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The relationship between p/z and cumulative gas pro­
duction for typical gas reservoirs was studied by calcu­
lating pressure response to various modes of gas produc­
tion and water encroachment. Water encroachment meth­
ods considered were Schilthuis, Hurst simplified and van 
Everdingen-Hurst. In the method, the assumptions normal­
ly made in water encroachment calculations were accepted. 
Normally, pressures are measured and the gas reserves 
and water encroachment found implicitly. Conversely, in 
this work various encroachment factors, reserves and res­
ervoir-aquifer geometry were assumed and the pressures 
solved implicitly. 

The results show the spectrum of p/z shapes that can 
be expected for real reservoirs. With normal encroach­
ment rates for closed aquifers the p/z chart exhibits the 
typical inflection at early times. This has sometimes been 
interpreted as all measurement error. These studies have 
shown that a new look should be taken at interpretation. 
It is rather dangerous to extrapolate "straight-line" p/z 
charts if encroachment from an aquifer is suspected. 

Introduction 

A common method of predicting gas reserves is the 
graphical solution to the gas material balance equation. 
A special case of the material balance equation is linear 
in p/z with cumulative gas production (Gp) which pre­
dicts the initial in-place gas when p/z is extrapolated to 
zero. Derivation of this form is based on the equation of 
state, corrected for compressibility (p V = znRT), and, 
particularly, on the reservoir being closed (no water en­
croachment). A straight line on the p / z chart results when 
these conditions hold. However, an apparent straight line 
on the chart does not assure that the reservoir is closed. 
Many of the curves show a rapid decline in the early stages 
of production after which they flatten out. Confusion arises 
as to whether these characteristics are caused totally by 
pressure measurements. To answer this question in part, 
a series of controlled mathematical experiments was per-
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formed in which a typical gas field was produced subject 
to various forms of water encroachment. These runs .vere 
specifically designed to eliminate measurement errc . by 
calculating pressures at the inner boundary of the aquifer. 
The resultant p/z charts were thus made available for study 
and direction in predicting reserves and to indicat'! the 
curvature that can be expected in addition to that caused 
by normal measurement error. 

Solution of the Basic Equation for p/z 

The basic equation solved for p and p/z is derived in 
Appendix A. It is 

K,S( p.t) 
G,, = G, + B - B--

o !/I 

(1) 

G,, and G, are the apparent and real values of original gas 
in place and are derived by assuming a closed reservoir 
for G,,, and one open to an aquifer for G, .. The function 
S(p,t) is defined by three methods-Schilthuis, durst 
simplified or van Everdingen-Hurst.'-' The definitions of 
these functions are given in Appendix B. 

Eq. 1 is the linear function that is commonly p!otted 
( G" vs S(p,t) / B- B,) with the intercept predicting the 
original gas in place and slope predicting the water en­
croachment factor."" This is a graphical solution of Eq. 
1 when histories on pressure and cumulative productions 
are known. In some cases the equation has been rear­
ranged so a plot can be made such that the encroach­
ment factor is predicted by the intercept and the reserve 
by the slope.' 

In the calculations presented in this paper, in-place 
values, water encroachment factors, rock fluid properties, 
and cumulative production were set. Eq. 1 was solved 
implicitly for p/z. 

The equivalent of Eq. 1 in terms of p/z is 

p/z = ~ [ z, G,. 

G,-G,, l 
zi T Psc (2) 

L,.p,K,Stp,t) 

1References given at tnd of paper, 
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Setting K, S (p,t) = 0 (no water encroachment), pro­
duces the linear form. Obviously, whether the p/z curve 
is linear or not when K, S(p,t) =F 0 depends upon the 
S(p,t) function. 

The cumulative productions were determined from pro­
duction rates calculated from wellhead operating curves 
subject to the maximum allowables.' The wellhead curve 
1s defined by 

q" = C(p,,,.,, 2 -p,/)", (3) 

where q,1 = the production rate, Mscf/D 
C = the performance coefficient 

p,"" = the wellhead shut-in pressure, psia 
PtJ the tubing flowing pressure 

n - the back-pressure exponent. 

Shut-in wellhead pressures were determined after the 
reservoir pressure p was chosen by calculating the static 
head by the method of Cullender and Smith.' The static 
head was subtracted from p to give p,w,,. 

A general flow scheme of the calculation technique is 
given in Fig. l, and the field conditions are given in 
Table l. 

Compressibilities were interpolated from the 1952 API 
tables. Tables 2 and 3 list conditions that were varied for 
individual runs. 

