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Decline Curve Analysis Using Type Curves 
M.J. Fetkovich, SPE, Phillips Petroleum Co. 

Introduction 
Rate-time decline curve extrapolation· is one of the 
oldest and most often used tools of the petroleum 
engineer. The various methods used always have 
been regarded as strictly empirical and generally not 
scientific. Results obtained for a well or lease are 
subject to a wide range of alternate interpretations, 
mostly as a function of the experience and objectives 
of the evaluator. Recent efforts in the area of decline 
curve analysis have been directed toward a purely 
computerized statistical approach, its basic objective 
being to arrive at a unique "unbiased" in­
terpretation. As pointed out in a comprehensive 
review of the literature by Ramsay,l "In the period 
from 1964 to date (1968), several additional papers 
were published which contribute to the un­
derstanding of decline curves but add little new 
technology. " 

A new direction for decline curve analysis was 
given by Slider2 with his development of an overlay 
method to analyze rate-time data. Because his 
method was rapid and easily applied, it was used 
extensively by Ramsay in his evaluation of some 200 
wells to determine the distribution of the decline 
curve exponent b. Gentry's3 Fig. 1 displaying the 
Arps,4 exponential, hyperbolic, and harmonic 
solution,s all on one curve also could be used as an 
overlay to match all of a well's decline data. 
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However, he did not illustrate this in his example 
application of the curve. 

The overlay method of Slider is similar in principle 
to the log-log type curve matching procedure 
presently being employed to analyze constant-rate 
pressure buildup and drawdown data. 5-9 The ex­
ponential decline, often used in decline curve 
analysis, readily can be shown to be a lon,-time 
solution of the constant-pressure case. 10- 3 It 
followed then that a log-log type curve matching 
procedure could be developed to analyze decline 
curve data. 

This paper demonstrates that both the analytical 
constant-pressure infinite (early transient period for 
finite systems) and finite reservoir solutions can be 
placed on a common dimensionless log-log type 
curve with all the standard "empirical" exponential, 
hyperbolic, and harmonic decline curve equations 
developed by Arps. Simple combinations of material 
balance equations and new forms of oilwell rate 
equations from the recent work of Fetkovich 14 
illustrate under what circumstances specific values of 
the hyperbolic decline exponent b should result in 
dissolved-gas-drive reservoirs. Log-log type curve 
analysis then is performed using these curves with 
declining rate data completely analogous to the log-

Note: The author's full·size type curves with grid suitable for actual use are 
available on written request from SPE Book Order Dept., 6200 N. Central Ex· 
pwy., Dallas, TX 75206. Specify SPE 9086 and include $3 prepayment for each 
order of "Types Curves for Decline Curve Analysis Using Type Curves." 

This paper demonstrates that decline curve analysis not only has a solid fundamental 
base but also provides a tool with more diagnostic power than has been suspected 
previously. The type curve approach provides unique solutions on which engineers can 
agree or shows when a unique solution is not possible with a type curve only. . 
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Fig. 1 - Type curves for Arps' empirical rate-time decline 
equations, unit solution (0; = 1). 
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Fig. 2A - Dimensionless flow · rate functions for plane 
radial system, infinite and finite outer boundary, 
constant pressure at inner boundary.l0.ll,15,18 
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Fig. 28 - Dimensionless flow rate functions for plane 
radial system, infinite and finite outer boundary, 
constant pressure at inner boundary.l0,11,15,16 
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log type curve matching procedure presently being 
employed with constant-rate case pressure transient 
data. 

Arps' Rate-Time Equations 
Nearly all conventional decline curve analysis is 
based on the empirical rate-time equations given by 
Arps4 as 

q(t) 
= ---- ................. (1) 

q; [1 + bD;tflb 

For b = 0, we can obtain the exponential dedine 
equation from Eq. 1, 

q(t) 1 
-=-, .......................... (2) 

q; eDit 

and for b = I, referred to as harmonic decline, we 
have 

q(t) 

qj 
= . ....................... (3) 

[1 +D;t] 

A unit solution (D; = 1) of Eq. 1 was developed for 
values of b between 0 and 1 in 0.1 increments. Th~ 
results are plotted as a set of log-log type curves (Fig I 
1) in terms of a decline curve dimensionless rate, 

q(t) 
qDd = - , ......................... (4) 

qj 

and a decline curve dimensionless time, 

t Dd = D; t. . ...... : . . ................ (5) 

From Fig. 1 we see that when all the basic declin~ 
curves and normal ranges of b are displayed on • 
single graph, all curves coincide and become in· 
distinguishable at tDd == 0.3. Any data existin$ 
before a tDd of 0.3 will appear to be an exponential 
decline regardless of the true value of b and, thus· 
plot as a straight line on semilog paper. A statistic;} 
or least-squares approach could calculate any valu~ 
of b between 0 and 1. 

Analytical Solutions 
(Constant-Pressure at Inner Boundary) 
Constant well pressure solutions to predict declinins 
production rates with time were published first in 
1933 b(' Moore, Schilthuis and Hurst,lO and 
Hurst. 1 Results were presented for infinite and 
finite, slightly compressible, single-phase plane 
radial flow systems. The results were presented in 
graphical form in terms of a dimensionless flow rate 
and a dimensionless time. The dimensionless flow 
rate q D can be expressed as 

141.3 q(t) p.B 
qD = kh(p;-Pwj) , ................. (6) 

and the dimensionless time t D as 

0.00634 kt 
tD = cpp.ct

r 
w2 ...................... (7) 

The original publications did not include tabular 
values of qD and tD . For use in this paper infinite 
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solution values were obtained from Ref. 15, while the 
finite values were obtained from Ref. 16. The infinite 
solution and finite solutions for r e/ r w from 10 to 
100,000 are plotted in Figs. 2a and 2b. 

