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Summary 
When fluids are withdrawn from a petroleum reservoir, 
the space left behind is filled partly by the expansion of 
the remaining fluids and rock and partly by the influx of 
water from a contiguous aquifer, if it exists. The 
volumetric balance equation (VBE) is an expression of 
this same statement. Its simplified form is 

Z=N0 X+ewcY . .......... · · · · · · · · · · · · · · · · · (1) 

When sufficient historical data on X and Z are available, 
various functions for Y can be tried; using the technique 
ofleast squares, a set of values can be calculated for N a 

and ewc· 
It has been convenient to write Eq. 1 in the following 

form: 

ZIX=Na +ewc(YIX) . ....................... (2) 

The advantages of this form are that it has only two 
variables, so least-squares calculations are easier for it, 
and that the values of YIX and Z/X can be plotted 
graphically, so that a linear trend can be visually exam
ined. The disadvantage is that the equation has a low 
resolving power and can produce erroneous answers. 
Nevertheless, most authors use the form of Eq. 2. 

Eq. 1 may be written in many different forms, all of 
which are algebraically equivalent to each other; however, 
when the method ofleast squares is applied to them, they 
will produce different results. 

This paper shows that the best form of the VBE for 
calculation of the original active oil-in-place (OIP) and 
water influx constant is the form of Eq. 1. It is also shown 
that the least-squares calculation based on minimizing the 
sum of the squared deviations of the calculated oil 
pressures from the observed pressures is equivalent to car
rying out the least-squares method on Eq. 1. 

Introduction 

The Volumetric Balance Equation. The VBE was first 
introduced in general form by Schilthuis in 1935. 1 It can 
be written as follows: 

Np[B1 +B8 (R-Rsi)]+ WP =NBti[(B1IB1i- l) 

+m(B8 /B 8i-l)+(l +m)(c1+Swcw)(Poi -po) 

+(1-Sw)]+ew· ........................... (3) 

•currently with Britoil plc. 
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The left side is the reservoir volume of the total 
withdrawals, shown here by Z. Tfie first term on the right 
side (NB ti) is the original OIP in reservoir barrels 
multiplied by the unit expansion [ (B 1 I B ri - 1) + ... ] . The 
former is shown here by N a and the latter by X. The sec
ond term on the right side is the water influx, which can 
be represented by an influx constant, e wc, multiplied by 
a water influx function, Y. Eq. 3 can thus be written in 
the simple form of Eq. 1 : 

Z=N0 X+ewcY. 

Dependent on the shape, type, and flow characteristics 
of the aquifer, various eguations have been introduced for 
the Y term in Eq. 1. 1-5 

Least-Squares Method. Let us indicate one set of data 
points by X i, Yi, and Z i, in which the subscript i varies 
from 1 ton. lf we move all terms of Eq. 1 to the right 
side and replace X, Y, and Z by X i, Yi, and Z i, we get 

Zi =(NaXi +ewcYi)-Zi· ....... ·. · · · · · ...... (4) 

The least-squares method defines the best set of values 
of N a and e wc as the set that corresponds to the minimum 
of sum square of z-i.e., the minimum of 

i=n 

SSD= ~ zr, """ .. " .. """".""" .(5) 
i=l 

where SSD is the sum squared deviation. 

Hazards in Reducing the Number of Variables 
From Three to Two Before Applying Least
Squares Method to VBE. 
The VBE (Eq. 1) could be written in many different 
forms; Eqs. 6 through 11 are examples that are 
mathematically equivalent to Eq. 1. (Eq. 6 is the conven
tional form.) 

ZIX=Na +ewcYIX . ......................... (6) 

YIX=ZfewcX-N0 fewc· ..................... (7) 

ZIY=N0 XIY+ewc· ......................... (8) 

XIY=ZIN0 Y-ewcfN0 • •••••••••••••••••••••• (9) 
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XIZ= l!Na -ewcYINaZ . .................... (10) 

YIZ=llewc-NaXlewcZ . ................... (11) 

However, when the least-squares method is applied to 
each of these equations, different results will be obtained 
for each form because of the nature of the errors in the 
basic data. If there were absolutely no discrepancies be
tween measured and calculated values, the results of all 
forms would, of course, be identical. With the real field 
data, the answers obtained from these forms can deviate 
considerably from the true answers. 