Discussion of Results 

The results of the calculations are shown in Figs. 2 
through 9. All of the curves show p/z as a function of 
cumulative gas produced and are labeled with the num­
bers corresponding to the data in Tables 2 and 3. Each 
plotted point represents two years. 

Fig. 2 gives the results when the aquifer was assumed 
to be unlimited, or when original aquifer pressure was as­
sumed to remain constant at some outer boundary (Schil­
thuis). As the encroachment factor was increased the 
pressure was maintained at a higher and higher level. The 
dotted line at the bottom represents no encroachment and 
the top dotted line shows complete pressure maintenance 
by a very active water drive. 

Fig. 3 shows the results of increasing the Hurst simpli­
fied encroachment factor from 2.5x10• to 2.5x10• (cu ft) 
In (mo)/psi/year. 

The van Everdingen-Hurst encroachment factors were 

!!3B 
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Fig. I-Solution of Eq. A-12 for p/z. 

assumed for runs shown in Figs. 4 through 9, and the 
aquifer was assumed closed and radial. Combinations of 
three variations in relative aquifer size, two water compres­
sibilities and nine aquifer permeabilities were represented 
in the runs. 

Curves with inflections, which have been observed in 
practice, were produced for the closed aquifers. 

In most cases the families of curves appear to approach 
a common slope at zero time. At zero time this slope 
will represent the p/z line for no water encroachment. 

Runs with the Schilthuis method and Hurst-simplified 
method converge at or near a horizontal line as water 
encroachment factors increase. This means that pressure 
drops in the aquifer are approaching zero. 

In the van Everdingen-Hurst runs the curves respond 
to the mobility (k/µ) and compressibility of the water, 
and the relative size of the aquifer. For R./R,. of 1.5, 

Run 
No. 

15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 

TABLE 1-FIELD CONDITIONS 

Area= 2 ,500 acres 
Pay= 100 ft 
Porosity=0.25 
Connote water=0.3 
Original BHP=5,000 psia 
Formation temperature= 250F 

Deplh = 10,000 ft 
Gas Gravity=0.68 (No N,, co, or HoS) 
(Radius)2= 34.7 X 10'1 sq ft 
Initial wellhead shut-in pressure=4,200 psia 
Wellhead shut-in temperature= 100F 

Back-pressure curve slope=0.7 
Open flow potential =74.4 MM scf/D 
Minimum wellhead flowing pressure= 100 psio 

Maximum allowable field rate=47.2 MM scf/D 

TABLE 2-VARIABLE CONDITIONS FOR RUNS 1 THROUGH 14 

Type 
Run Encroachment Encroachment 
No. Factor Factor 

----- ----

t 5,900 

2 18,000 

3 Schilthuis 36,000 

4 (cu ft/psi/year) 59,000 

Radial Infinite 100,000 

6 I 200,000 

7 "' 590,000 
------

8 t 25,000 

9 I 90,000 

10 Hurst Simplified 150,000 

11 (cu ft In (month)/psi/year) 250,000 

12 Radial Infinite 340,000 

13 l 
610,000 

14 2,500,000 
~-----~---

TABLE 3-VARIABLE CONDITIONS FOR RUNS 15 THOUGH 38 

Ratio Aquifer Dimensionless 
Type of Aquifer Per me- Time to Real Water 

Encroachment Radius to ability Time Ratio Compressibility 
factor field Radius (md) ~l- _ __l_li_~_)_ 

1.5 1 .089 3.0X 10-6 

.J, 
1.5 10 .89 3.0 x 10-6 

1.5 100 8.9 3.0Xl0·6 

5.0 1 .089 3.0 x 1 o-6 

van Everdingen 5.0 10 .89 3.0X 10-" 

