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ABSTRACT

The nature and thelirnitsof validity of Darcy’s law as
app[ied to the jYow of natural gas through reservoirs has
been considered in order to resolve some controversial
aspects of the effect of turbulence on pressure drops.

The equivalence between various concepts and view-
points advanced in the past by several investigators to
explain how and why a gas well does not necessarily per-
form uccording to Darcy*s haw isshowfi.

Starting with generalized equations of fiow of ftuhis
through porous media,. a partial difleretitial equation has
been derived which accurately represents the &w at al!
rates. This equation has been numerically solved using on
IBM. 704 digital computer.

The results permit plots of unsteady radial pressure dis-
tribution curves from which specific isochronal back-
pressure curves may be constructed. These back-pressure
curves show the effect of the ~ factor on the slope of the
back-pressure curve,

The calculations jurther indicate that the drainage rtidius
for a gas we!l in turbulent flow propagates at a rate de-
pendent upon the rate of production at the wellbore, This
is quite diflerent from the case with liquid flow or natural-
gas @w in laminar regime.

Addidomdly, the efiect of reservoir inhomogetteities
and crossfibw between layers of, different permeability on
the back-pressure performance of gas wells has been con-
sidered.

In light of the current numerical results the significance
and limitation O! the rate of flow function Y proposed by
Smith” has been discussed.

INTRODUCTION

The relationship between”the pressure drop and flow
rate in probIems of fluid flow through porous m~ia is
known to be affected by the nature of flow through @e
porous matrix, It has been observed by many that, for a
~range of flow rates, the pressure drop remains proportional
to the rate of flow. W&n some flow rati is reached, how-
ever, it is usually observed that the pressure drop gradu-
ally begins to increase more than proportionally to the
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flow rate. It is well known that this phenomenon was tlrst
observed by Osborne Reynolds in 1901 in experimenting
with tlow through pipes, In his classical experiments,
Reynolds tnack visual observations on the condition of
streamlinesevidenced by injecting a dye into water flowing
through glass tubes. In these experiments, the abrupt
transition between steady, “streamline, lsminar” flow
and unsteady random turbulent flow was found to be a .(
function of the dimensionlessgroup (Dvp/p), now known
as the Reynolds number. During these experiments, in ad-
dition to observations on the nature of flow regimes, the
proportionality between flow Tatc and pressure drop in
lsminsr flow wsa contrasted with the nonlinearity between
these variables in turbulent flow. ;...

Fancher and Lewis’ reported data on various consoli-
dated and unconsolidated sands in 1933. Their conclusions
were that “. . .”the flow of fluids through these porous
materials closely resembles that through pipes; that there
is a condition of flow in porous systems.which resembles
viscousflow, another which corresponds to turbulent; that
the change from one type to the other takes place at a
definite and reproducible condition for each system”.

In 1947, Brownell and Katz’ published a method to
predict the laminar and turbulent flow behavior from the
particle sire, bed poresky and the particle sphtxicity,.em-
ploying the friction factor-Reynolds number charts for
pipes. Several investigators have verified the work of
Fsncher, Lewis and Barnes and presented their data as
friction factor-vs-ReynoIdsnumber plots.’

The equation wh~h would repres&t the pressure gradi-
ent over the whole range of velocity must have an added ,]
term otier that represented by Darcy’s law. Accordingly,
the pressure gradient neeesssry to sustain flow at the
velocity (v) through a porous medium may be represented
by the following equation, suggested by Foracheimer.” c1

I

dP——
dL

=p~+uv’ . . . . . . . . .. (1)

The nature and the range of validity of Darcy’s law has
been the subject of studies by many, investigators over
the past years, Whiie everyone seemed to agree on the
need for a quadratio correction term to Darcy’s law to
make it effective over the range of velocities;the concept
of inception of turbulence and the usc o~ the term “turbu- ‘
lent flow” remained controversial,

Scme fluid dynamicists define turbulence as a, flow
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regime where i’imdomtluctuatiom occur with time in the
magnitude of velocity components. Because of ths soak
and geometries inherently found in cmtsolidatedporous
media, the afore-mentionedeotwpts of turbulent fiow
tield have been held by many to bo incompatible with
conditions encountered in porous matrices. With large-
enough particles and pore sizes, on the other hand, it
must be ctear that abrupt transition from streamlhw flow
to turbulent eddies takes place and has ,hcenobservedby
one of the authors.

