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Abstract A widely used approach for upscaling relative permeability is based on a steady-
state assumption. For small time intervals and at small scales, the flooding process can be
approximated as being in a steady state. However, at large scales with large time steps, water
flooding of a reservoir is an unsteady process. In this article, we first investigate the balance of
viscous, capillary and gravity forces on the fine scale during the water flooding of a reservoir
at different flow velocities. We introduce a semi-analytical method to find the low-rate limit
solution, while the high-rate limit solution is found by running a simulation without gravity
and capillary pressure. These limit solutions allow us to understand when rate-dependent
simulations approach a point where some forces become negligible. We perform a series of
numerical simulations on the fine scale to construct solution transitions between the estab-
lished outer limits. Simulations are run both on homogeneous models, on different layered
models and on a more complex two-dimensional model. The rate-dependent simulations
show smooth transitions between the low- and high-rate limits, and these transitions are in
general non-trivial. In all our example cases, one of the limit solutions gives a lower bound
for the rate dependent results, while they do not in general provide an upper bound. Based on
the rate-dependence of the force balance, we evaluate when different steady-state upscaling
procedures are applicable for an unsteady flooding process. We observe that the capillary-
limit upscaling, which also takes gravity into account, reproduces the low-rate limit fine-scale
simulations. Such capillary-limit upscaling is also able to reproduce the transition to capillary
equilibrium normal to the flow direction. As already known, the viscous-limit upscaling is
only applicable when we have close to constant fractional flowwithin each coarse grid block.
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1 Introduction

Two-phase incompressible flow through porous media at a macroscopic (Darcy) scale is
governed by viscous, capillary and gravity forces (Bear 1988; Lake 1989; Rapoport 1955).
The balance of these forces affects the flooding process of a reservoir, and there is thus a
need for quantifying the relative influence of them.

Traditionally, the balance of these forces has been calculated from dimensionless equa-
tions, or scaling groups, including capillary and gravity numbers (Lake 1989; Rapoport 1955;
Shook et al. 1992; Zhou et al. 1997). The capillary number characterizes the ratio of viscous
to capillary forces, while the gravity number characterizes the ratio of gravitational to capil-
lary forces. There exists a range of more of less equivalent forms of both the capillary and
the gravity numbers. An overview of different capillary numbers can be found in e.g., Lake
(1989, Table 3-2), and an overview of different gravity numbers can be found in e.g., Shook
et al. (1992).

Deciding whether the flow is capillary, gravity or viscous dominated will depend upon
which dimensionless numbers are used. Also, as the balance of forces varies temporarily in
a reservoir, any single number cannot fully characterize the flow process. In Stephen et al.
(2001), the two-phase transport equations were formulated with terms related to viscous,
capillary and gravity forces. This enabled the visualization of the changing force balance
between these three forces during a simulation, both in space and time.

Reservoirs are generally heterogeneous on different length scales (Aarnes et al. 2007;
Kløv et al. 2003), and it can be important to capture the effect of small-scale heterogeneities
to determine large-scale flooding processes (Kjonsvik et al. 1994). As length scales for
heterogeneities might differ by several orders of magnitude, it is not always possible to
represent them all in a single model. Upscaling of flow parameters is therefore necessary to
include effects of smaller-scale heterogeneities into coarser-scale models.

There is a wide range of upscaling methods both for one-phase (Renard and Marsily
1997; Farmer 2002; Durlofsky 2003) and for two-phase flow (Barker and Thibeau 1997;
Christie 2001; Durlofsky 2005). In the case of one-phase flow, the permeability (or trans-
missibility) is upscaled to represent the fine-scale flow on a coarser scale. For two-phase
flow, the saturation dependency of the phase permeabilities needs to be accounted for, and
the relative permeability curves must also be upscaled, possibly in addition to capillary pres-
sure curves. Two of the main classes of upscaling procedures are averaging methods and
flow-based methods. The latter is considered more accurate, however more computationally
demanding. The flow-based methods can be further divided into global and local methods
(Durlofsky 2005). For two-phase upscaling, globalmethods are typically applied to upscaling
of viscous-dominated flow from a geocellular model to a simulation model (Kyte and Berry
1975; Zhang et al. 2006), while local methods are typically applied to determine effective
flow properties for rock types or facies in geocellular models (Kløv et al. 2003; Rustad et al.
2008).

Steady-state upscaling is a local upscaling method for two-phase flow (Pickup et al. 2000;
Smith 1991). Water flooding of a reservoir is a transient process, but the flooding process at a
small scale, e.g., on the core scale, can still often be approximated as steady-state because the
saturation changes are small relative to the volume of fluids flowing through the rock (Ekrann
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andAasen 2000).With larger scales, the steady-state assumption becomes decreasingly valid.
Steady-state upscaling is therefore mainly used on a relatively small scale, e.g., from a lamina
scale (mm to cm) to a bed scale (cm to m) (Ringrose et al. 1993).

The main challenge for a multiphase steady-state upscaling is to determine the fine-scale
saturation distribution, which is rate dependent. The limiting cases of the force balance are
important for upscaling, as determining the saturation distribution can be greatly simplified
in these limits (Ekrann and Aasen 2000). On small scales, i.e., from the pore scale and up
to cell sizes of about a meter, it is common to assume that capillary forces dominate for
typical reservoir flow rates (Dale et al. 1997). For very high flow rates, the viscous forces will
dominate, and simplifications can again be made (Ekrann and Aasen 2000). For intermediate
flow rates, simplifications are typically not possible, and one has to perform a flow simulation
on each coarse grid block with some choice of boundary conditions until a steady state is
reached. In special case of a one-dimensional model, an analytical solution was used in Dale
et al. (1997) to compute the saturation distribution for intermediate flow velocities, between
the limiting low- and high-rate cases.

Another challenge in steady-state upscaling is to validate the steady-state assumption.
In Ekrann and Aasen (2000), the steady-state solutions of a two-dimensional medium were
studied, and the validity of the steady-state limits was assessed depending on the boundary
condition and the distance from the inlet. In Jonoud and Jackson (2008), using the inspec-
tional analysis of Shook et al. (1992), the force balance between capillary and viscous forces
was described using dimensionless groups. These groups were then used to determine the
validity of either capillary- or viscous-limit steady-state upscaling for two-dimensional lay-
ered models. It was shows that three different scaling groups were required to describe the
force balance, the end point mobility ratio and transverse and longitudinal Peclet numbers,
for flow across and along layers, respectively. A capillary number that take the geometrical
distribution of rock types into account was introduced in Odsæter et al. (2015) and used
to determine the validity of capillary- or viscous-limit steady-state upscaling for complex
three-dimensional models with a set of flow parameters.