Eq. 1 represents a plane in X, Y, and Z dimensions. 
Eqs. 6 through 11, however, represent a straight line in 
two dimensions. This paper shows that reducing the prob
lem from three to two dimensions magnifies the errors, 
~educes the resolving power of the equation, and results 
m more erratic answers. 

Summary of Previous Work on VBE 
The work of Schilthuis, 1 Old, 6 Muskat and Woods 7 

Brownscombe and Collins, 8 van Everdingen et az.'.9 
Carter 1~nd Tracy, 10 Tracy, 11 McEwen, 12 Hav lena and 
Odeh, Wall and Craven-Walker, 14 and DakelS were 
carefully studied. Except for Brownscombe and Collins 8 

and McEwen, 12 all investigators evidently used the form 
of Eq. 2; i.e., a two-variable, straight-line equation for 
the least-squares analysis of the VBE. 

Of the papers examined, only Muskat and Woods 7 an
alyzed the resolving power of the VBE. They used the 
form ofEq. 2 but wrote the water influx term in the form 
of 

and the VBE as 

z y 1 
-=N +e -+e2-. (12) X a wc X X ···················· 

Then they calculated the mean square deviation (MSD) 
of N a from its mean N a to find best values of N e 
and e1, corresponding toa minimum MSD. They ~pp1i:d 
the method to two sets of reservoir data, the Monroe reser
voir Reed City pool and the Jones sand of Schuler pool. 

Their main conclusion was that the fluctuations in the 
calculated volumes (of OIP) are very insensitive to the 
values chosen for the rate of water intrusion and initial 
g~s-c.ap. vo~ume and, hence, cannot be used safely in 
dtscnmmatmg between spurious values for these param
eters. They concluded that the material-balance method 
did not. provi~e a satisfactory criterion for determining 
!he bas~c phys1cal unknowns of a producing reservoir or 
m making conclusive decisions regarding the production 
;mechanism. 7 

Muskat and Woods provided theoretical interpretation 
for the low resolving power of the VBE as follows. First, 
they wrote 

Z;=NaX;+ewcY;+e2, .................... (13) 
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Z; Y; e2 
-=Na+ewc-+-, .................... (14) 
X; X; X; 

and 

Z; Y; e2 
z;=Na--+ewc-+- ................ (15) 

X; X; X; 

Let 

Y; 
-='Y· and 
X· " I 

1 
x.=a;, ................................ (16) 

I 

to arrive at 

Z; =Na-Qai +ewc'Yi +e2ct; . ............... (17) 

To obtain an idea of the rate of variation with respect to 
ewc. which controls the water intrusion term, they set 
e1 =0 and let 

2 Ez2; 
.d; = -- .............................. (18) 

n 

and 

.da;=Qai-Oa· · · · · · · · ·. · ................. (19) 

Then by squaring, expanding, summing, and simplifying 
Eq. 18, they derived 

2_-2 -- --
.d; -.dai +2ewc('Y Qa -'YQa) 

+ewc 2 (y2 -~2)+z2 . ..................... (20) 

(The bars indicate mean values.) 

Then they discussed the coefficients of e and e 2 
. wc wc ' 

wh1ch are merely the differences between two types of 
averages of similar terms and will be relatively small. 
They concluded that the mean square deviation basically 
would be insensitive to the variations in the magnitude 
?f ewc a?d ~hat great caution should be used in applying 
1t as a cntenon for determining the true value of e and 
ultimately, the magnitude of the volume of OIP~c ' 

Indeed, this interesting interpretation explains why Eq. 
2 has low resolving power. Now let us examine, using 
the same approach, the sensitivity of the mean square 
deviations of Z, which is the criterion for determining N a 

and ewc when the form of Eq. 1 is used. 