In an article on the flowof gmcs through porous metals,
Green and Duwezaconclude that the oqset of turbulence
witbht the pores appears unsatisfactory to explain devi-
ations from Darcy’s law. CorneIt end Katz’ reported
measurements on porous solids and introduced a “turbu-
lence factor” as the ch~acteristic of the medium. In a
series of articles; Houpeurt showedthat deviations from
Darcy’s law may be explained on the basis of kinetic
energy variations and the jetting of the fluid through
orifioe-likeinterpore passages,

Schheebeli”reported that some experimentsof Lindquist
demonstrate that the onset of turbulence does not neces-
sarily coincide with conlltions of deviation from Darcy’s
law. This view is also held by Hubbert?’ A generalized
dimensionlessform of the Darcy equation based on Hou-
peurt’s concepts has been published by TekY

Rccentty, a correlation between a parameter A (called
Darcy number) and the Reynolds number has been pre-
sented for consolidated and unconsolidated porous media
by Aldulvagahov}’ This paper shows that, for Reynolds
numbers above 20, a family of cuives was found wh:ch
approaches asymptotically the straight lime A = constant,
characterizing the quadratic Iaw of resistance to flow. This
author also cmcludss that a special coefficientcharacter-

-istic of the solid. is required to fully describe the flow
at high velocities.

,COMPARISON BETWEEN VARIOUS TURBULENCE
FACTORS

CONCEPTOF TURBULENCEFACTOR/3
Katz and Cornell’ developed Eq, 1 with the constant

(a) represented by the product of the fluid density (p)
and a turbulence factor (~) characteristic of the solid.

dP ~
-z=lv+&v’ ,’. , . ~,. . . . ; (2)

For gases, it is more convenient to express the pressure
gradieht in ,terrns of the mass velocity W/A = ~v, because
the mass velocity remains constant ir~ steady-state flow
and a given cross-sectionalarea “eventhough the gas may
be expanding:Accordir@y,

()–dP
P— ; + pp’vz

dL = Pv

()

w,

=g+p z........ . (3)

Since
MP

p=~ . . .. e...

then

... . (4)

J
‘z

dL “ . (5)
1

r. . . . . . . . .
?.. . ‘.. . (6)

am

The valuesQf integrals“J “Q.&P,*
0.!4

p~bliahed by !Uisleand Peetttnatmfl are tabulated also in
Ref. S.

When the prmeure drop between Points 1 and 2 is not
high, an averqy value of the @mpresaibitityfactor may
he used and the following equation may be derived,

M{p: – ,:) Wpl,
2ZRTJCL(W/A)=~; +~ “ ‘ . “ . . .

(7)

Flow data for a core specimen plotted in accordance with
this equation is shown in Fig. 1. It can be aeon from this
figure end Eq. 7 that the intercept of the resulting straight
tine is I/k and the slope is the turbulence factor /3,Cornell
and Katz’ correlated ~ with an electrical resistivity factor
re~ated to the deviation of the flow path from a straight
line and a constant k, of the porous medium. These data
have been recorrelated by Janicck and Katz: resulting
in the plot of Fig, 2. By observingthat the resistivity factor
approximates 4/+ and that k, is related to porosity arid
permeability,

5.5 x 10’
P = p, #,4 *

the basis for the constant porosity lines on Fig. 2.

CONCEPTOF LITHOLOGYFACTOR.lf
A generaliid Darcy equation in the form of friction

factor-Reynolds number correlation was developed and
published by TekOin the following form ““

where 11= a dimensionlessfactor representing the particu-
lar porous medhuw called tlw “litbology factor”.

The friction factor / in the preceding was defined by

f= -f&’’.........(9)

In cambining Eqs. 8 and 9, one may write
dP dp ,

–P;+@’ . . . .-z-
. . ( 10)

HOUPEURT’SFLOWFACTOR
Janicek and Katd showed that Houpeurt’s factor for

handling hwh-velocity flow was related to the turbulence

factor /3 as follows: /3 = $k.

‘ “~ I # i
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TURBULENTFLOW-’DARCYFL43W-M3N.DARCYFi..6W“
While turbulencehm been observryi for fluids fiowitt#

through porous media isavhtgpmsagekIar$e enougk to
permitvisualobservations,consolidatedporoussolids with
wiry smell particles, pores WI low permeabilitydo not
permit visualizationof turiwient eddies. Variou5 explana=
tiona have been otbred to explain the pressure tiow k
htwior with high fluid velocities?””