The transition between capillary- and viscous-limit steady-state upscaling has been inves-
tigated for two-dimensional models in Lohne et al. (2006) and Virnovsky et al. (2004) and
later extended to three-dimensional models in Odsæter et al. (2015). It was noted that the
transition between the upscaled capillary- and viscous-limit flow parameters could be non-
monotonic and not necessarily bounded by the limiting cases.

In this article, wewill investigate the balance of forces by numerical simulations on the fine
scale. We introduce a semi-analytical method for obtaining solutions of the flooding process
for vanishing flow rates. Running numerical simulations dominated by capillary forces and
gravity is computationally heavy, and this semi-analyticalmethod allows us to easily establish
a lower limit solution for the rate-dependent simulations. For the high-rate limit, solutions
can be obtained by ignoring capillary pressure and gravity in the flow simulations. These
cases serve as boundaries for the rate-dependent flow.

By considering how the solution changeswith respect to the flow rate, and how it compares
to the solution limits, we are able to judge when the limiting cases are valid simplifications.
Moreover, we observe distinct rate ranges where forces dominate along or perpendicular to
the flow direction and investigate the transition between these distinct rate regimes.

In addition to studying how different forces interact on the fine scale through a wide
range of flow rates, we perform steady-state upscaling and assess for what flow rates and
scales the upscaling is valid. We include gravity in addition to viscous and capillary forces,
in contrast to e.g., Jonoud and Jackson (2008) and Virnovsky et al. (2004). The validity of
the upscaling methods is explained in light of the fine-scale force balance. For the high-rate
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limit, it has been pointed out earlier that the viscous-limit upscaling method is appropriate
for stable displacement provided separation of scales holds (Ekrann and Aasen 2000). The
capillary-limit upscaling is typically valid for a wider range of models and flow rates, as will
be discussed in this paper.

Upscaling, general calculations and plotting in this article are performed by the use of
the MATLAB Reservoir Simulation Toolbox (MRST) (Lie et al. 2012; MATLAB 2015a),
which is an open-source toolbox for rapid prototyping of new computational methods for
reservoir engineering. The flow simulations are conducted using the fully implicit solver of
the commercially available reservoir simulator Eclipse 100 (http://www.slb.com/eclipse/).

This article has the following outline: We state the governing flow equations in Sect. 2.
Section 3 presents limiting solutions for the rate-dependent flooding process. In particular,
we introduce a semi-analytical low-rate solution. Thereafter, we present different steady-state
upscaling procedures in Sect. 4. In Sect. 5, we use simulations at different rates to investigate
the force balance between viscous, capillary and gravitational forces. We investigate steady-
state upscaling procedures for the different rate regimes inSect. 6 to addresswhen the different
methods are applicable. To consider the force balance and upscaling in a general context,
a more complex heterogeneous model is studied in Sect. 7. In Sect. 8, we summarize and
discuss the results of this article.

2 Governing Equations

We consider incompressible two-phase flow. The two phases will be denoted oil and water,
represented by subscripts o and w. The continuity equations for the two phases are

φ
∂sα
∂t

+ ∇ · vα = qα, α ∈ {o, w}, (1)

where φ is the porosity, sα is the saturation and qα a source term for each phase α. The phase
velocities vα are given by Darcy’s law:

vα = −krα
μα

K (∇ pα − ραg∇z) , α ∈ {o, w},

where K is the absolute permeability, g is the gravity, z is height above a given datum and
pα , ρα , μα and krα are the phase pressures, densities, viscosities and relative permeabilities,
respectively. In addition, we have the closing relation sw + so = 1, and the capillary pressure
pcow(sw) = po − pw . If we introduce the phase mobility λα = krα/μα , then

vo − λo

λw

vw = −Kλo(∇ pcow − �ρg∇z),

where �ρ = ρo − ρw . Let v = vo + vw be the total Darcy velocity, and substitute vo with
v − vw in the above equation to obtain

vw = λw

λw + λo
v + K

λwλo

λw + λo
(∇ pcow − �ρg∇z).

This expression for vw is then inserted into the water equation (1), where we now disregard
sources and sinks. By observing that combining (1) and sw + so = 1 yields ∇ · v = 0, we
obtain

− φ
∂sw
∂t

= ∇ fw · v + ∇ ·
(
Kλo fw(∇ pcow − �ρg∇z)

)
, (2)
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where fw = λw/(λw + λo). In the absence of gravity and capillary pressure, the fractional
flow of water is equal to fw . Equation (2) is a useful formulation for considering the influence
of the different forces, as we discuss in the following.

3 Limiting Solutions

In this section, we will investigate the two limiting solutions of the simulation of the flooding
of a reservoir, given by high flow rates and negligible flow rates.

3.1 High-Rate Limit

Whereas capillary and gravity forces are not affected by flow rate, the viscous forces increase
with flow rate. This can be seen from (2), where the flow rate is only contained in the viscous
term ∇ fw · v. For high enough flow rates, the viscous term will dominate the capillary and
gravity terms, such that ∇ fw · v � ∇ · [Kλo fw(∇ pcow − �ρg∇z)], and (2) can be reduced
to the following form:

− φ
∂sw
∂t

= ∇ fw · v. (3)

As the fluids are assumed to be incompressible, flow rates v scale linearly with well rates
q , which can be seen from (1). Therefore, simulations with different well rates yield the
same flooding pattern. This only holds when we use (3) when scaled versus rate. To find this
high-rate (viscous-dominated) limit solution, a simulation is run where the capillary pressure
pcow and density difference �ρ (and hence the influence of gravity) are both set to zero.

3.2 Low-Rate Limit

We now present a method for computing the production curves for a model, as function of
injected water, in the limit of vanishing flow rates. This is a semi-analytical solution, giving
us a fast and robust way of finding the low-rate results. This gives an alternative to running
numerical simulationswith very lowvelocities,which are often unstable and time-consuming.