- ~ 1 .d2
1· = z2

1• In=-~ (Z· -N X· -e Y·) 2 (21) L...;1 az wcz···· 
n 
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TASLE 1-HISTORICAL BASIC DATA OF AN 
IDEALIZED RESERVOIR 

Oil Pressure Withdrawals (Z) 
(psi) (million bbl) X y 

2,750 0.0 0.0 0.0 
2,735 0.3327 0.0033 7.33 
2,720 0.7160 0.0069 29.31 
2,690 1.4919 0.0142 73.21 
2,655 2.4395 0.0229 148.74 
2,620 3.4432 0.0318 258.30 
2,585 4.5056 0.0410 401.82 
2,550 5.6296 0.0505 579.26 
2,475 7.9949 0.0718 809.94 
2,420 9.9586 0.0886 1,103.47 
2,360 12.2452 0.1079 1,452.37 
2,275 15.6419 0.1377 1,870.92 
2,225 18.0190 0.1566 2,354.09 
2,150 21.6216 0.1872 2,896.77 
2,085 25.1138 0.2161 3,505.90 
2,000 29.9195 0.2573 4,185.89 
1,920 34.9611 0.3002 4,943.45 
1,860 39.2728 0.3351 5,766.33 
1,810 43.2460 0.3661 6,640.07 
1,770 46.7720 0.3922 7,555.06 

By expansion and summation of Eq. 21, it is readily found 
that 

............................. (22) 

The coefficients of e wc and e wc 2 are - 2(Z-N aX) Y and 
Y2 , which are not normally small; thus, 117 is sensitive 
to variation in e wc . 

If we consider that (Z-NaX) is very close to ewcY, 

the sum of the last two terms is then approximated by 
e wc 2 Y 2 , which again indicates that the mean square 
deviation is sensitive to e wc. This sensitivity toward e wc 
becomes low only when Y is very small (i.e., when the 
water drive is very weak) and this is expected. Therefore, 
the resolving power of Eq. 1 is much greater than the 
resolving power of the conventional form, Eq. 2. 

Method of Investigation 
ldealized Reservoir. First an idealized reservoir very 
similar to the Douglas field in the U.S. 16 is constructed. 
The original OIP of this reservoir is 100 million res bbl 
[16 million res m3], and its water influx constant is 1,000 
RB/ psi-yr [2306 res m 3 /kPa · a]. 

Tuen a pressure/production history is constructed so that 
the VBE is satisfied thoroughly for all years of the history. 

TASLE 2-CALCULATED OIP AFTER INTRODUCING RANDOM ERRORS 
IN PRESSURE AND PRODUCTION DATA 

(True OIP = 100) 

Run 
No. Eq. 1 MSSDP* Eq. 6* * Eq. 7 Eq. 8 Eq. 9 Eq. 10 Eq. 11 
- --------

1 101.72 101.64 93.77 88.59 88.37 88.94 93.03 87.15 
2 102.90 103.22 111.13 90.74 109.99 110.65 111.01 94.29 
3 100.81 100.73 95.87 83.89 83.95 86.22 94.48 83.03 
4 95.96 96.04 97.19 85.69 83.78 86.10 95.85 83.41 
5 101.58 101.66 136.50 211.69 175.33 185.13 131.34 244.77 
6 99.86 100.18 97.99 95.87 97.10 97.34 97.76 95.14 
7 95.56 95.88 95.24 91.90 94.34 94.83 94.90 90.64 
8 96.33 96.33 95.04 72.24 75.65 80.29 92.34 71.98 
9 102.26 102.34 94.83 89.04 86.85 87.27 94.02 88.18 