Most engineers utilize the constant-pressure 
solution not in a single constant-pressure problem 
but as a series of constant-pressure step functions to 
solve water influx problems using the dimensionless 
cumulative production QD. 13 The relationship 
between QD and qD is 

d(QD> --. = qD ' ....................... (8) 
dID 

Fetkovich17 presented a simplified approach to water 
ihflux calculations for finite systems that gave results 
that compared favorably with the more rigorous 
analytical constant-pressure solutions. Eq. 3 of his 
paper, for a constant-pressure P wi' can be written as 

10 (p;-Pwj> 
q (t) = • . ............. ,. (9) 

[(q~max ] t 
but 

e . PI 

qi = 10 (Pi ~Pwj) , .....••.•...•....... (10) 

and 

10 = (qj)max ..••..•••...••...•..... (11) 
Pi . 

Substituting Eq. 11 into Eq. 10 we can write 

............... (12) 

[1 - ;;] 
Now substituting Eqs. 10 and 12 into Eq. 9 we obtain 

q(t) 
=e ........... (13) 

Eq. 13 can be considered as a derivation of the ex­
ponential decline equation in terms of reservoir 
variables and the constant-pressure imposed on the 
well. For the same well, different values of a single 
constant backpressure Pwj always will result in an 
exponential decline - i.e., the level of back pressure 
does not change the type of decline. For Pwj = 0, a 
more realistic assumption for a well on true wide­
open decline, we have 

q(t) 

qi 

[ 
(q;)max] 

- -- t 
Np; 

=e ...........•..•. (14) 

In terms of the empirical exponential decline curve, 
Eq. 2, D i is then defined as 

Di = (q~ ~ax . . .................... (15) 
pI 

In terms of a dimensionless time for decline curve 
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Fig. 3 - ' Dimensionless flow rate functions for plane radial 
system, infinite and finite outer boundary, con­
stant pressure at inner boundary. 

analysis we have from Eqs. 5 and 15 

[
(qi)max] 

IDd =Np; . t .. ................. (16) 

Defining Np; and (qj) max in terms of reservoir 
variables 

1f(re2 - r w2)cPCthp; 
Npi = 5.615 B , ............. (17) 

and 

[ ( r e. ) 1 .].. .... (18) 141.3p.B In- --
rw 2 

The decline curve dimensionless time, in terms of 
. reservoir variables, becomes 

1 
, .. (19) 

or 

To obtain a decline curve dimensionless rate qDd in 
terms of qD, 

qDd = q(~l = qD[ln( re ) - ~], ....... (21) 
q, rw 2 

or 
q(t) 

......... (22) 

141.3p.B[ln( r e ) _ ~] 
rw 2 

Thus, the published values of qD and tD for the 
infinite and finite constant-pressure solutions were 
transformed into a decline curve dimensionless rate 
and time, q Dd and t Dd, using Eqs. 20 and 21. Fig. 3 
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Fig. 4 - Composite of analytical and empirical type curves 
of Figs. 1 and 3. 
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Fig. 5A - Graphical representation of material balance 
equation. 
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Fig. 58 - Graphical representation of material balance 
equation. 
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is a plot of the newly defined dimensionless rate and 
time, qDd and t Dd' for various'values of r elr W' 

At the onset of depletion (a type of pseudosteady 
state), all solutions for various values of relrw 
develop exponential decline and converge to a single 
curve. Fig. 4 is a combination of the constant­
pressure analytical solutions and the standard 
"empirical" exponential, hyperbolic, and harmonic 
decline curve solutions on a single dimensionless 
curve. The exponential decline is common to both the 
analytical and empirical solutions. Note from the 
composite curve that rate data existing only in the 
transient period of the constant terminal pressure 
solution, if analyzed by the empirical Arps approach, 
would require values of b much greater than 1 to fit 
the data. 

Solutions From Rate 
and Material Balance Equations 
The method of combining a rate equation and 
material balance equation for finite systems to obtain 
a rate-time equation was outlined in Ref. 17. The 
rate-time equation obtained using this simple a.,­
proach, which neglects early transient effects, yieldl$d 
surprisingly good results when compared with tho$e 
obtained using more rigorous analytical solutions f()r 
finite aquifer systems. This rate-equation materi/ll 
balance approach was used to derive some useful alld 
instructive decline curve equations for solution-gas­
drive reservoirs and gas reservoirs. 

Rate Equations 
Until recently, no simple form of a rate equation 
existed for solution-gas-drive reservoirs with whi~h 
to predict' rate of flow as a function of both flowing 
pressure and declining reservoir shut-in pressure. 
Fetkovich 14 has proposed a simple empirical rate 
equation for solution-gas-drive reservoirs that yiel<1s 
results that compare favorably with computer results 
obtained using two-phase flow theory. The propos¢ 
rate equation was given as 

qo = J~i(~R ) (fJi-pw!)n, .......... (23~) 
PRi 

where n will be assumed to lie between 0.5 and 1.0. 
Although the above equation has not been verifi~d 

by field results, it offers the opportunity to define the 
decline exponent (1/ b) in terms of the back pressure 
curve slope (n) and to study its range of expect¢<l 
values. Also, the initial decline rate Di can be ex­
pressed in terms of reservoir variables. One further 
simplification used in the derivations is that Pwf = O. 
For a well on decline, Pw! usually will be maintained 
at or near zero to maintam maximum flow rates. Eq. 
23a then becomes 

qo = J~i (~R ) (fJin) , .............. (23b) 
PRi 

The form of Eqs. 23a and 23b also could be used to 
represent gas-well behavior with a pressure depen­
dent interwell permeability effect defined by the ratio 
(p R I fJ Ri)' The standard form of the gas-well rate 
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Fig. 6 - Dissolved-gas-drive reservoir rate decline type 
curves for finite system with constant pressure at 
inner boundary (Pwf = 0 @ 'w); early transient 
effects not included. 