Hurst Radial finite 5.0 100 8.9 3.0Xl0-6 
5.0 1000 89. 3.0 x 1 o-6 

16,350 du ft/psi 10.0 1 .089 3.0Xl0-6 

10.0 10 .89 3.0 x 10-6 

l 
10.0 100 8.9 3.ox10-• 
10.0 1000 89. 3.0Xl0-6 

10.0 10000 890. 3.0x 10·6 

ii 
1.5 10 .089 30X10·6 

1.5 100 .89 30X 10- 6 

5.0 10 .089 30 x 10-6 

I 5.0 18 .16 30X 10- 6 

van Everdingen 5.0 39.3 .35 30X 10- 6 

Hurst Radial Finite 5.0 100 .89 30X 10- 6 

10.0 10 .089 30x10- 6 

163,500 cu ft/psi 10.0 15.8 .141 30X J0- 6 

10.0 31.5 .28 30X 10- 6 

10.0 100 .89 30x10-6 

l 10.0 1000 8.9 30X 10-G 
10.0 10000 89. 30>< 10-6 
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Fig. 2-Curves of p/z for gas reservoirs with water influx, 
Schilthuis method. 
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Fig. 3-Curves of p/z for gas reservoirs with water influx, 
Hurst simplified method. 
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Fi-g. 4-Curves of p/z for gas reservoirs with water influx, 
van Everdingen-Hurst, finite, R./ Rr = 1.5. 
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Fig. 5-Curves of p/z for gas reservoirs with water influx, 
van Everdingen-Hurst method, finite, R./ R, = 5. 
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Fig. 6-Curves of p/z for gas reservoirs with water influx, 
van Everdingen-Hurst method, finite, Ra/R, = 10. 
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Fig. 7-Curves of p/z for gas reservoirs with water influx, 
van Everdingen-Hurst method, finite, R,,/ R, = 1.5. 
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Fij!.'. 8-Curves of p/z for gas reservoirs with water influx, 
van Everdingen-Hurst method, finite, R./Rr = 5. 
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Fig. 9-Curves of p/z for gas reservoii-s with water influx, 
van Everdingen-Hurst method, finite, R./R, = IO. 
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the effect of the ayuifer is negligihle for a given water 
compres'iibility regardless of the permeability (Fig. 4). 
Howevt>r. for a higher water c,1mpressibility an effect is 
felt for cPmparahlc mobilities (Fig. 7). 

In general the pressure is maintained at higher levels as 
the water compressibility, ayuifer size or water mobility 
is increased. Yet, even with increases in mobility an ex­
treme curve was approached for the closed aquifers (Runs 
25 and 2(,, Fig. 6). In these cases pressure drops in the 
aquifer ,vere small and the shapes were controlled by the 
wa'er ::o:npressibilities. 

Conclusions 

Fig. i li illustrates the increasing error that cccurs if a 
pl z cc ·ve i3 ex~rapCJlated wit.1 no regard for water en­
croach; .. ent. As the relative size of the aquifer increases 
from R ,,/ R, = 1 .5 to 10, the error increases from a negli­
gible amount to an estimate of over 100 per cent of the 
actual in;tial gas in place. This estimate would be made 
after 65 per cent of the initial gas in place is produced. 

This leads to the principal conclusion that it is danger­
ous tJ extrapCJlate pl z cnarts on a straight line without 
considering the possibility of water influx. 

Runs performed here eliminated measurement error and 
the curved p;.irtions were produced under realistic produc­
tion schedules. Thus, curved porticns at the start of pro­
duction history can be caused by the unsteady-state nature 
of the aquifer and not solely by measurement errors. So, 
these curved p;:;rtions should not be neg;ected, but ought 
u be 1 egardeJ as an indication of possible water en­
croachment. 

These results make a case for accelerated early pro­
duction so that the inflections will be accentuated, per­
mitting better early estimates of gas in place. 
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APPENDIX A 

Derivation of the Basic Equations 

The apparent reserves for a gas field are those deter­
mined when no water encroachment is assumed, or, 

(A-1) 

where Vp; is the original pore volume, cu ft. 

VP is the pore volume containing gas at some later time. 

VP= (G,,-G,,)B!I 

Vri = G11 Bfll' 

where G,, = the apparent original gas in place, scf 
Gr = cumulative gas produced, scf 

(A-2) 

(A-3) 

Bu; and 8 11 are the gas formation volume factors, cu 
ft/scf. 

p". T; Z, 
B.<li p;T" 

(A-4) 

p". T z 
B,, -

p I' 
(A-5) 

Substituting Eqs. A-2 and A-3 into Eq. A-1 and solving 
for G" gives 

G,, = G,,(s ~B ) 
!J ljl 

(A-6) 

When water encroachment is considered, Eq. A-1 is re­
placed by 

(A-7) 

to account for the water influx W,. 