With diminishing flow rates, we have ∇ fw · v → 0, and the capillary forces and gravity
eventually become dominant. At steady state, when ∂Sw

∂t → 0, Eq. (2) is then reduced to

∇ ·
[
Kλo fw(∇ pcow − �ρg∇z)

]
= 0.

This equation is fulfilled if
∇ pcow = �ρg∇z. (4)

Thus, with diminishing flow rates the capillary and gravity forces will be in equilibrium at all
times. Note that this means equilibrium in all directions, in contrast to vertical equilibrium
(Yortsos 1995).

To construct a semi-analytical solution for this limit, consider a discretized three-
dimensional reservoir model with N grid cells. Let p̂cow be the capillary pressure at some
reference height z = ẑ, and for each grid cell i ∈ [1, . . . , N ], let siw be the water saturation, zi

the height of the cell centroid, φi its porosity and V i its volume. Given an average saturation
s∗
w for the whole domain, we can solve (4) discretely on the grid using the following equations

picow(siw) = p̂cow − �ρgzi , i ∈ [1, . . . , N ],
∑N

i=1 s
i
wφi V i

∑N
i=1 φi V i

= s∗
w. (5)
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Solving (5) then yields a relationship between the average saturation s∗
w and the cell satura-

tions siw .
One could obtain a relationship between s∗

w and p̂cow by using the inverted capillary
pressure curves to find average saturations s∗

w for different values of p̂cow. However, in the
algorithmwe present below, s∗

w is the known value and p̂cow is unknown. If we use themethod
of inverting the capillary pressure curves, we would have to use interpolation to find the value
of s∗

w we seek, leaving us without proper control of the error of p̂cow and siw . Therefore, we
instead write the N + 1 equations (5) on residual form as F(x) = 0, and then use Newton
iterations xn+1 = xn − J−1(xn)F(xn), where J is the Jacobian of F . The iterations are
continue until the residual F(xn) is below a preset tolerance level. As these calculations are
relatively fast to compute, we have chosen a very low tolerance of 10−10.

For (5) to have a solution, the capillary pressure functions picow(siw) must yield pressures
in the required range. Typically, this can be obtained by using functions with asymptotes at
the end points. The special case when only gravity forces are present needs to be handled
separately. The oil–water contact will then be a sharp interface at some height, and this height
is simply computed from the mean water saturation s∗

w and the pore volume, yielding the
sought fluid distribution for each grid cell.

As we now are able compute the relationship between the average saturation and the
saturation distribution in the domain at any given time, we are in turn able to calculate
the total production as a function of the amount of injected fluids. Consider some three-
dimensional model of the reservoir, with any number of injection and production wells. Let
the total injection rate of water and oil be given as rw

inj and roinj, respectively. Oil injection
is also included as a possibility because the domain we consider could be part of a larger
field, and so injection of fluids may either be well injection, or flow across the boundaries of
our domain from other regions of the field. However, in this paper we only consider water
injection. Denote the total production of phase α by Pα and the total injection by Iα .

Given any valid initial average water saturation s∗
w,0 in the domain (e.g., given by the

irreducible water saturation), we iterate forward in time to compute the production. At each
iteration, the net change in the total water volume is the found by the difference between
injected and produced volumes, and the resulting saturation distribution is assumed to fulfill
(5). Due to incompressibility, the reservoir volume produced is matched by the injection
volume. For each iteration k, the following steps are performed;

(i) Find the cell saturations siw = siw(s∗
w,k) by solving (5).

(ii) Given the saturation distribution, calculate the relative phase flow mα for the sinks by
taking a well index weighted sum over all sink cells

mα =
∑

i WIiλiα∑
i WIi

, α ∈ {o, w}, (6)

where WIi is the well productivity index of cell i , and the sums go over all sink
(production well) cells in the domain. We use the Peaceman expression for the well
index (Peaceman 1983). For a regular grid where all cells have the same height and
also the wellbore radius is equal for all production cells, (6) simplifies to mα =∑

i K
iλiα/

∑
i K

i . Using these phase flow values, we can compute the fractional flow
for the sinks as

fs,α = mα

mw + mo
, α ∈ {o, w}.

(iii) Compute the total injected fluid volume during the current iteration

�Vk = �Vo,k + �Vw,k = roinj�tk + rw
inj�tk,
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where �tk = tk − tk−1 is the time step from previous iteration (see comment on
time below). Note that in the examples herein, we only consider water injection, so
�Vo,k = 0. With the total injected fluid volume found, the total produced amount of
phase α during the current iteration is given by fs,α�Vk .

(iv) Update the total production

Pα,k = Pα,k−1 + fs,α�Vk, α ∈ {o, w},

and the total injection

Iα,k = Iα,k−1 + �Vα,k, α ∈ {o, w},

as well as the average saturation

s∗
w,k+1 = s∗

w,k + �Vw,k − fs,w�Vk∑
i φ

i V i
.

Then continue to next iteration.

The resulting production curves Pw and Po are independent of the magnitude of the total
injection rate rw

inj + roinj and the time steps �tk . However, the step sizes �tk must be chosen
small enough to limit error in the production curve. We have set the value of this step size
by reducing �tk until the solution does not change notably. This semi-analytical solution is
quasi-static. As we are in the low-rate limit, the fluids are given infinite time to redistribute,
but the simulation is still dynamic as the saturations move forward in time at each iteration.
Thus, in this limit, the concept of time is not properly defined, and the time steps �tk do
not correspond to a physical reservoir time. However, this method provides us with the
production rates as a function of the injection rates and serves as the lower limit solution for
rate dependent simulations.

The saturation distribution found at each iteration would equal the steady-state solutions
for vanishing flow rates, if these solutions could be obtained. However, to find the steady-
state solutionswould be computationally demanding, and often not possible in practice.Using
this low-rate solution, method is on the other hand simple and fast. The low-rate solution
is applicable to general heterogeneous models, including three-dimensional grids. Note also
that more complex wells than presented here could be implemented by e.g., incorporating
hydrostatic pressure fall in the wells.Wewill use the high-rate and diminishing-rate solutions
described above to investigate the rate-dependent balance of forces for several flooding
processes.