equation usually is given as 

C {- 2 2)n qg = gVJR -Pwj . ................ (24) 

Material Balance Equations 
Two basic forms of a material balance equation are 
investigated in this study: P R is linear with Np or f:!p, 
and pi is linear with Np or Gp (Figs. 5A and 58). 
The linear PR relationship for 011 is 

PR = - ( ~R~ )Np +PRi , ............. (25) 
PI 

and for gas 

PR = - (p~; ) Gp +PRi. . ............ (26) 

Eq. 25 is a good approximation for totally un­
dersaturated oil reservoirs or is simply assuming that 
during the decline period P R vs. N can be ap­
proximated by a straight line. For gas reservoirs, Eq. 
26 is correct for the assumption of gas com­
pressibility Z = 1. 

In terms of pi being linear with cumulative 
production, we would have 

- 2 _ (fiR?) N - 2 P R - - N. p + P Ri . . .......... (27) 
pi , 

This form of equation results in the typical shape of 
the pressure PR vs. cumulative production Np 
relationship of a solution-gas-drive reservoir as 
depicted in Fig. 5B. Applications would be more 
appropriate in nonprorated fields - i.e., wells are 
produced wide open and go on decline from initial 
production. This more likely would be the case for 
much of the decline curve data analyzed by Cutler18 

obtained in the early years before proration. 

Rate-Time Equations for Oil Wells 
Rate-time equations using various combinations of 
material balance and rate equations were derived as 
outlined in Appendix B of Ref. 17. Using Eqs. 23b 
and 25, the reSUlting rate-time equation is 
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Fig. 7 - Dissolved-gas-drive reservoir rate decline type 
curves for finite system with constant pressure at 
inner boundary (Pwf = 0 @ 'w); early transient 
effects not included. 

1 = ----------------
[2n(~ )1+ 1 ]'"';1· 

........ (28) 

A unit solution, qoi/Np; = 1, ofEq. 28 is plotted as 
a log-log type curve for various values of n (Fig. 6) in 
terms of the decline curve dimensionless time t[)d. 
For these derivations withPwj = 0, qoi = (qoi) max' 
For the limiting range of backpressure curve slopes n 
of 0.5 and ·1.0, the Arps empirical decline curve 
exponent lib is 2.0 and 1.5, respectively, or b = 
0.500 and 0.667, respectively - a surprisingly 
narrow range. To achieve an exponential decline, n 
must be equal to zero, and a harmonic decline 
requires n - 00. In practical applications, if we 
assume an n of 1.0 dominates in solution-gas 
(dissolved-gas) drive reservoirs andpR vs. Nis linear 
for nonuniquely defined rate-time data, we simply 
would fit the rate-time data to the n = 1.0 curve. On 
the Arps' solution type curves (Fig. I), we would use 
(lIb) = 3/2 or b = 0.667. 

The rate-time equation obtained using Eqs. 23b 
and 27 is 

1 = . ........ (29) 

[O.S(!:)I+ 1]20+1 

The unit solution of Eq. 29 is plotted as a log-log type 
curve for various values of n (Fig. 7). This solution 
results in a complete reversal from that of the 
previous one; n = 0 yields the harmonic decline and 
n - 00 gives the exponential decline. For the limiting 
range of back pressure curve slopes n of 0.5 and 1.0, 
the decline curve exponent lib is 2.0 and 3.0 or h = 
0.500 and 0.333, respectively. This range of b values 
fits Arps' findings using Cutler's decline curve data. 
He found that more than 900/0 of the values of b lie in 
the range 0 ::5 b ::5 0.5. Ramsayl found a different 
distribution of the value of b analyzing modern rate 
decline data from some 202 leases. His distribution 
may be more a function of analyzing wells that have 
been subject to proration and are better represented 
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Fig. 8 - Gas reservoir rate decline type curves for finite 
system with constant pressure at inner boundary 
(Pwf = 0 @ ''II); early transient effects not in­
cluded. 

by the assumptions underlying the rate-time solution 
given by Eq. 28 - i.e., PR vs. Np was linear over the 
decline period. 

Decline Curve Analysis of Gas Wells 
Decline curve analysis of rate-time data obtained 
from gas wells has been reported in only a few in­
stances. 19,20 Using Eq. 24 with Pw1 = 0 and Eq. 26, 
the rate-time equation for a gas well is 

qg (I) = 1 
-----------. . .... (30) 

qg; [(2n-1)(~ )/+ 1] 2n~t" 
for all backpressure curve slopes where n > 0.5. 

For n = 0.5, the exponential decline is obtained: 

q (I) - (q'i)t 
~ = e G •••••••••••••••••••• (31) 

qgi 

The unit solutions of Eqs. 30 and 31 are plotted as a 
log-log type curve in Fig. 8. For the limiting range of 
backpressure curve slopes n of 0.5 and 1.0, the Arps 
decline curve exponent (lib) is 00 and 2, or b = O· 
(exponential) and 0.500, respectively. 

The effect of backpressure· on a gas well is 
demonstrated for a backpressure curve slope n = 1.0 
in Fig. 9. The backpressure is expressed as a ratio of 
Pwj/Pi. Note that as Pwj - Pi (~ - 0), the type 
curve approaches exponential decline, the liquid case 
solution. Whereas backpressure does not change the 
type of decline for the liquid case solution, it does 
change the type of decline in this case. 