Under these conditions, Ga in Eqs. A-2 and A-3 is de­
fined as G, (real initial in place gas), or, 

V,, = (G, -G,,)B,,, 
and 

Substitution of Eqs. A-8, A-9, and 

W, = K, S(p,t) 

into Eq. A-7 gives 

G,,B 
G,. = (B D ) 

y-Dyi 

K,. S(p,t) 

(B"-B";) 

(A-8) 

(A-9) 

(A-10) 

( A-11) 

where K,. is the water encroachment factor and S(p,t) 
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R,,/R, 
----

1.5 
2.0 
2.5 
3.0 
3.5 
4.0 
4.5 
5.0 
6.0 
7.0 
3.0 
9.0 

10.0 

Middle Range of 
.itd1 ----------- ·-

From To 

.1206 

.418 

.815 
1.33 
1.12 
2.05 
2.62 
3.06 
5.85 
8.48 
<.29 
9.96 

14.52 

0.7 
2.5 
6.0 

11.0 
25.0 
34.0 
46.0 
60.0 

110.0 
160.0 
240.0 
280.0 
360.0 

0.03255975 
0.3852062 
0.7919653 
1 .046089 
0.4178854 

-- 2.231692 
- 6.108747 
-- 6.429505 
--24.90336 
-43.33130 
-51.48727 
-31.97360 
-20.55106 

Ac 

0.02485001 
0.09626595 
0.05396428 
0.2388103 
1.292179 
3.177286 
5.413047 
4.823608 

12.44925 
17.84979 
19.26185 

8.612722 
0.6903652 

is a function of pressure and time and describes the un­
steady-state water influx. 

Subtraction of Eq. A-11 from Eq. A-6 results m the 
basic equation 

K,, S(p,t) 
G,, = G, + (B. -B ··)-

,, IJI 

APPENDIX B 

Definition of S(p,t) 

Schilthuis Method 

n 
S(p,t) = ~ .6.p, .6.t., 

i=2 

where !:ip, 
(p, + p,_,) 

p, - - 2 

and M, 

where n = number of pressure points 
t, = time in years 

(A-12) 

(B-1) 

(B-2) 

(B-3) 

p = aquifer pressure (inner boundary) psi a. 

Hurst-Simplified Method 

S(p,t) = 
n ,. 
...... 

i=--2 

!:ip, .6.t, 

In( 12t,) ' 
(B-4) 

where !:ip, and !:it, are still defined by Eqs. B-2 and B-3 

van Everdingen-Hurst Method 

S(p,t) 

where 
.6. . - p,+,-p, 

p, - --2--, 

for i = I, and 

!:ip, = p,+,;P~.'- , 

for i = 2 to n - I . 

( B-5) 

(B-6) 

(B-7) 

q.6.t," is the dimensionless flow rate and is a function of 
:J.t,u (the dimensionless time increment) and aquifer geome­
try. 

:J.tdi = 2.309 ( ( B-8) 

with k in millidarcies, t in years, cp a fraction, 11 in cp, 
C11 in I/psi, R, in ft. 

q!:it,u is defined under the following conditions. All :J.t", < 
0.0 I, or the linear system 

(B-9) 

MARCii, 1965 

A:: 

0.03179695 
0.05244533 
0.06348801 

-0.08575203 
-0.4404957 
-0.8411667 
--1 .266439 
- 0.8503674 
-2.042113 
--2.486980 
--2.365595 
-0.05276312 

1.759464 

0.007970778 
0 .004754153 
0.01234595 

-0.008445356 
0.03704949 
0.06444676 
0.09235701 
0.03632684 
0.1044283 
0.1043855 
0.08228036 

-0.08174990 
-0.2079732 

0.6164517 
1.281475 
1 .534877 
1 .574667 
1.630682 
2.779082 
4.890919 
5.599367 

20.58242 
39.95260 
50.46776 
38.52328 
37.02682 

Infinite Radial System 

(0.Ql < :J.t,,, ::;: 10') 

Stabilized 
State Values 
Above the 

Middle Range 

0.6235899 
I .509915 
2 .634689 
3.994681 
5.650575 
7.499222 
9.619498 

11 .97866 
17.48006 
23.95055 
31.66351 
39.96676 
49.14654 

q.6.t,,, = e (A1ln..>tdi +Ao) ln..>t,li )"+ A,(ln!>t,,,) 3 + A1(ln..>t.,,) I+ A,) 

where A, = 0.647692 

A,= 0.0177318 

A,= -0.0002737391 

A,= -0.4318125 X IO' 

A, = 0.4506432. 

Finite Radial Systems 

The finite radial systems are defined by the infinite 
radial Eq. B-10, where !:it,,, > 0.01 and less than the mid­
dle range defined in Table 4. In the middle range the 
dimensionless flow is defined by an equation of the same 
form as Eq. B-10, but with constants shown in Table 4. 
Table 4 also gives the steady-state values applicable above 
the middle range. * * * 
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