Fiuid particlespassingthrougha porous bed are subject
to mcolerationsand decelerationsas they pass throughcon-
strictions and snhtrgemisnts altemateiy. In Iaminar or
viscous Row, characterized by Darcy’s iaw, the kinetic
energy of the particle is reversibly interchangedwith the
pressureenergy duriag the acceleration and deceleration
procqses. At the velocity where pressure drop befmmes
more than proportional to the velocky, this interchange
includes significant irreversibiiities. What is the nature of
the irreversib~litiea?They can oniy be dk to extra fiu%t
motion consuming energy,, i.e., extra motipn above that
occuring in the laminar flow path Some investigators
refer to thii phenomenon as kinetic effects,and the authors
agree that the extra fluid motion is caused primariiy by
the inertial effects in the deceleration process, and quite
Iiily in the absence of turbulemteddies. This phenomenon
has been refmred to by some investigatorsas “noP-Darcy”
flow. If one assigns the extra motion of the fluid as the
cause of the extra pressure !0ss, then the term “turbuient
ttow” is justitled because, in true turbulent tlow in pipes,
it is the extra mmnnption of energy which is significant
to the engineer. Hence, many investigators in the field use
the term “turbulent flow” simply to designale a eonditi6n
of velocity such that increases in pressure drop for iiquids
or difference of squares of pressures for gases are more
than proportional to increases in flow rates. That is the
procedure foliowed here,

EFFECTOF TURBULENCE’IN RADiAL
STEADY-STATEFLOWTHROUGHGASRESERVOIRS

Eienbaas and Kat# @ng th~ friction fqctor-vs-ileynolds
number plots developkd by Brmvrielt abd Katz* showed

h 2--CORRSLATIO=~UJgJJJJgCS FACTOR~ WITK
.

#U&Y, 1969

in 1948 that by gmphicai integrationof the generalflow
equation tbrougltWOUStuedii one wandevelop a baek-
gaufwtr~curv8 rslating {P} - p:), to 41,for a @ven &s
well. Their remits clearly show the devistion of the slope
of the back-pressurecurve at high tlow rates from unit
siope correspomfingto 13arcyflaw regime.

Foe radial steady-at@ flow when the generalized flow
equation (Eq. 2) is integrated, tiw fcdiowing radiaitur-
bulent gas-flowequation may hi derived with field units.

Using Eq. 11, back-pressure curves were epmputed for
a 0.6-gravity gas and a temperature depth-pressiue rela-
tionship for determining properties of the gas.” Perme-
ability and initiai reservoir pressure (and, henee, tempera-
ture) are parameters on the ciwrt of Fig. 3. This chart
directiy relates the back-pressure curve to formation P~r-
meability.

EFFECTOF’RESERVOIRINtiOMOGENEI’HESON
SLOPEOF BACKPRESSURECURVE

It is .reeognised that the steepness of the back-pressure
curves on Fig. 3 is iess than that found in actual cases.
Ac#mtir@y, turbulence may be an insticient exPl~~tion
for the high values of the slope (l/n) sometimes found
for gas welis. The question arises as to whether inbomo-
geneitiescouid cause steeper curves. CaIcuIatiogsare made
for a given mitiidarcy-foot product, assmning th’st homo-
geneous sand and then layered sand of different permea-
biiities,

—7
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FIcl 3-PERFORMANCE Cuavis FROMCORS DATA FOR
0.6.GRAVETYJGAS,= /



Considera back=presmraGWVGcdeulated b~i f& i 1
for a gasw@landrestmmirhavingthe followingproperties:
r. = 1/3 ft, M = .6(29) = 17.4, ~ ‘=. .012S cp, T =
S40”%p, = 14.7 psia,* = 0,18, r, = 1,320 ft (l*Z”
spacing), and z = .92. hlSdOCt of t@ae data into f?q. 11
yields

P: - Pm‘=73 X10e~+2.82X10-’# . . ( 12]

In these calculations q, is gken in million cubic feet.
Two cases are considered. In Case I, kh is 10,000 md.ft
and the reservoir is consideredhomogeneous,with k = 100
md, h = 100 ft. Thus Eq. 12 becomes

P: - P.’ =7,300 q,+ 17.6tqJ . . . . . (13)

where ~ = 6.2 X 10’ from Fig. 2 for k = 100$.+ = .18.
Eq. 13 is p!otted in Fig. 4. Thci reciprocal slope of the
back-pressure curve is shown on Fig. 4 to be close to 1.0
at low rates of. ftow, and significantlyfess than 1.0 (.874)
at higher rates. For the case # = O, of course, the slope
would be 1.0 for all rates.