4 Upscaling

The single- and two-phase methods we use for upscaling, which are presented below, includ-
ing the viscous- and capillary-limit cases, are described in several papers, see e.g., Christie
(2001), Dale et al. (1997), Ekrann and Aasen (2000) and Pickup et al. (2000). In the follow-
ing, we will let superscript ’∗’ denote an upscaled value (which may be a scalar or a tensor),
such that e.g., K∗ denotes the upscaled value of the permeability field K . We present the
upscaling methods by considering a general domain Ω of a fine grid that is to be upscaled to
a single coarse grid block Ωc.
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4.1 Single-Phase Upscaling

For a single phase, Darcy’s law v = −(K/μ)∇ p and the continuity equation ∇ · v = 0 give,
assuming the viscosity is constant, the Laplace equation

∇ · (K∇ p) = 0. (7)

The solution of this equation depends on the choice of boundary conditions applied. Assume
first that fixed (Dirichlet) boundary conditions are applied. For each direction d ∈ {x, y, z},
a pressure drop �p is applied across the domain Ω , and the pressure equation (7) is solved
to obtain the pressure p, and thereby also the flux field vd . Let v̄d then be the average flux
through any cross section perpendicular to the direction of the pressure drop. The upscaled
permeability in direction d is then given by

K∗,d = − Ld

�p
v̄d , (8)

where Ld is a representative distance between the inflow and outflowboundaries. This upscal-
ing is performed in turn for each direction, and the upscaled permeability becomes a diagonal
tensor

K∗ = diag(K ∗,x , K ∗,y, K ∗,z).

Herein, we apply Dirichlet boundary conditions in the flow direction with no-flow boundary
conditions elsewhere, and thus get upscaled diagonal permeability tensors. If periodic bound-
ary conditions are chosen instead, the upscaled permeability becomes a full 3 × 3 tensor as
cross-flow may be present (Durlofsky 1991).

4.2 Two-Phase Upscaling

It is well known that two-phase upscaling is rate dependent, with capillary forces dominating
for small grid scales, and capillary and gravity forces dominating at low flow rates, while
viscous forces dominate for large grid scales and at high rates (Ekrann and Aasen 2000). We
consider upscaling in the rate limits, where the situation can be simplified, whereas upscaling
at intermediate flow rates is not considered herein.

The first step of a steady-state two-phase upscaling is calculating the saturation distribution
ŝw at steady state. For the capillary-limit (or capillary/gravity-limit) upscaling method, this
distribution is found by solving (5) for some given value of the average saturation s∗

w . Then,
the phase permeabilities K̃α = krα(ŝw)K are computed, andwe apply single-phase upscaling
as explained above to obtain upscaled (effective) phase permeabilities K̃∗,d

α . The upscaled
relative permeabilities are then computed as

k∗,d
rα (s∗

w) = K̃∗,d
α

K∗,d
. (9)

The capillary pressure is also upscaled using the same saturation distribution ŝw. In the
solution of (5), the capillary pressure is constant at each height of the domain, and a natural
choice for the upscaled capillary pressure value is to select the capillary pressure at the coarse
cell centroid height zc. That is,

p∗
cow(s∗

w) = p̂cow − �ρg
(
zc − ẑ

)
,

where we recall that p̂cow is the capillary pressure at the reference height ẑ. Note that if we
choose the characteristic height in (5) to be ẑ = zc, then simply p∗

cow(s∗
w) = p̂cow. This
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process of upscaling relative permeability and capillary pressure is repeated for different
values s∗

w to obtain full upscaled curves. The upscaling is also performed for each spacial
dimension. Note that we normally refer to this method by the term capillary-limit upscaling,
but the upscaling also accounts for gravity forces if they are present.

The viscous-limit upscalingmethod assumes that viscous forces dominate, and (3) applies.
Assuming steady state, the timederivative of the saturation goes to zero and (3) further reduces
to

∇ fw · v = 0. (10)

Thus, the fractional flow is constant along streamlines, and the solution to (10) depends on
the distribution of fractional flow over the inlet face of the coarse grid block. In particular, this
means the solution is not unique. A common choice is to assume a constant fractional flow on
thewhole inlet boundary, resulting in constant fractional flow throughout the coarse grid block
(Dale et al. 1997). With this assumption, the saturation distribution for each fractional flow
value f̂w is obtained by inverting the fractional flow function fw , such that ŝw = f −1

w ( f̂w).
Similar to the diminishing-rate limit, once the saturation distribution is found, we apply
single-phase upscaling for the phase permeabilities K̃α = krα(ŝw)K to obtain upscaled
(effective) phase permeabilities, and then, the upscaled relative permeabilities are computed
from (9). This process is repeated for different fractional flow values f̂w to obtain upscaled
relative permeabilities for different values of the corresponding average saturation. We set
the upscaled capillary pressure equal zero for the viscous-limit upscaling.

5 Simulation Examples

Wewill investigate how gravity, capillary pressure and viscous forces are present at different
flow rates during a water flooding of a reservoir. In particular, we investigate at what rates
each of these forces can be ignored, and thus find when the limiting solutions are valid. To
this end, we consider different simplified examples of water flooding of an oil-filled reservoir.
We first use a homogeneous 1D example to investigate the balance of capillary versus viscous
forces in the direction of flow. Then, we extend the homogeneous model to 2D to investigate
the balance of gravity versus viscous forces. Finally, to investigate the capillary (and gravity)
redistribution offluids both perpendicular and along theflowdirection,we addheterogeneities
by assigning different rock types to different layers.

The three forces considered will generally depend nonlinearly on each other and are thus
not truly separable. However, to quantify at what flow rates, each force has significant impact
on the solution, we simplify and consider the effects of the forces separately.