Using the more familiar rate and material balance 
equations for gas wells, we can obtain the 
cumulative-time relationship by integrating the rate­
time Eqs. 30 and 31 with 

Gp = It qg (/)dt. . ..•................. (32) 
o 

For n > 0.5 we obtain 1 

G p [ ( q g;) ] (l - 2n) 
G = 1- 1 +(2n-l) G t , .... (33) 
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Fig. 9 - Gas reservoir rate decline type curves with 
backpressure for finite system with constant 
pressure at Inner boundary (Pwf = constant 
@ ''II); early transient effects not included and 
Z = 1 (based on gas well backpressure curve 
slope, n = 1). 

and for n = 0.5, 

Gp - (~i)t 
- = l-e .................. (34) 
G 

Log-log type curves of Eqs. 33 and 34 could be 
prepared for convenience in obtaining cumulative 
production. 

Type Curve Analysis 
Recent papers ? Agarwal el al. ,S Ramey, 6 

Raghavan el al., and Gringarten el al., 8 have 
demonstrated or discussed the application and 
usefulness of a type curve matching procedure to 
interpret constant-rate pressure buildup and 
drawdown data. Van Poollen21 demonstrated the 
application of the type curve procedure in analyzing 
flow-rate data obtained from an oil well producing 
with a constant pressure at the wellbore. All of his 
data, however, were in the early transient period. No 
depletion was evident in his examples. This same type 
curve matching procedure can be used for decline 
curve analysis. 

The basic steps used in type curve matching of 
declining rate-time data are as follows. 

1. Plot the actual rate vs. time data in any con­
venient units on log-log tracing paper of the same size 
cycle as the type curve to be used. (For convenience 
all type curves should be plotted on the same log-log 
scale so that various solutions can be tried.) 

2. The tracing paper data curve is placed over a 
type curve, the coordinate axes of the two curves 
being kept parallel and shifted to a position that 
represents the best fit of the data to a type curve. 
More than one of the type curves presented in this 
paper may have to be tried to obtain a best fit of all 
the data. 

3. Draw a line through and extending beyond the 
rate-time data overlain along the uniquely matched 
type curves. Future rates then simply are read from 
the real-time scale on which the rate data is plotted. 

4. To evaluate decline curve constants or reservoir 
variables, a match point is selected anywhere on the 
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Fig. 10 - Type curve . match of Arps' hyperbolic decline 
example" (unique match). 

overlapping portion of the curves, and the coor­
dinates of this common point on both sheets are 
recorded. 

5. If none of the type curves will fit all the data 
reasonably, the departure curve method 15,22 should 
be attempted. This method assumes that the data is a 
composite of two or more different decline curves. 
After a match of the late time data has been made, 
the matched curve is extrapolated backward in time 
and the departure, or difference, between the actual 
rates and rates determined from the extrapolated 
curve at corresponding times is replotted on the same 
log-log scale. An attempt then is made to match the 
departure curve with one of the type curves. (At all 
times some consideration of the type of reservoir 
producing mechanism should be considered.) Future 
predictions then should be made as the sum of the 
rates determined from the two (or more if needed) 
extrapolated curves. 

Type Curve Matching Examples 
Several examples will be presented to illustrate the 
method· of using type curve matching to analyze 
typical declining rate-time data. The type curve 
approach provides solutions on which engineers can 
agree or shows when a unique solution is not possible 
with a type curve only. In the event of a nonunique 
solution, a most probable solution can be obtained if 
the producing mechanism is known or indicated. 

Arps' Hyperbolic Decline Example 

Fig. 10 illustrates a type curve match of Arps' 
example of hyperbolic decline.4 Every single data 
point falls on the b = 0.5 type curve. This match was 
found to be unique in that the data would not fit any 
other value of b. Future producing rates can be read 
directly from the real-time scale on which the data is 
plotted. If we wish to determine qj and D j , use the 
match points indicated on Fig. 10 as follows. 

q(t) 1,000 BOPM 
qDd = 0.033 = - = 

q; qj 

q; = 
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1,000 BOPM 
= 30,303 BOPM . 

0.033 
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Fig. 11 - Type curve analYSis of Arps' exponential decline 
example." 

tDd = 12.0 = Djt = D j 100 months . 

12.0 -1 
D; = = 0.12 months . 

100 months 
The data also could have been matched using the type 
curves in Figs. 6 and 7. In both cases' the match 
would have been obtained with a backpressure curve 
slope n = 0.5, which is equivalent to b = 0.5. Match 
points determined from these curves could have been 
used to calculate q; and q j IN p; and finally N p;' 

The fact that this example was for a lease, a group 
of wells, and not an individual well raises an im­
portant question. Should there be a difference in 
results between analyzing each well individually and 
summing the results or simply adding all wells' 
production and analyzing the total lease production 
rate? Consider a lease or field with fairly uniform 
reservoir properties, b or n is similar for each well, 
and all wells have been on decline at a similar ter­
minal wellbore pressure Pwf for a sufficient pe~od of 
time to reach ~udosteady state. According to 
Matthews et al.,23 "at (pseudo) steady state the 
drainage volumes in a bounded reservoir are 
proportional to the rates of withdrawal from each 
drainage volume." It follows then that the ratio 
q;INp ; will be identical for each well and, thus, the 
sum of the results from each well will give the same 
results as analyzing the total lease or field production 
rate. Some rather dramatic illustrations of how 
rapidly a readjustment in drainage volumes can take 
place by changing the production rate of an offset 
well or drilling an offset well is illustrated in a paper 
by Marsh. 24 Similar drainage volume readjustments 
in gas reservoirs also have been demonstrated by 
Stewart. 25 

For the case where some wells are in different 
portions of a field separated by a fault or a drastic 
permeability change, readjustment of drainage 
volumes proportional to rate cannot take place 
among all wells. The ratio qjlNl!i then may be 
different for different groups of wells. A total lease 
or field production analysis then would give different 
results than summing the results from individual well 
analysis. A similar situation also can exist for ­
production from stratified reservoirs26,27 (no 
crossflow). 
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Fig. 12 - Type curve analysis of a stimulated well before 
and after fracture treatment. 