In Case II, kh is agairi taken as 10,000 rnd-ft, b~ “the
reservoir is eonaidered stratilkd ‘into a zone 8-tl thick
with k = 1,000 mdj and a zone 92-ft thick with k = 21.7
md. If the pressure distribution in the reservoir during
production were truly steady-state, then no crosstlow
would exist between the layers and I?q. 12 could be applied
separately to ~ch layer. Although such a steady state
may not be actually attained, itwill be assumed in order”
to gain an ind@ationof the effect of stratification on back-
pressure curves, For the 8-ft zone, /3 = 4 X 10’ l/ft for
/c=1,000mdand~= ,18 (from Fig. 2), and Eq. 12
bemmes

P: – P.z =9,140 qgi- 177q,’ , . . . . (14)

For the 92-ft zone, /3 = 4.5 X 10’ for k = 21.7 md and
Eq. 12 becomes /

P: – P.’ = 36,500q, + 149qm* . . . ., . (15)
For a given value of (p? – p.’),, the production rate
from the 8-ft zone is calculated froti 13q,14, that for the
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RSCXPROCALSLOPEOF BACK-PRSSSUSIECmva.

m’ ,

92-Mzok is calculated ftim Pq. 15 and tiiesetwo rates’
We added, t+ypxhsrto give the total productionrate. Thii
total-r~,.q, is plott&din Fig, 4 as ‘~ W’,

The reciprbaaf alc~ of the back-pressure curve for
tiase If is again *O to be nearly 1.0 at L.. -__-, _.
6i@fk@y Iower t!!ea 1.0 at htgher ra@s, At rates of
30 to 80 MMcf/13, the’~ipwal slope of t.-. _______
reservoir is seen to be .80 as compared with .874 for
tho homogeneous formatfon. Thus while turbulence, as
represented by the $ factor, lowers the rwiprocal slope,
stradfioation can be an added factor tendiig to deereaae
it further. A more severe degree of stratiitnation or frac-
turing would tend to increase the d~erence in reeiprccel
slopes of the two cms’veaat high flow Fates.fiiicOgsa pro-
duction involves unsteady-state flow to a degree, crossflow
oceura in strati5ed systems and such crossfk. - is likely
to magnify the effect of turbuleswe on the slope of the
back-pressurecurve.

UNSTEADY.STATEFLOW ilF GAS INCLUDING
EFFECTS OF TURBULENCE

The treatments of unsteady-state gas flow have been
presented using Darcy’s iaw to represent the flow relation-
ships.?” The unsteady-state calculations have been nee-
essary to understand the behavior of tight formations. The
isochronal procedure” is based on the concept of equal
radii of drainage at equal flow times. The unsteady-state
flow relationships have been used to determine in situ
formation properties from welI data. Smith” used a “rate-
of-tbw function” empirically to correct a correlation”
involving only Dsrcy’a law. In this paper, unsteady-state
flow is calculated with the generalized flow equation in-
cluding the turbulence factor.

DERIVATIONOF EQUATIONS
When the generalized relationship of Eq. 2 between the

pressure gradient and ths superficial velocity is combined
with the continuity equat;on and the equation of state for
natural gas, the following equations result.

and

where q. = 50.2 X 10’ q, P P, Tz/hkpJ2 T,, dimensionless
flow rate in field units,

P = p/pi dimensionless pressure,
rD= r/rw dimensionlessradius, and

t/J
kp;t

= 2.634 X 10”4~ dimensionlesstime.
&rW

fn deriving 13qs. 16-arid- 17, a horiaontel disk-shaped
porous medium of constant thickness is assumed. The
yise@ity of the natural gas and the compressibilityfactor
Z are also assumedto be constant,

In Eq. lf5,

B = 5.37 X 10-=
/3M kzp~~. . . . . .
TZ~r.

(18) ‘

Eqs. “13and 17 are two simultaneous partial differential
equations fn the dependent varialdea ~ and P, which must
be solved along with the follotii boundary conditions. + .”