5.1 General Model Description

The example models considered in this section are all derived from the same base case that is
of physical dimensions 2000×5×20m and has a grid size of 400×1×20 cells. Sketches of
two different variations are shown in Fig. 1. There are two rock types used, a higher permeable
rock (type 1) with permeability K1 = 1000mD, and a lower permeable rock (type 2) with
K2 = 10mD. The permeability within each rock type is homogeneous and isotropic, and the
porosity is constantly equal φ = 0.25 for the entire domain. Depending on the example, we
use either equal mobilities and linear relative permeabilities,

μo = 1.0 cP, μw = 1.0 cP, krw(sw) = s̃w, kro(sw) = 1 − s̃w. (11)
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Injector Producer

20m

2 km

K1, p1cow

Injector Producer

10m

10m

2km

K1, p1cow

K2, p2cow

Fig. 1 Sketches of two of the models considered in the examples. Left Homogeneous model. Right Model
with two horizontal layers

or different phase viscosities and quadratic relative permeability curves,

μo = 1.5 cP, μw = 0.5 cP, krw(sw) = 0.5(̃sw)2, kro(sw) = (1 − s̃w)2, (12)

where s̃w(sw) = (sw − swir )/(1 − swir − sor ). The same relative permeability functions
apply to both rock types, the irreducible water saturation is swir = 0.1 and the residual oil
saturation sor = 0.1 and the initialwater saturation is set equal the irreduciblewater saturation
in the entire domain for all simulations. If nothing else is stated, then the densities are set to
ρo = 925 kg/m3 and ρo = 1025 kg/m3. The capillary pressure curves are computed from a
Leverett J-function, such that

pcow(sw) = J (sw)γ cos θ
√

φ/K , (13)

where J (sw) is the Leverett J-function, γ is the surface tension and θ is the contact angle
between water and oil, φ is porosity and K is permeability. For the examples herein, we have
chosen to use γ = 0.022N/m and θ = 45◦. The J-function we use is from tabulated data,
and the resulting pcow curve for rock type 1 (φ = 0.25, K = 1000mD) is shown in Fig. 4.

An injection well is included at the west end of the model, and a producer is included at
the east end. For each model variation considered, simulations are performed for a series of
different injection rates. Throughout each of these simulations, the wells are injecting and
producing at a constant rate until 2 PV (pore volumes) of water have been injected.

5.2 Homogeneous 1D Example

We start by investigating the force balance in a 1D homogeneous horizontal case. Since all
grid cells have the same height above datum, there will be no contribution of gravity. The
only competing forces are then the viscous and capillary forces and (2) simplifies to

− φ
∂Sw

∂t
= ∇ fw · v + ∇ · (Kλo fw∇ pcow) . (14)

Even though we discuss a 1D case in this section, we choose to keep equation 14 in general
3D form for better comparison with the other example cases.

The homogeneous 1D model has the same physical dimensions as the general model and
consists only of rock type 1, such that the permeability is K1 = 1D in the entire domain.
In this example, the viscosities are unequal and the relative permeabilities are quadratic, as
given by (12).

To investigate the balance of forces, we run simulations for a range of different injection
rates. The flow rate through the domain is represented by the interstitial (seepage) velocity
u = v/φ = Q/(Aφ), where Q is the injection rate and v = Q/A is the corresponding Darcy
velocity (specific discharge). Thus, the interstitial velocity gives flow in the units of length
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Fig. 2 Total oil production for the homogeneous 1Dmodel of length 2000m for different interstitial velocities

per time, and we use m/day. To maintain approximately the same numerical accuracy, the
time steps are adjusted relative to the flow rate, such that the same number of time steps are
used in all simulations.

Some of the resulting total oil production curves are plotted as a function of total injected
water for different interstitial velocities in Fig. 2, where also the limiting solutions are shown.
These limits are computed as described in Sect. 3. We observe that the rate-dependent solu-
tions converge to the low-rate (capillary dominated) limit for small rates and to the high-rate
(viscous-dominated) limit for large rates. The high-rate limit is similar to the Buckley–
Leverett solution (Buckley and Leverett 1942), which is plotted as cross-marks in Fig. 2 for
comparison.

To better visualize the transition of the solution between the low-rate and high-rate solu-
tion limits, and also to see at what rates the solution converges, another comparison of the
simulations is shown in Fig. 3. Here, the total oil production is plotted as a function of the
velocity at the point where 0.8 PV (pore volume) of water has been injected into the domain.
In other words, Fig. 3 shows the intersection of the curves in Fig. 2 at the point indicated by
the dotted vertical line. The results for two shorter models are also included in Fig. 3 to show
how the results depend on the model length.

At low injection rates, the viscous term∇ fw·v in (14)will go toward zero as |v| → 0.Then,
the capillary forces are given enough time to redistribute the fluids throughout the domain,
resulting in the capillary forces being in equilibrium. For the homogeneous model, this
means that the saturation will be close to constant in space at each point in time. Considering
Fig. 3, we see that the rate-dependent solutions converge toward the low-rate limit as the
flow velocity decreases. However, for the 2000m model, the velocity needs to be as low
as 10−6 m/day for the rate-dependent solutions to converge to the calculated low-rate limit.
Note that the velocities at which the rate-dependent solutions converge will depend on the
absolute permeability of the system, as seen in “Capillary Number” section.

For high enough injection rates, on the other hand, the Darcy velocity v in equation (14)
becomes so large that ∇ fw · v � ∇ · (Kλo fw∇ pcow), and the viscous forces dominate the
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Fig. 3 Total oil production after 0.8 PV of water injection (at vertical line in Fig. 2) for homogeneous 1D
model of different lengths

flow. We see in Fig. 3 that the rate-dependent solutions converge to the high-rate limiting
case, and the transition going from the low-rate to the high-rate limit is relatively smooth.

The time needed for the capillary forces to redistribute the fluids is proportional to the
length the fluids need to be transported. Thus, when the length of the model is reduced by one
order of magnitude, e.g., from 2000 to 200 meters, the time needed to redistribute the fluids
is reduced by one order of magnitude too. This is clearly seen in Fig. 3, where the solutions
for three different model lengths are plotted. All three models have the same number of grid
cells, and thus, the size of each cell changes with the model length.

A realistic interstitial velocity for water flooding of an oil reservoir is in the order of
1m/day (Chen et al. 2001). In Fig. 3, we observe that all three model lengths are in the
viscous-dominated regime for this velocity. However, by just considering the plot, it does
seem like models shorter than 20 meters start to move away from the high-rate limit for an
interstitial velocity of 1m/day. If the same trend continues, we need models shorter than
approximately 2mm to be at the low-rate limit solution for realistic velocities. Note that
this length is for an isolated domain, giving a maximum possible change of water saturation
through the simulation. Also, note that this is not a length restriction for capillary-limit
upscaling. As we will see in later examples, capillary-limit upscaling may be valid for flow
rates larger than the low-rate limit solution.

This force balance depends on relative permeability, capillary pressure curves and the
viscosity of the fluids. Still, for realistic flow parameters, viscosities and flow rates we cannot
assume capillary equilibrium in the flow direction for typical reservoir models.