Arps' Exponential Decline Example 
Fig. 11 shows the results of a type curve analysis of 
Arps' example of a well with an apparent exponential 
decline. In this case, there are not sufficient data to 
establish uniquely a value of b. The data essentially 
fall in the region of the type curves where all curves 
coincide with the exponential solution. As shown in 
Fig. 11, a value of b = 0 (exponential) or b = 1.0 
(harmonic) appear to fit the data equally well. (Of 
course all values in between also would fit the data.) 
The difference in forecasted results from the two 
extreme interpretations would be great in later years. 
For an economic limit of 20 BOPM, the exponential 
interpretation gives a total life of 285 months, the 
harmonic 1,480 months. This points out yet a further 
advantage of the type curve approach; all possible 
alternate interpretations conveniently can be placed 
on one curve and forecasts made from them. A 
statistical analysis, of course, would yield a single 
answer, but it would not be necessarily the correct or 
most probable solution. Considering the various 
producing mechanisms, we could select (1) b = 0 
(exponential) if the reservoir is highly un­
dersaturated, (2) b = 0 (exponential) for gravity 
drainage with no free surface,28 (n b = 0.5 for 
gravity drainage with a free surface, (4) b = 0.667 
for a solution-gas-drive reservoir (n = 1.0) if jJ R vs. 
Np is linear, or (5) b = 0.333 for a solution-gas-drive 
reservoir (n = 1.0) if jJIl vs. Np is approximately 
linear. 

Fractured Well Example 
Fig. 12 is an example of type curve matching for a 
well with declining rate data available both before 
and after stimulation. (The data were obtained from 
Ref. 1.) This type problem usually presents some 
difficulties in analysis. Both before- and after­
fracture log-log plots are shown in Fig. 12 with the 
after-fracture data reinitialized in time. These before 
and after log-log plots will overlie each other exactly, 
indicating that the value of b did not change for the 
well after the fracture treatment. (The before­
fracture plot can be considered as a type curve itself, . 
with the after-fracture data overlaid and matched on 
it.) Thus, all the data were used in an attempt to 
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define b. When a match is attempted on the Arps unit 
solution type curves, it was found that a b of between 
0.6 and 1.0 could fit the data. Assuming a solution­
gas drive, a match of the data was made on the Fig. 6 
type curve with n = 1.0 and b = 0.667. 

Using the match points for the before-fracture 
data, we have from the rate match point 

qDd = 0.243 = q(t) = I,OOOBOPM 
qo; qo; 

and 

1,000 BOPM 
qo; = 

0.243 
= 4,115 BOPM . 

From the time match point, 

tDd = 0.60 = (qo;.)t 
Npl 

and 

Then, 

= 
(4,115 BOPM)(I00months) 

(4,115 BOPM)(100 months) 

0.60 

= 685,833 bbl. 

qo; 4,115 BOPM 0006000 h -I = =. mont s . 
N p; 685,833 

Now using the match points for the after-fracture 
data, we have from the rate match point 

qDd = 0.134 = q(t) = 1,000 BOPM 
qo; qoi 

and 

1,000 BOPM = 7 463 BOPM . 
qoi = 0.134 ' 

From the time match point, 

tDd = 1.13 = (::i.)t 
pi 

(7,463 BOPM)(I00 months) 
= Np; 

and 

7,463 BOPM)(I00 months) 
N p; = -----------

1.13 

= 660,442 bbl . 

Then, 

qo; = 7,463 BOPM = 0.011300 months-I 
Npi 660,442 bbl 

We now can check the two limiting conditions to be 
considered following an increase in rate after a well 
stimulation: 

1. Did we simply obtain an acceleration of 
production, the well's reserves remaining the same? 

2. Did the reserves increase in direct proportion to 
the increase in producing rate as a result of a raclius 
of drainage readjustment?23 Before treatment, N p; 
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was found to be 685,833 bbl. Cumulative production 
determined from the rate data before stimulation was 
223,500 bbl. Then Npi at the time of the fracture 
treatment is 

Npi = 685,833 bbl - 223,500 bbl 

= 462,333 bbl . 

If only accelerated production was obtained and the 
reserves remained the same, qilNpi after the fracture 
treatment should have been 

7,463 BOPM _ -I 
462,333 bbl - 0.016142 months 

Actual ~oilN i after treatment was 0.011300 
months - . If the reserves increased in direct 
proportion to the flow rate, the ratio q oi IN pJ should 
have remained the same as that obtained before 
tteatment or 0.006000 months -I. This then would 
have indicated that 

N . = 7,463 BOPM 
pi 0.006000 months- 1 = 1,243,833 bbl. 

Actual increaSe in reserves as a result of the fracture 
tteatment appears to lie between the two extremes. 
Based on the method of analysis used, the actual 
increase in reserves attributable to the fracture 
treatment is 198,109 bbl (660,442 bbl - 462,333 bbl). 

Stratified Reservoir ExaiDpie 

This example illustrates a method of analyzing 
decline curve data for a layered (no crossflow) or 
stratified reservoir using type curves. The data are 
taken from Ref. 18 and are for the East Side 
Coalinga field. Ambrose29 presented a cross section 
of the field, showing an upper and lower oil sand 
separated by a continuous black shale. This layered 
description for the field along with the predictive 
equation for stratified reservoir presented in Ref. 27 
led to the idea of using the departure curve method 
(differencing) to analyze decline curve data. 