4D=q0. atrm=l.O, to>0. . . . . . . (19)

qa=Oatrn=~, tO>kl . . . . . . (20)

The equations and the boundary. conditions, J?qs. 16
through 20, are for constant terminal rate for a radial
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tlow model with clowd exterior boundary.fnitiall , P’ ie
~equ~ to unity throughoutthe reservoir.and qq= .

A solution w Eqs. 16 s&l 17 may be obtaimf by using
the trmmforrnationx = In ro. .,

aP
—=qa+-fle’”qo’ . . . . . . . . (21)
ax

aq. d= w “——.— .,, , . . . . . . .z- P at.
(22)”

“%ds transformation permits clo@y spaced radial i~e.
ments near the weilbore, corresponding to equally spared

increments in x, Solving for a% from &i. 21, and sub-

stituting in the E?q.22, yields

(
pe.&-

)W’ ‘BP,k-uufo’ Z@ ‘
1 -i- 2Be”’qD %?+ 1 i- 2B!3””q,= m

. , (23)

or

Eq. 24 may be replaeed by the following implicit tMite-
differenee form

., .,. . . . . . . . . . (25)
where x = mAx,

i = the index of iteration.

The eoetlkients C and D are evaluated at tbe new time
step but at the previous iteration (i). Eq. 25, when written
for m = 1;2 . . . . . . M, (where MAx = x, = lnr,/r.),
constitutesa tridiagonai matrix which is solvedby a method
given by Richtrnyer?’ Eq. 21 is solved for each time step
re:eatcuiating,the coe~lenta C?and D at each new iteration
until the maiimum change in ~,

is. less than a prescribed tolerance s.
The calculations were programmed for and performed

on an IBM 704 computer. The ease of a tlnite reservoir
with a ratio r./rW = 128 was treated; the boundary con-
ditions at r. and r. were obtained by simply imx?rting
q.= Oand q. = q,., respectively, into Eq. 21. The dimen-
sionlesstime hwnxnent At. w@ increased from 0.001 early
in the “calculationsto 10 when t~ ~xceeded 120. llventy-
,five spatiaI increments and a toleranec of 5 X 10-’ were
employed in the calculations.

DISCUSSIONS (3F RESUL’IS

Fig. 5 represents a typiesl set of isc%hronel back- ~
pressure curves obtained for a given value of B eoetlicient
and for several values of dimensionlfxstime to. The curves
in Fig. 5 are for the genmwtii ease where the #r@ of
turbulence factor hsi been ineiuded in the unsteady state.
T’iw psrtird d~rentiel equations have been solved nu-
merieatly without resorting to any tineariaadon technique.
For the sake of simplicity, however, the z factor,@ ,$een
treated as a e-cnstant evaluated at static reservoir condL
tioxss.lhperaUel trend and gradual shifting of the eurwes
to the left as time goeson are noted,

A t&%il set of’ beck-pressure curves”indicating the
effeet of & factor on the slope is illustrated in Figs. 6 and

JULY, 1969

7. U may be noted, a8 eKpeWed,thattheincrease in B
rewlti in increasedreeiprceal slopes for a given flow rate
and given value of time,

()Eq. 2 gives the pressure gradient -$- 4s a function

of veloeity including the turbu]ertiootib~tion ~ pv’.
Integration of this equiition&tween r. whers p = p. and
r, where p = p, yields

Eq. 26 is valid for steady-state gas flow between ? point
in the reservoir radius r, and the wellbore radius r.. ‘f&
term q. ie a dimensionlessproduction rate and p, is shut-in
reservoir pressure at tie time when production is begun.

Aronofsky and Jenkins” replaced r,, p, in Eq. 26 by r,,
p., dropped the term containing q~’, and used the resuitin~
equation

h ++$ KP./PfI” – (PJPd7 . . . . (27)

to detlne a “drainage radius” rd. Th6 pressure p. is the
pressure the reservoir wcmidattain if it were shut in and
allowed to equalise. As gas is produced, p. wiii thus de-
crease; use of a material balance yields Eq. 18.

P./p! =l-qDe, . . . . . . . . . (28)

where (i = 2.634 X 104 kp,t/p.#.2, a dimensionk& time.