10 94.37 94.69 88.61 79.91 73.05 75.59 86.48 75.34 
11 103.51 103.83 113.09 96.77 119.02 119.37 113.18 97.59 
12 100.19 100.59 136.83 336.19 184.93 222.00 123.04 -167.89 
13 103.46 103.54 127.75 167.11 145.40 147.13 126.62 183.71 
14 100.92 101.00 101.36 99.87 101.89 102.00 101.32 99.62 
15 104.45 104.37 117.50 240.24 132.49 133.89 117.01 -679.23 
16 102.82 102.90 104.28 94.00 98.51 99.52 103.80 94.61 
17 98.38 98.30 85.13 77.47 68.02 70.40 82.49 71.85 
18 100.40 100.48 114.02 26.74 122.29 122.98 114.13 56.89 
19 95.58 95.50 89.49 85.99 79.46 80.45 88.38 83.54 
20 98.72 98.72 93.84 98.63 100.74 102.47 93.36 85.70 

Maximum 104.5 104.4 136.8 336.1 184.9 222.0 131.3 244.8 
950/o upper confidence leve! 101.4 101.5 117.7 148.4 121.2 127.5 109.3 134.0 

Mean 100.0 100.1 104.5 115.1 106.1 109.6 102.7 47.0 
950/o lower confidence leve! 98.6 98.7 97.3 81.8 90.9 91.8 96.1 -40.0 

Minimum 94.4 94.7 85.1 26.7 68.0 70.4 82.5 -679.2 
Range 10.1 9.7 51.7 309.4 116.9 151.6 3.8 924.0 
Standard deviation 3.1 3.1 15.4 71.2 32.3 38.1 14.1 185.9 

* Minimized sum square deviation of calculated pressures from the measured pressures. 
"This is the form of VBE conventionally used (also Eq. 2). 
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Fig. 1-Calculated OIP values using different forms of VBE. 

That is, the production (Z) was back-calculated from Eq. 
1, a fixed relationship between X and p 0 , and a fixed 
pressure history. The results are presented in Tab le 1. 
There are no errors in the pressure, production, and fluid 
data ofthis hypothetical model. Therefore, if any pair of 
data points is used in Eq. 1, the values of N a = 100 and 
e wc= 1,000 will be calculated. Any form of VBE would 
also give the same answers. 

Simulation Model. A mathematical simulation model is 
then developed, (1) to introduce reasonable errors in a 
completely random manner and to simulate an actual 
reservoir history, and (2) to calculate the original OIP and 
the water influx constant, using eight different forms of 
the VBE and printing out the results for comparison. 

Answers tabulated in Table 2 and plotted on Fig. 1 il
lustrate that reduction of VBE from three to two dimen
sions (straight-line) produces a wide scatter in answers, 
depending on the data errors. 

Weighting the Data Points. Suppose that one wishes to 
assign different weights to different data points. Let the 
weight for Data Point i be represented by Wi. Then ap
plication of the least-squares technique means minimiz
ing the weighted sum of the squared deviations; i.e., Eq. 
5 becomes 

n 

SSD= L: WizT. ........................ (23) 
i=l 
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We can investigate the effect of multiplying both sides 
of Eq. 1 by a variable, U: 

UZ=NaUX+ewcUY . ...................... (24) 

Assuming that for every data point (Xi, Yi, Zi) there is 
one value of Ui and carrying out least-squares analysis 
without specifying any weight, we derive 

or factorizing Ur , 

. ............................ (26) 

Comparison of Eqs. 23 and 26 reveals that multiplying 
both sides ofEq. 1 by the variable Ubefore carrying the 
least square is equivalent to giving a weight factor 
of Wi =Ur to each data point i. 

Now, suppose that we divide both sides of Eq. 1 by 
X before carrying out the least square and write it in this 
form: 

~=Na+ewc(~), ........................ (2) 
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as is done conventionally. Based on the foregoing reason
ing, this is equivalent to givinga weight factor of (1/Xi) 2 

to each data point i. 
Is it justified to give a weight of (1/Xj) 2 to each data 

point i? X is the unit expansion. lts value grows from zero 
in the first year to some value, normally less than one, 
later on. In our example (Table 1) it grows to 0.3922 after 
20 years. Since division by zero is not allowed, the first 
data point has to be eliminated. The values of X in early 
years are very small. In our example X is 0.0033 in the 
second year. The value of (1/X) 2 for the second year is, 
therefore, about 90,000; for the last year it is only about 
6.3. This means givinga weight factor of 90,000 to the 
second data point and decreasing the weight factor grad
ually to 6.3 for the last data point. 