5.2.1 Capillary Number

It is common to use a capillary number to describe the ratio between capillary and viscous
forces (Zhou et al. 1997); however, there exists several different such numbers (Lake 1989).
The capillary number can be considered scale dependent as discussed inOdsæter et al. (2015),
where the authors consider the capillary number in the context of steady-state upscaling.
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Considering the terms in Eq. (14), we define a capillary number Nc as

Nc = f̃wṽ

K̃ λ̃o f̃w∇̃ pcow
= ṽ

K̃ λ̃o∇̃ pcow
, (15)

where the tilde indicates that the values are somehow representative for the particular case
considered. For simplicity, we assume the relative permeability for oil is one, such that
λ̃o = 1/μo.

The characteristic number ∇̃ pcow for the capillary pressure change in the domain is con-
structed as follows. Given the capillary pressure function pcow(sw), divide its domain into
N intervals of equal length, such that interval i is [siw, si+1

w ], and thus, s1w = swir and
sN+1
w = 1 − sor . On each interval, compute the the discrete slope of the function by

di = pcow(si+1
w ) − pcow(siw)

si+1
w − siw

, i = 1, . . . , N .

Let M be the median of all the discrete slopes di , and let L be the length of the domain we
consider. We then define

∇̃ pcow = �pcow
L

= (1 − sor − swir )|M |
L

.

Note thatwe choose themedian and not themean, becausewedonotwant extreme asymptotes
at the ends to dominate.

For the 1D homogeneous example discussed just above, the constants appearing in Nc

are given by swir = 0.1, sor = 0.1, μo = 1.5 cP, K̃ = 1D, M ≈ −0.05 bar and the model
length L varies. To illustrate how the number M relates to the capillary pressure, the line
pc(sw) = Msw + b is plotted on top of pcow in Fig. 4, where b is chosen to minimize the
distance from pcow.

In Fig. 5, each of the three transition curves from Fig. 3 are plotted against the capillary
number

Nc = μoṽL

K̃ (1 − sor − swir )|M | ≈ (4.40 day/m2)vL ,

where the velocity v is given in units of m/day (for direct comparison with Fig. 3), and
the length L is given in meters. Note that the capillary number scales with the velocity. In
addition, it will depend on the particular shape of the capillary pressure curves, and thus also
the interfacial tension, which is kept constant in our examples.

We see that the capillary number Nc = 1 in the middle of the transition from low-rate
to high-rate limit for each of the three model lengths. Also, we observe that the total oil
production is independent of the model length when plotted against the capillary number.
Thus, the capillary number Nc is reasonable for this example.

5.3 Homogeneous 2D Example

To consider gravitational forces, we now move to a two-dimensional model. Consider the
base case of length 2000m and height 20m with 20 grid cells in the vertical direction. For
simplicity, and to be able to study the effect of gravity, we ignore capillary forces. The
competing forces are then the viscous and gravitational forces, and (2) simplifies to

− φ
∂Sw

∂t
= ∇ fw · v − ∇ · (Kλo fw�ρg∇z) . (16)
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Fig. 4 Capillary pressure and the fitted line found from median slope fit

Capillary Number
10 -4 10 -2 10 0 10 2 10 4

T
ot

al
O

il
P

ro
du

ct
io

n
(P

V
)

0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

L = 20 m
L = 200 m
L = 2000 m

Fig. 5 Production from Fig. 3 plotted against the capillary number Nc

The simulations are once again run for a range of injection rates, and similar to the 1D
case, we plot in Fig. 6 the total oil production after 0.8 PV of water has been injected. Three
different values for the fluid density difference �ρ = ρw −ρo, and both linear and quadratic
relative permeability curves are considered. This gives six different cases, which are all
plotted in Fig. 6. The low-rate and high-rate limit solutions in these plots are computed as
described in Sect. 3.

Wenote that for the lowest injection rates, the simulations becomenumerically challenging
because it is difficult for gravity alone to distribute the water in the horizontal direction. To
be able to run these lowest rates, a small capillary pressure is added, which helps to distribute
the water, but does not change the results notably.

Analogous to the balance between capillary and viscous forces in the previous example,
the gravity will now be dominant for small enough injection rates, as can be seen from (16).
At the low-rate limit, the saturations will be in vertical equilibrium. This gives a sharp oil–
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Fig. 6 Total oil production after injection of 0.8 PV of water for the homogeneous 2D model with gravity
and without capillary pressure. Different fluid density differences �ρ = ρw − ρo are used. a Linear relative
permeability, μo = μw . b Quadratic relative permeability, μo > μw

water contact at some height in the domain, with residual oil saturation below and irreducible
water saturation above. This horizontal interface will gradually move upwards as the domain
becomes water filled from the bottom up.

Considering simulations with increasing injection rates, starting from the low-rate limit,
the viscous forces will become more dominant, and the flow gradually changes character to
a piston-like flooding. This transition can be seen in both plots in Fig. 6, where the solutions
move away from the low-rate solution limit and the total production increases. For rates above
this transition, the water front in the case of linear relative permeability is a sharp vertical
interface, such that almost all mobile oil has been produced at water breakthrough. We note
that for linear relative permeabilities the high-rate limit converge to the the Buckley–Leverett
solution. In the case of quadratic relative permeability, however, the highest production rates
are not found at the high-rate limit solution. Instead, for simulations at the top of the transition
curve, the water front is tilted, because gravity has time to segregate the fluids and create a
gravity tongue as shown in Fig. 7a. Due to the fluid segregation, the saturation in the tongue
is close to residual oil. When the velocity is increased further, gravity does not have time to
separate the fluids, and the water front is perpendicular to the flow direction (Fig. 7b). As
is well known from Buckley–Leverett solutions, significant amounts of oil is left behind the
water front in this case due to the shape of the relative permeability curves, causing less oil
to be produced. This reduction in total production for increased injection rates can be seen as
the second transition from the top of the curve and down toward the high-rate limit as shown
in Fig. 6b. In general, the shape of the relative permeability curves influence the transitions.
As changes in wettability and pore structure alters the relative permeability, these properties
will then affect the transition between low- and high-rate limits. Note again that the velocities
where the transition converges to the limit solutions will depend on the absolute permeability
of the system (see section in “Gravity Number”).