After Russell and Prats,27 the production rate of a 
well (or field) at pseudosteady state producing a 
single-phase liquid at the same constant wellbore 
pressure (Pwj = 0 for simplicity) from two stratified 
layers is 

-(~) ( -(~) t 
Np; I N · 2 

qr(t) = qil e + qi2 e PI, 

.......... . ....... . ........... (35) 

or 

qr(t) = ql (t) + q2 (I) .. . ............ (36) 

The total production from both layers then is simply 
the sum of two separate forecasts. Except for the 
special case of the ratio qilNpi being equal for both 
layers, the sum of two exponentials will not result, in 
general, in another exponential. 

In attempting to match the rate-time data to a type 
curve, it was found that the late time data can be 
matched to the exponential (b = 0) type curve. Fig. 
13 shows this match of the late time data designated 
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Fig. 13 - Type curve analysis of a layered reservoir (no 
crossflow) by differencing. 

TABLE1 - SUMMARY OF RATE·TIME DATA FROM 
EAST SIDE COALINGA FIELD18 WITH THE RESULTS 

FROM THE DEPARTURE CURVE METHOD 

(1) (2) (1) - (2) 
Total Field Layer 1 Layer 2 

Rate, qr Rate, q1 Rate, q2 
(BOPy) (BOPy) (BOPy) 

Time 
(years) 

0.5 
1.5 
2.5 
3.5 
4.5 
5.5 
6.5 
7.5 
8.5 
9.5 

10.5 
11.5 
12.5 
13.5 
14.5 
15.5 

90,000 
64,000 
48,000 
36,000 
27,500 
21,250 
16,250 
13,000 
10,500 
8,500 
6,900 
5,600 
4,550 
3,800 
3,200 
2,750 

-Taken from layer 1 curve in Fig. 13. 

52,000· 
42,500· 
34,500" 
28,500· 
23,000" 
18,600" 
15,000· 
12,500· 
10,500 
8,500 
6,900 
5,600 
4,550 
3,800 
3,200 
2,750 

38,000 
21,500 
13,500 
7,500 
4,500 
2,650 
1,250 

500 
o 

as Layer 1. With this match, the curve was ex­
trapolated backward in time, and the departure, or 
difference between the actual rates determined from 
the extrapolated curve was replotted on the same log­
log scale. See Table 1 for a summary of the departure 
curve results. The difference or first departure curve, 
Layer 2, itself resulted in a unique fit of the ex­
ponential type curve, thus satisfying Eq. 35, which 
now can be used to forecast the future production. 
Using the match points indicated in Fig. 13 to 
evaluate qi and Di for each layer, the predictive 
equation becomes 

qr(t) = 58,824 BOPY e-(O.200)t 

+ 50,000 BOPY e - (0.535)( , 

where t is in years. 
Higgins and Lechtenberg30 named the sum of two 

exponentials the double semilog. They reasoned that 
the degree of fit of empirical data to an equation 
increases with the number of constants. 

This interpretation is not claimed to be the only 
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TABLE 2 - DATA FOR EXAMPLE PROBLEM OF A CHANGE IN BACKPRESSURE 

Pi = 4,000 psia 
Pwf1 = 1,000 psi a 
Pwf2 = 50 psia 

k = 1 md 
h=100ft 

P.o = 1 cp 
8 0 = 1.50 RB/STB 
c t = 20 X 10-6 psi- 1 

fe = 1,053 ft (80 acres) 
f w' = 10.53 ft (stimulated well) 

0.()()634 kt 0.00634 (1) t 
10 - - 2 = 14.30 t 

- q,p.Ct f w,2 -(0.20)(1.0)(20x10 6)(10.53) 

14.30 t 
IOd = = 0.0006967 tdays 

Y2 [(100)2 -1][ln(1oo) - 0.5] 

q(t) 
q Od = ---:--:--....!...:.-"------

kh(p;-Pwf) 

q(t) 

100 (3,000) 

q(t) 

345 

[ ( ) 
1] 141.3(1)(1.5)(4.105) 

141.3(p.8) In ;: - 2 
q (t) =qOd (tOd) 345 or q( t) = 2.02 (345) at I = 1 day 
q (t) = 697 BOPO 

~ I.i--------+------='t=-_=c----+--"'c1 

,.l, _____ ~L_ _____ , .. L--_-_-~---" 

Fig. 14 - Effect of a change in backpressure on decline 
using graphical superposition. 

interpretation possible for this set of data. A match 
with b = 0.2 can be obtained fitting nearly all of the 
data points but cannot be explained by any of the 
drive mechanisms so far discussed. The layered 
concept fits the geologic description and offered the 
opportunity to demonstrate the departure curve 
method. The departure curve method essentially 
places an infinite amount of combinations of type 
curves at the disposal of the engineer with which to 
evaluate rate-time data. 

Effect of a Change in Backpressure 
The effect of a change in backpressure is illustrated 
best by a hypothetical single-well problem. The 
reservoir variables and conditions used for this 
example are given in Table 2. The analytical single­
phase liquid solution of Fig. 3 is used to illustrate a 
simple graphical forecasting superposition 
procedure. The inverse procedure, the departure or 
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differencing method, can be used to analyze decline­
curve data affected by backpressure changes. 

After Hurst,12 superposition for the constant­
pressure case for a simple single-pressure change can 
be expressed by 

q(t) = [ ] qDd(IDd) 
141.3(p..8) In( re ) _ ! 

rw 2 

kh (Pwfl - Pwp.) 

or 

q(t) = 

................................ (37) 

Up to the time of the pressure change P wj2 at IDdI' 
the well production is simply q 1 as depicted on Fig. 
14. The ql forecast as a function of time is made 
simply by evaluating a single set of match points 
using the reservoir variables given in Table 2. At PwfJ. 
and re/r ~ = 100: I = 1 day, IDd = 0.006967, ql (I) 
= 697 BOPO, and qDd = 2.02. 