Why should we give higher weight to a particular data 
point? Usually we do this only when that data point is 
more reliable than the remaining points, but are the earlier 
data more reliable than the later ones? The answer is 
generally no. The earlier data are generally less reliable 
for several reasons, the three most important of which 
are as follows. 

1. The expansion term, X, and influx term, Y, are both 
functions of the pressure drop. A small error in pressure 
in the second year (for example, 5 psi [35 kPa] in Table 
1) is equivalent to a large percentage (30 % ) of the total 
pressure drop (only 15 psi [103 kPa]), whereas the same 
error in the last pressure would mean a small value (5 
psi [35 kPa]) over a large (980 psi [6757 kPa]) pressure 
drop, which is a small percentage. Therefore, the expan
sion and influx data of earlier years are less reliable. 

2. In calculation of the values of Y for water influx, 
the pressure drop of each year has an influence on all the 
following years because of the application of Duhamel's 
theorem (principle of superposition). For example, the 
pressure drop of the first year has implicit influence on 
the water influx of all years, whereas the pressure drop 
of the last year has only some influence in the last year's 
water influx. Also, the production data are cumulative; 
i.e., the last year' s withdrawal is only a part of the total 
withdrawals. Therefore, if any explicit weighting is to be 
given, it should be the least weight for the first data point 
and the highest weight for the last one. 

3. The technology of measurements improves with 
time. Therefore, the pressure and production data of 
earlier times generally are less accurate than those of later 
times. 

Looking at Eqs. 6 through 11 in relation to the previous 
three points, we see that all the forms are equivalent to 
implementation of high weight factors for earlier data. 

Physical vs. Mathematical Relationships. When a 
physical relationship between several variable properties 
of a natura! system is written, care must be taken that the 
effect of all individual significant variables be included 
independently. If we divide both sides of Eq. 1 by variable 
X, we are, in effect, reducing the number of variables 
from three to two, (Z/X) and (YIX), which are related to 
each other not only by VBE but also by variable X. 16 

Although Eqs. 1 and 6 are mathematically equivalent, they 
are not physically and statistically equivalent. 

Division of variables before any regression or functional 
analysis can be hazardous. 17 Suppose we choose three 
sets of completely random numbers and assign them to 
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three variables X, Y, and Z so that there is absolutely no 
correlation between these variables. If you have n ran
dom numbers in each set (i.e., Xi, Yi, Zi, with i=l to 
n) and if you divide all values of Zi by the correspond
ing values of Xi and all values of Yi by the correspond
ing values of Xi and then plot (Z/X); vs. (YIX);, we will 
observe a considerable correlation. When X is very small, 
both (Z/X) and (YIX) are large; when X is very large, both 
(Z/X) and (f/X) are small. Thus, a superficial and 
spurious correlation can be created between the two new 
variables. 17 Now if a true correlation between variables 
X, Y, and Z existed, it could be masked and completely 
distorted by a spurious correlation created because of divi
sion of two of these variables by the third one. 

The simulation mode! developed in this paper is de
signed to introduce random errors into the data of an 
idealized reservoir and to calculate the OIP and the water 
influx constant by application of the eight different forms 
mentioned earlier. This exercise demonstrates very clearly 
that Eq. 1 and minimized sum square deviations of 
pressures represent the basic physical relationship much 
more closely than any of the other six forms of the VBE. 

Results of the Simulation Model Analysis. To check the 
data of the idealized reservoir, least-squares calculations 
were carried out using all eight cases mentioned previous
ly. The answers to all eight cases were perfect (i.e., 100 
for Na and 1,000 for ewc)· One can conclude that, when 
the errors in the input data are really very small, it <loes 
not matter which form is used for OIP and influx calcula
tions. However, this is generally not the case because 
errors in average reservoir pressure of up to ±5 psi [35 
kPa] are not uncommon, and in many instances the 
pressure errors are even greater. Moreover, there are 
some, errors in production and PVT data that are not 
negligible. · 

To examine the effect of errors, random errors within 
±5 psi [35 kPa] are imposed on the idealized pressures 
and within ± 1 % on the annual withdrawals. Least-squares 
calculations were then carried out for all eight forms of 
the VBE. 