For water and oil, a typical density difference �ρ = ρw − ρo can be approximately
150 kg/m3. For a realistic interstitial velocity of 1m/day, we see in Fig. 6 that we are at the
high-rate limit solution in the case of linear relative permeability curves, but not for quadratic
curves. If the trend of the density difference continues similarly, we need almost equal fluid
densities to be at the high-rate limit at realistic flow rates with quadratic curves. Thus, in this
example we cannot ignore the effect of gravity, and it seems like neither of the limit solutions
are valid assumptions.
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Fig. 7 Water saturation after injection of 0.4 PV of water for the homogeneous 2D model with gravity and
without capillary pressure, using quadratic relative permeability, μo > μw , and �ρ = 10 kg/m3 for two
different velocities. a Interstitial velocity 0.04m/day, at the top of the transition curve in Fig. 6b. b Interstitial
velocity 8m/day, to the right of the transition, at the high-rate limit in Fig. 6b
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Fig. 8 Same results as in Fig. 6, now plotted against the gravity number Ng as given by equation (17). a
Linear relative permeability, μo = μw . b Quadratic relative permeability, μo > μw

5.3.1 Gravity Number

In a similar fashion as a capillary number was defined in the previous section, we now define
a gravity number. Considering the terms in equation (16), we define a gravity number Ng as

Ng = f̃wṽ

K̃ λ̃o f̃w�ρg∇̃z
= ṽ

K̃ λ̃o�ρg∇̃z
, (17)

where, as before, the tilde indicates representative values.
For the homogeneous 2Dmodel considered above, the parameters appearing in the gravity

number Ng are given by K̃ = 1000mD, λ̃o = 1/μo, g = 9.8m/s2, and ∇̃z = 1/100 is
chosen as the model height divided by the model length. In Fig. 8, the six curves in Fig. 6 are
plotted versus the gravity number Ng. We observe that the curves almost fall on top of each
other and that the gravity number Ng = 1 is inside the transition from gravity dominated to
viscous dominated. Thus, the gravity number Ng as defined by (17) is reasonable for these
examples.

5.3.2 Homogeneous Model with Gravity and Capillary Forces

To observe how capillary pressure affects the results, we now add capillary forces into the
system. The capillary pressure is scaledwith the density difference�ρ to obtain equal relative
difference between capillary and gravity forces. If we let p̂cow be the capillary pressure
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Fig. 9 Total oil production after injection of 0.8 PV of water for the homogeneous 2D model with gravity
and capillary pressure pcow as given in each caption, where the function p̂cow is computed from (13). The
curveswithout any capillary pressure from Fig. 6b are shown in gray for comparison. a pcow = p̂cow|�ρ|/10.
b pcow = p̂cow|�ρ|

function as defined by (13), then the capillary pressure is set to pcow = p̂cow|�ρ|/10 in
Fig. 9a, and to pcow = p̂cow|�ρ| in Fig. 9b (the limit solutions in these figures are computed
as described in Sect. 3). Thus, for all the cases except�ρ = 10 kg/m3 in Fig. 9b, the capillary
pressures are larger than the default values. In Fig. 9b, the capillary forces are ten times
larger relative to gravity than in Fig. 9a. As the capillary forces increase relative to gravity,
the diffusion increases both normal to and along the flow direction. In the vertical direction,
the capillary forces will counteract gravitational segregation. In Fig. 9b, the capillary forces
become so large that capillary diffusion dominate gravity, and the flow becomes essentially
one dimensional. This can also be seen as the shape of the curves in Fig. 9b are similar to
the one-dimensional results in Fig. 3.

5.4 Layered 2D Example

To investigate the balance between capillary and viscous forces perpendicular to the flow
direction, we consider a 2Dmodel consisting of horizontal layers of two different rock types.
To isolate the forces arising from capillary pressure, we let the oil density be equal to thewater
density to remove gravity effects. We use equal viscosities and linear relative permeabilities
as given by (11), causing equal total mobility in the two rock types. There is then no viscous
cross-flow between the layers arising from total mobility contrast. The capillary pressure
curves for the two rock types are computed from (13).

We consider three different models, where the physical size in all cases is 2000×5×20m,
while the number of rock layers changes. Thus, the thickness of each layer is the height of the
model divided by the number of layers. Alternate layers were of rock type 1 and 2, starting
from the top with the high-permeable rock type 1. A sketch of the model with two layers
is shown in Fig. 1. The total number of grid cells in the vertical direction is chosen as 20
for the models with 2 and 20 rock layers, and 200 cells are used for for the model with 200
rock layers. Different resolutions have been tested, and though a higher grid resolution will
slightly alter the results, the changes are small enough to not be of importance for this paper.

As in previous examples, simulations are carried out for a range of injection rates. The
resulting total oil production after injection of 0.8 PVofwater for the different layeredmodels
is plotted in Fig. 10, where also the capillary number Nc as defined by (15) is shown. This
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Fig. 10 Total oil production after injection of 0.8 PV of water for the horizontally layered models without
gravity. The height of a single layer is written in parenthesis. The capillary number Nc as defined by (15) is
given as a second x-axis on the top. Note that the velocities at which the rate-dependent solutions converge to
the limit solutions depend on the effective (upscaled) absolute permeability of the model

plot reveals two distinct transitions. At interstitial velocities below 10−5 m/day, the capillary
forces dominate the distribution of the fluids, and the solutions are seen to converge to the low-
rate limit. That is, the capillary forces are both in vertical and horizontal equilibrium. When
increasing the flow rate up toward 10−2 m/day, the viscous forces become dominant in the
distribution of fluids in the direction of flow. However, the distribution of fluids perpendicular
to the flow direction is still dominated by capillary forces, and we thus still have a vertical
equilibrium. That there are different forces dominating along and perpendicular to the flow
direction is mainly due to differences in lengths; the model length horizontally is much larger
than the lengths between the layers in the vertical direction. Thus, the capillary pressure uses
less time to redistribute the fluids vertically between the layers than horizontally along the
layers. For velocities around 10−2 m/day, this results in a piston-like flooding scenario where
capillary forces are in equilibrium normal to the flow direction. In Fig. 10, we observe that
the transition from capillary equilibrium in both directions to a plateau where we only have
equilibrium normal to the flow direction is similar for different number of layers. This is in
accordance with the capillary number also included in Fig. 10, as this dimensionless number
describes the balance of viscous to capillary forces in direction of flow. This transition is
similar to what was observed in the 1D homogeneous case plotted in Fig. 3; thus, the force
balance in the direction of flow appears similar to the 1D homogeneous case.