Plot the rate 697 BOPO and time of 1 day on log­
log tracing paper on the same size cycle as Fig. 3. 
Locate the real-time points over the dimensionless 
time points in Fig. 3 and draw in the re/r ~ curve of 

JOURNAL OF PETROLEUM TECHNOLOGY 



TABLE 3 - COMPARISONS OF kh DETERMINED FROM BUILDUP AND DECLINE CURVE ANALYSIS, 
FIELD A (SANDSTONE RESERVOIR); 

160·ACRE SPACING,'. = 1,490 ft,'w = 0.25 ft 
Pressure Buildup Results 

Well h If> Swc Skin f ' w kh 
No. J!!L (%) (%) s J!!L (md-ft) - --

1 34 9.4 32.9 -0.23 0.3 120.5 
2 126 10.5 18.3 -2.65 3.5 56.7 
3 32 9.9 20.4 -3.71 10.3 63.0 
4 63 9.5 18.6 - 3.41 7.6 28.5 
5 67 10.2 15.1 -4.29 18.3 44.4 
6 28 10.3 12.6 -2.07 2.0 57.9 
7 17 10.0 17.5 -3.41 7.6 16.8 
8 47 9.1 24.2 -3.74 10.6 16.6 
9 87 10.2 18.0 -4.19 16.5 104.7 

10 40 10.4 21.7 -5.80 82.9 363.2 
11 29 11.5 19.2 -1.00 2.0 59.9 
12 19 11.1 17.0 -3.97 13.3 8.9 
13 121 10.1 18.8 -3.85 11.8 47.5 
16 74 9.4 20.4 -4.10 15.0 224.8 
15 49 10.9 28.6 -3.59 9.1 101.9 
16 35 10.0 25.6 -4.57 24.2 14.3 
17 62 8.8 22.4 -3.12 5.7 27.2 
18 75 9.4 18.1 -1.50 1.2 65.1 
19 38 8.9 19.2 - 2.11 2.1 40.5 
20 60 9.6 24.6 . -5.48 60.1 88.1 
21 56 11.1 16.5 -2.19 2.2 39.1 
22 40 8.9 22.5 -3.79 11.1 116.0 

·'w' used from buildup analysis with'e of 1,490 ft. 

100 on the tracing paper. Read flow rates as a 
function of time directly from the real-time scale. 

When a change in pressure is made to P w/l at t 1 , t 
= 0 for the accompanying change in rate q2 (really a 
tlq for superposition), this rate change retraces the 
q Dd vs. t Dd curve and is simply a constant fraction of 
ql : 

q _ q [Pw/l-PW/2] , 
2 - 1 Pi-Pw/l 

or at t - 1 day after the rate change, 

[ 
1,000 psi - 50 psi ] 

q2 = 697 BOPD 4,000 psi - 1,000 psi 
= 221 BOPD. 

The total rate qT after the pressure change is qT = 
ql + q2 as depicted in Fig. 14. Flow rates for this 
example were read directly from the curves in Fig. 14 
and summed at times past the pressure change Pwfl. 

The practical application of this example in decline 
curve analysis is that the departure or difference 
method can be used on rate-time data affected by a 
change in backpressure. The departure curve 
represented by q2 in Fig. 14 should overlie exactly the 
curve represented by q l' If it does in an actual field 
example, the future forecast is made correctly by 
extending both curves and summing them at times 
beyond the pressure change_ 

Calculation of kh 
From Decline Curve Data 
Pressure buildup and decline curve data were 
available from a high-pressure, highly un­
dersaturated, low-permeability sandstone reservoir. 
Initial reservoir pressure was estimated to be 5,790 
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Decline Curve Analysis Results 

fe1fw 
, 

qDd Pi-Pwf kh k 
Matched (10,000 BOPM) (1'0 8 0 ) (md-ft) (md) 

0.52 6658 108 3.18 
0.68 7979 48 0.38 
0.43 8048 60 1.88 

40 0.58 8273 31 0.49 
20 0.57 6296 32 0.48 

0.60 7624 62 2.21 
10 1.30 7781 8.3 0.49 
10 1.14 7375 10 0.21 

0.435 5642 76 0.87 
0.36 1211 255 ·6.38 
0.56 7669· 66 2.28 

50 3.30 5045 9.5 0.50 
50 0.54 7259 40.5 0.33 

0.32 5737 104 1.41 
0.43 4312 115 2.35 

20 0.96 5110 24 0.69 
0.82 8198 35 0.56 
0.52 6344 93 1.24 

20 0.54 6728 32 0.84 
0.345 5690 64 1.07 

20 0.72 5428 30 0.54 
100 0.46 8114 51 1.28 

'·."<--<;:---------------O' .. ::c-NS:-'ONc-:":-SSF:-::LOW:-A:-.,'~FU:-N"'=>ONS=---:j 

6 l"'fINm,.~:~~I:::~llJ~~~UND ... RY. 

0.' . 
~~ . qo[,nl;;l-~]-~ 

t.1.3l't~ft(;;)_j] » 

CONSTANT-rftESSUftf AllNNER BOUNOAR'f' 

Fig. 15 - Type curve matching example for calculating kh 
using decline curve data, Well 13, Field A. 