Thus, E&27 beoomes

in +=+[(1 –q. e)’– (PJP,)7 . .
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AronofWy’attdJenkins*numericallysolvedthe tmsteady-
siate gasdtowquation derived from Darcy’slaw,

and insertedthe eoiution in terms of ~o and pa inb *e
right-bandside of f?q. 29. Their result was that Inr~/r~
was closely given by tbe equation

ln~=
()r. p’-*’’ =p=2@”2@” - “

. (31)

Smith~’ in an attempt to aocount for deviations from
Darcy flow,moditled Eq, 29 to read

where Y. was ciaim~ to be a dunsiordeaa furtetionof

flow rate, and the assumption was made that in ~ is stille
given by f@ 31.
“ In the precedingseetion, equations are dsveloped which
govern unsteady-stategas flow when turbulenceis taken
into account. Tiwsc equations have been solved muneri-
caiiy to obtain the relationship between chj,p. and O
which appearin the right-haadside of E+ 29. fnsertioo
of these calculated quantities into t?q. 29 then givea
in (r./rW) as a function of time.

In Figs. 8 and 9, In (rJrw) is piotted vs time with B
and qo as parameters,Ike dguresahow,tbat ln(r#~ ),
as detlned by Eq. 29, depends upon q, when turbulence
or non-Darcy flow is taken into account. Since Smith
substhued in[r./r.) from i3q. 31 into i3q. 32, his Y(q)
function must account for or absorb the differences in
time-dependency of In rJr. shown in Figs. 8 and 9.
These figures also show that the curve of ln(rJrw) . vs

1.00
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0.00

i
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timeisshifted by m dependent upon the faotorB. Tbus,
tha 3%J) fwwtiwt sbouid be denoted as Y(q, 4, B),
aiwe ail thr(w of them VJWkibkSaffeet Y. It shouldbe
Uoted tilab Whwe ieodlrm.sl testir$ is employed and @
thgfe well is involved, rpand B are fixed and Y reduces
to a function of flow rate only. However, the vrduesof
Y(q) cakxdatedarideaeribedby Smith wiii dependupon
the time durationof the isoebrmudtest providedstabili-
zation has not ooeurred.At stabiiiaatio~ in (r~/r~ ), sad
therefore Y, ceases to be time-dependent, as shown in
Figs. 8 and 9.

NOMENCLATURE

A ==cross-aeetionstarea to flow, sq cm
a = “aconstimtfor a given porous medium, ib

mass/ft4
@= a constant (B = 5.37 x 10-a @’Wp:/Tzp’r. ) ‘
C = constant function 02 flow rate and pressure, di-

mensionless’
D = coastant function of fiow rate and pressure, di-

mensionless; also, diameter in Reynolds number
d = mean particle diameter, ft

d( ) = &notes totai differentiation
f = friction factor, dimensionless

G = gas gravity, dimensionless.
k = permeability, rnd
L = length of the flowpath, ft
1, = iitliology factor

M = molecularweightof the gas, ib/tb moie
P = pressure,psia
P = “dimensionlesspressure

1=.4

z
-

J ,’



P, = basap~, wia P*“ tkXvilWeaml”fatxpmmure,p8ia
p, = pseudomhtcedprerlsuw p:= win fMmWgen-Hur$tdimensionlesspressure
p, = pseudocriticfd pr~, P& drop

Pt = initialWtk formationpr4swe, psia u#=1Zateof pmdwtioll, M$cf/D

to.
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a.= dirncdcmiess liow kt4

R = p UMt8tam, R = 1$44 ft. x lb”famcflb-mole
“R abtloluto ..

R,= Reynoldsnttmbcrk S=@@/f.0, dimcnsionlew
r“ S=welt radiue,ft
r, = radhm of oxtcriorbmmdaryof reamoir, ft
r,= *aina& radhta,ft
r, = dmnsiottktea radius,r/r=
2’= forqation telBpMatUr@t‘R
f=aotuaitim%boura

ts = ditncttdotdoastitb, 2.624 X 10+
&pJt

~
T, = basetemperatum,‘R abeohite
v = fluid velocity, ft/aec . .

w = massflowrate,gm/sec
#=irt FD
Z = comprcsrdbitity hecor, dimensionless
/3= turbulencefactor, ft-’
A = incremental quantity
p = density of fluid, lb tnaaa/ctt ft

P = gas Vi$cmii, Cp

#‘ WQM, dimcnsionleas

9 = dimettsimlch time, 2.634 X 10”%~+r.
g = Houpeurt flow factor, rnd X ft “’

SUtiCRIPTS- SUFEi&CRIPTS
“= iteration .c
i“= iteration
O= initial condition
1 = ttpstroam gondition
2 = downstream condMon
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