The results of a single run cannot be very conclusive. 
Results depend on what the set of random numbers hap
pens to be. It is necessary, therefore, to make numerous 
runs and to analyze the results statistically. 

Twenty sets of random numbers were taken from the 
first 20 columns of the table of random numbers in 
Abramowitz and Stegun's handbook. 18 Using these, 20 
sets of runs were made. 

To examine the cases more carefully, an OMNITAB 19 

computer program was used for statistical analysis. The 
results are summarized at the bottom ofTable 2. By look
ing at the mean values, one can see that the answers to 
Eq. 1 and Case MSSDP* are very close to the true OIP, 
whereas other forms of VBE produce results considerably 
different from the true OIP of 100. (Calculations for Case 
MSSDP are very laborious because the method used is 
iterative.) 

The water-influx constants exhibit exactly the same con
clusions. The only difference is that, when the OIP value 
is too high, the influx constant is too low and vice versa. 
To visualize the spread of data, all the calculated OIP 
values from the previously mentioned 20 runs were plot
ted in Fig. 1. Each point represents one value of OIP 
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TABLE 3-STANDARD DEVIATION OF CALCULATED RESERVOIR OIL 
PRESSURES FROM TRUE RESERVOIR OIL PRESSURES AND 

STANDARD DEVIATION OF CALCULATED PRESSURES 
FROM THE OBSERVED PRESSURES, AVERAGE FOR 20 RUNS* 

Equalion Equalion SOT** soot Remarks 

1 Z=N.X+ewcY 1.90 3.59 good 
MSSDP 1.86 3.57 good bul laborious 

6 ZIX=Na +ew0 (YIX) 8.49 9.32 convenlional bul poor 
7 YIX = (1/ewcHZIX)-N .te wc 36.46 36.60 unsuilable 
8 ZIY = N a(XIY) + ewc 37.27 37.72 unsuilable 
9 XIY= (1/N .)(Z/Y)- ewclN a 41.24 41.74 unsuilable 

10 XIZ = 1/N a -(ewc/N .)(Y/Z) 8.48 9.20 poor 
11 YIZ = 1/ewc -(N .lewcl(X/Z) 37.61 37.70 unsuilable 

* Actual errors in reservoir pressure were random errors between - 5 and + 5 psi. 
•.;standard deviation of calculated reservoir oil pressures from true reservoir oil pressures. 

Standard deviation of calculated pressures from the observed pressures. 

calculated for one set of data. All points with OIP less 
than 50 or greater than 180 are shown on the extreme 
lines. 

The evident conclusions are that Eqs. 6 through 11 have 
low resolving power and that Eq. 1 is superior. 

Pressure Matches 
Once the OIP and influx constant are known, the reser
voir oil pressure can be calculated for any value of reser
voir withdrawals. To compare pressure matches of results 
obtained from Eqs. 1and2, the historical pressures were 
calculated for all 20 runs in which random errors were 
present. The standard deviation between the calculated 
pressures and the true pressures (SDT) and the standard 
deviations between the calculated pressures and the ob
served reservoir pressures (SDO) were calculated for all 
20 runs and for each form of VBE. The averages of all 
SDT's and of all SDO's for 20 runs are presented in Table 
3. The runs that result in better values of OIP also result 
in better pressure match. 

One typical run was chosen to compare the actual 
pressure matches. The deviations between the true 
pressures and calculated and observed pressures are plot
ted in Fig. 2. The following important conclusions can 
be drawn from Fig. 2. 

1. Eq. 1 produces a better pressure match than Eq. 2 
( conventional). 

2. The pressures calculated by Eq. 1 are doser to the 
true pressures than the observed pressures, although the 
observations are the original basis for calculations. 