"'!~--;;-'O-=VS"'-IOL F=O'C:-:AVC::"=To<ACCC"C:-, -------

~ FRACTURED W~LL IANAl.YTIC"L SOlN.! . , 

} : iooo 

Fig. 16 - Type curve matching example for calculating kh 
from pressure buildup data, Well 13, Field A (type 
curve from Ref. 8). 
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psi a at - 9,300 ft with a bubble-point pressure of 
2,841 psia. Two fieldwide pressure surveys were 
conducted while the reservoir was still Un­
dersaturated. Table 3 summarizes the reservoir 
properties and basic results obtained from the 
pressure buildup analysis on each well. Note that 
nearly all wells had negative skins as a result of 
hydraulic fracture treatments. Also appearing in this 
table are results obtained from an attempt to 
calculate kh using decline curve data available for 
each of the wells. 

Ten of the 22 wells started on decline when they 
first were placed on production. As a result, the early 
production decline data existed in the transient 
period, and a type curve analysis using Fig. 3 was 
matched to one ofthe 'elr w stems. Other wells listed 
on the table, where an 'elr w match is not indicated, 
were prorated wells and began their decline several 
months after they first were put on production. For 
the decline curve determination of kh, the reservoir 
pressure existing at the beginning of decline for each 
well was taken from the pressure history match of the 
two fieldwide pressure surveys. The constant bot­
tomhole flowing pressure for the wells ranged bet­
ween 800 and 900 psia. 

A type curve match using decline curve data to 
calculate kh for Well 13 is illustrated in Fig. 15. A 
type curve match using pressure buildup data ob­
tained on this same well is illustrated in Fig. 16. The 
constant-rate type curve of Gringarten et 01.8 for 
fractured wells was used for matching the pressure 
buildup data. The buildup kh of 47.5 md-ft compares 
very well with the kh of 40.5 md-ft determined by 
using the rate-time decline curve data. 

In general, the comparison of kh determined from 
decline curve data and pressure buildup data 
tabulated in Table 3 is surprisingly good. (The 
pressure buildup analysis was performed in­
dependently by another engineer.) One fundamental 
observation to be made from the results obtained on 
wells where a match of rei r w was not possible is that 
the effective wellboore radius r; (obtained from the 
buildup analysis) is used to obtain a good match 
between buildup and decline curve calculated kh. 

Type Curves for Known 
Reservoir and Fluid Properties 
All the type curves discussed so far were developed 
for decline curve analysis using some necessary 
simplifying assumptions. For specific reservoirs, 
where PVT data, reservoir variables, and back­
pressure tests are available, type curves could be 
generated for various relative permeability curves 
and backpressure. These curves developed for a given 
field would be more accurate for analyzing decline 
data in that field. Conventional material balance 
programs or more sophisticated simulation models 
could be used to develop dimensionless constant­
pressure type curves as was done by Levine and 
Pratts31 (see their Fig. 11). 

Conclusions 
Decline curve analysis not only has a solid fun­
damental base but provides a tool with more 
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diagnostic power than has been suspected previously. 
The type curve approach provides unique solutions 
upon which engineers can agree or shows when a 
unique solution is not possible with a type curve only. 
In the event of a nonunique solution, a most 
probable solution can be obtained if the producing 
mechanism is known or indicated. 

Nomenclature 
b = reciprocal of decline curve exponent 

(lib) 
B = formation volume factor, res 

vol/surface vol 
C t = total compressibility, psi - 1 (pa - 1 ) 

C g = gas-well back pressure curve coefficient 
D i = initial decline rate, t - 1 

e = natural logarithm base 2.71828 
G = initia~ gas-in-place, surface measure 

G p = cumulative gas production, surface 
measure 

h = thickness, ft (m) 
J 0 = productivity index, STB/D/psi (stock­

tank m 3 I d/kPa) 
J ~ = productivity index (backpressure curve 

coefficient) STB/D/(psi)2n [stock­
tank m3/d/(kPa)2n] 

k = effective permeability, md 
n = exponent of backpressure curve 

Np = cumulative oil productive, STB (stock­
tank m 3 ) 

Npi = cumulative oil production to a reservoir 
shut-in pressure of 0, STB (stock-tank 
m 3) 

Pi = initial pressure, psia (kPa) 
P R = reservoir average pressure (shut-in 

pressure), psia (kPa) 
Pwf = bottomhole flowing pressure, psia (kPa) 
qD == dimensionless rate (Eq. 6) 

qDd = decline curve dimensionless rate (Eq. 4) 
q i = initial surface rate of flow at t = 0 

(q i) max = initial wide-open surface flow rate at 
Pwf = 0 

q (t) = surface rate of flow at time t 
QD = dimensionless cumulative production 
'e = external boundary radius, ft (m) 
'w = wellbore radius, ft (m) 

, w' = effective well bore radius, ft (m) 
I = time, days for tD 

I D = dimensionless time (Eq. 7) 
t Dd = decline curve dimensionless time (Eq. 5) 

Z = gas compressibility factor 
I" = viscosity, cp (Pa.s) 
4> = porosity, fraction of bulk volume 
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SI Metric Conversion Factors 

acre x 4.046 873 E+03 m2 

bbl x 1.589873 E-Ol = m3 

cp x 1.0* E-03 Pa.s 
ft x 3.048* E-Ol = m 

md-ft x 3.008 142 E+02 ,an2. 
psi x 6.894 757 E+OO kPa 

psi -1 x 1.450377 E-04 Pa- 1 

·Conversion factor is exact. 
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Errata 
The author of SPE 4629: "Decline Curve Analysis 
Using Type Curves," published in the June 1980 
Journal of Petroleum Technology (Pages 1065-77), 
notes the following errors. In the 13th line of the text 
between Eqs. 28 and 29 (Page 1069), the termspR vs. 
N should read: PR vs. NP. The sign in the exponent 

of Eq. 30's (Page 1070) denominator should be 
minus: 

2n 

2n-1 

SPE regrets these errors and thanks the authors for 
pointing them out. 
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