp,l
e

SUBSCRIPTS — SUPERSCRIPTS

i = iteration

j = iteration

0 == initial condition

1 = upstream condition

2 = downstream condition
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