3. The deviations of observed pressure from calculated 
pressures are very large in Year 2. However, as can be 
seen in Fig. 2, the observed pressure is very close to the 
true pressure. Therefore, the discarding or adjusting of 
observed values simply because they do not match close
ly with the calculated values should be avoided. For ex
ample, discarding the observed values of Years 2 and 5 
would improve the match between the calculated and ob
served pressures. However, the calculated pressures ob
tained in this manner would be further away from the true 
values. 

4. Because Eq. 2 (conventional method) gives greater 
weight to earlier data points and much smaller weight to 
later data points (see the section on Weighting the Data 
Points), its pressure match is good for early years, but 
very poor for later years of history. 
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Fig. 2-Comparison of pressure matches. 

Conclusions and Recommendations 
1. The conventional form of VBE as a straight line 

(Eq. 2), 

z y 
-=Na+ewc-, 
X X 

has low resolving power and should not be used for 
calculation of OIP (N a) and influx constant ( e wc). 

2. The best form recommended by this paper is Eq. 1. 
3. Minimizing the sum of the squared deviations of the 

calculated oil pressures from the observed pressures is 
equivalent to least-squares calculations with the form of 
Eq. 1. 

4. Other forms of VBE examined in this paper (Eqs. 
7 through 11) have low resolving power and are not rec
ommended. 

5. Standard deviation between the true reservoir oil 
pressures and their calculated values is normally less than 
the standard deviation between the observed reservoir oil 
pressures and their calculated values when Eq. 1 is used. 
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6. Before least-squares analysis is carried out on any 
physical relationship, the independent variables should be 
maintained preferentially as they appear in the original 
equation. The number ofvariables should not be reduced 
indiscriminately by combining or eliminating any of them. 

7. The discarding or ad justing of observed values sim
ply because they do not match closely with the calculated 
values should be avoided. Experiments with the simula
tion model presented in this paper have shown that ob
served values that deviate significantly from their 
corresponding calculated values sometimes are more 
valuable to the final objective of the problem than those 
that produce smaller deviations. However, if there is a 
positive reason for a data point to be spurious other than 
its large deviation from its calculated value, it may be 
discarded. 
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Nomenclature 
B8 = gas formation volume factor, RB/scf [res 

m3 /std m31 
B 8; = initial gas formation volume factor, RB/scf 

[res m 3 /std m 31 
B 0 = oil formation volume factor, RB/STB [res 

m 3 /stock-tank m 31 
B 0 ; = initial oil formation volume factor, RB/scf 

[res m 3 /stock-tank m 31 
B 1 = total (two-phase) formation volume factor, 

RB/STB [res m 3 /stock-tank m 31 
Br; =initial value of Br, RB/STB [res m3 /stock

tank m31 
cf ·::,, effective aquifer fluid compressibility, 

psi - 1 [kPa - 1 1 
c w = connate water compressibility, psi - 1 

[kPa -l 1 
ew = water influx, res bbl [res m 31 

ewc = water influx constant, RB/psi-yr [res 
m3/kPa·a1 

e1 = second influx constant, res bbl [res m 31 
m = ratio of initial gas cap to original OIP, 

dimensionless 
n = number of data points 
N = original OIP, STB [stock-tank m 31 

Na = active original OIP, res bbl [res m 31 
N; = initial estimate of N by geological and 

petrophysical data, STB [stock-tank m 31 
NP = produced oil, STB [stock-tank m31 
p 0 = average reservoir oil pressure, psig [kPal 
p 0 ; = initial value of p 0 , psig [kPal 
p w = average reservoir pressure at original 

water/oil level, psig [kPal 
Pwi = initial value of Pw, psig [kPal 

1670 

q8 = gas production, scf [m31 
R = producing GOR, scf/STB [std m 3/stock

tank m 31 

Rsi = initial solution GOR, scf/STB [std 
m 3 /stock-tank m 31 

S w = connate water saturation 
t = time, years 

U = any variable 
WP = produced water, res bbl [res m 31 

X = unit expansion; expansion of fluids and 
rock when pressure drops from p 0 ; to 
p 0 , corresponding to 1 res bbl of 
original OIP, dimensionless 

Y = influx function (in Schilthuis equation), 
yrxpsix 10-6 [1xkPax10-61 

z = deviation of a calculated value from the 
observed value 

Z = reservoir withdrawals, res bbl [res m 31 

References 
1. Schilthuis, R.J.: "Active Oil and Reservoir Energy," Trans" AIME 

(1936) 118, 33-52. 
2. van Everdingen, A.F. and Hurst, W.: "Application of the Laplace 

Transformation to Flow Problems in Reservoirs," Trans" AIME 
(1949) 186, 305-24. 

3. Hurst, W.: "Water Influx into a Reservoir and Its Application to 
the Equation ofVolumetric Balance," Trans" AIME (1943) 151, 
57-72. 

4. Bruce, W.A.: "Pressure Prediction for Oil Reservoirs," Trans" 
AIME (1943) 151, 73-85. 

5. Chatas, A.T.: "A Practical Treatment of Non-Steady-State Flow 
Problems in Reservoir Systems," Pet. Eng. (May, June, and Aug. 
1953). 

6. Old, R.E. Jr.: "Analysis of Reservoir Performance," Trans., AIME 
(1943) 151, 86-98. 

7. Muskat, M.M. and Woods, R.W.: "Analysis ofMaterial-Balance 
Calculations," Trans" AIME (1945) 160, 124-39. 

8. Brownscombe, E.R. and Collins, F.: "Estimation of Reserves and 
Water Drive from Pressure and Production History," Trans., AIME 
(1949) 186, 92-99. 

9. van Everdingen, A.F" Timmerman, E.H" and McMahon,J.J.: 
"Application of the Material Balance Equation to a Partial Water 
Drive Reservoir," J. Pet. Tech. (Feb. 1953) 51-60; Trans" AIME, 
198. 

10. Carter, R.D. and Tracy, G.W.: "An Improved Method for 
Calculating Water Influx," J. Pet. Tech. (Dec. 1960) 58-60; Trans., 
AIME, 219. 

11. Tracy, G.W.: "Simplified Form of the Material Balance Equation," 
J. Pet. Tech. (Jan. 1955) 53-56; Trans" AIME, 204. 

12. McEwen, C.R.: "Material Balance Calculations with Water Influx 
in the Presence of Uncertainty in Pressures," Soc. Pet. Eng. J. (June 
1962) 120-28; Trans" AIME, 225. 

13. Havlena, D. and Odeh, A.S.: "The Material Balance as an Equa
tion of a Straight Line," J. Pet. Tech. (Aug. 1963) 896-900; Trans., 
AIME, 228. 

14. Wall, C.G. and Craven-Walker, A.: "Material Balance Analysis 
of Partial Water Drive Reservoirs," J. Inst. Pet. (Dec. 1967) 53, 
No. 528. 

15. Dake, L.P.: Fundamentals of Reservoir Engineering, Elsevier Scien
tific Publishing Co" New York City (1978) 79. 

16. Standing, M.B.: Volumetric and Phase Behaviour of Oil Field 
Hydrocarbon Systems, fifth printing, Reinhold Publishing Corp" 
New York City (1961) 103. 

17. Wallis, W.A. and Roberts, H.V.: Statistics-A New Approach, tenth 
printing, The Free Press of Glencoe Inc. (1963) 528-48. 

18. Abramowitz, M. and Stegun, LA.: Handbook ofMathematical Func
tions, Dover Publications Inc" New York City (1964) 991. 

19. Hilsenrath, J. et al.: "OMNITAB, A Computer Program for 
Statistical and Numerical Analysis," U.S. Dept. ofCommerce, Nat!. 
Bureau of Standards, Handbook 101 (March 4, 1966). 

SI Metric Conversion Factor 
psi X 6.894 757 E+OO = kPa 
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