The three models considered here all have equal volume of each of the two rock types,
which causes the transition from capillary equilibrium to vertical equilibrium to be equal, and
all three models end at the same plateau at 10−2 m/day. With even higher rates, the viscous
forces become so large that capillary forces no longer have time to redistribute the fluids
perpendicular to the flow direction. This is seen as the second transitions in Fig. 10, where
the solutions go from vertical equilibrium at the plateau and down toward the high-rate limit.
In this transition, the solutions move from a piston-like flooding with vertical equilibrium
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(perpendicular to the flow), to a scenario where the high-permeable layers are flooded before
the low-permeable layers. This causes negligible production of oil from the low-permeable
layers after injection of 0.8 PV of water, and therefore, the production at 0.8 PV seen in
Fig. 10 drops from vertical equilibrium to the high-rate limit. As the constant total mobility
ensures no viscous cross-flow between the layers at higher rates, all models have the same
high-rate limit solution.

Observe that the transition from the plateau to the high-rate limit is different for the
different layeredmodels.When increasing the number of layers, the vertical distance between
grid cells of different rock type is reduced. Increasing the number of layers thus increases the
gradient of the capillary pressure ∇ pcow = �pcow/ l by reducing the distance l between grid
cells of different rock types. At the same time, we also reduce the distance the fluids need to
be transported between the layers. Decreasing the distance l by an order of magnitude will
then increase the capillary pressure gradient by an order of magnitude and at the same time
reduce the transport distance by an order of magnitude. Consequently, increasing the number
of layers by one order of magnitude will shift the transition from the plateau to the high-rate
limit by two orders of magnitude. This is shown in Fig. 10.

We also see in Fig. 10 that with a layer thickness of approximately 1m (model of 20
layers), the transition from the plateau to the high-rate limit starts at an interstitial velocity of
just above 10m/day. Thus, for a model with layers thinner than approximately 1m, a typical
reservoir flow rate is at the plateau where viscous forces dominate in direction of the flow,
while capillary forces dominate perpendicular to the flow.

6 Upscaling Examples

In this section, we investigate the validity of steady-state upscaling methods. The models are
upscaled from a fine grid to a coarse grid, and then, these upscaled parameters are used in
simulations to observe how well they are able to reproduce the fine-scale flow and how large
errors the upscaling introduces.

6.1 Upscaling the Horizontally Layered Models Without Gravity

Consider the layered models introduced above with 2, 20 and 200 horizontal layers. We
upscale these models to a coarse grid of size 40× 1× 1. In all three models, half the domain
of each coarse grid block is filled by rock type 1 and the other half by rock type 2; therefore,
the upscaled flow parameters will be identical.

As the layers are parallel to the flow direction, the upscaled absolute permeability is
simply the arithmetic mean, such that K ∗ = (1000mD+ 10mD)/2 = 505mD. The relative
permeabilities are upscaled using both the viscous- and capillary-limit methods and are
shown in Fig. 11a togetherwith the original input curves.Note that the viscous-limit upscaling
reproduces the input curves, in contrast to the capillary-limit upscaling.Theupscaled capillary
pressure is shown in red in Fig. 11b.

As before, simulations are run using a range of injection rates to observe how well the
upscaled curves reproduce the fine-scale results. The total oil production resulting from
simulations with lower velocities using capillary-limit upscaled data is shown in Fig. 12a.
The fine-scale solutions in the low- and high-rate limits (computed as described in Sect. 3)
are shown for comparison, and we observe how the coarse simulations converge to the low-
rate limit. In the high-rate limit solution, almost all flow happens in the high-permeable
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Fig. 11 Upscaled fluid properties for the horizontally layered models. a Relative permeability. b Capillary
pressure
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Fig. 12 Total oil production for the layered models without gravity. a Coarse-scale capillary-limit results. b
Coarse-scale results after injection of 0.8 PV of water. Fine-scale results from Fig. 10 are shown in gray, and
the capillary number Nc as defined by (15) is given as a second x-axis on the top

layers before water breakthrough. After the breakthrough, the remaining oil resides in the
low-permeable layers only, which will take a very long time to produce.

To better visualize how the solutions depend on velocity, the total oil production for all
solutions is plotted after injection of 0.8 PV of water in Fig. 12b. The capillary number Nc

as defined by (15) is also shown. Again, the limit solutions in this plot are computed as
described in Sect. 3. As there is no capillary pressure in the viscous coarse model, these
results are rate independent when plotted against total injection. We also observe that the
viscous-limit upscaling do not reproduce the fine-scale solution at the high-rate limit. The
coarse results give approximately two times the total production compared to the fine scale.
The reason for this mismatch becomes evident when considering the fractional flow during
the flooding. For the fine-scale models, once the water saturation front has passed through in
the high-permeable layers, thewater fractional flowwill be close to one in these layers and still
close to zero in the low-permeable layers. The steady-state viscous-limit upscaling procedure
assumes constant fractional flow inside each coarse grid block, and this assumption is clearly
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violated in this case. We therefore cannot expect the viscous-limit upscaling to capture the
characteristics of the flow. However, if the coarse grid resolved the layered structure, i.e.,
if each coarse block only contained a single rock type, then the fractional flow would be
close to constant within each block, away from the water front. In this case, the viscous-limit
upscaling could be applied and would match the high-rate limit solution.

Another point about the high-rate limit is worth noting. In the high-rate limit, close to
all flow in the fine-scale solution happens in the high-permeable layers, which adds up to
only half the flow-area. For the coarse models, on the other hand, the flow is equal for the
full area of the model. This causes the water front in the coarse model to move slower than
in the fine-scale model, and water breakthrough happens at a later point in time. Thus, for
this choice of coarse grid, both upscaling methods are incorrect for the high-rate limit, even
before the water breakthrough.

Considering the results using capillary-limit upscaling in Fig. 12b, we see the coarse
capillary simulations not only converge to the fine-scale low-rate limit, but also have the
same transition from the low-rate limit and up to the plateau where the capillary forces are
in equilibrium in the direction perpendicular to flow. At this plateau and for lower rates,
the vertical fluid distribution is captured by the capillary-limit upscaling procedure. For
higher flow rates, the viscous forces begin to influence the vertical fluid distribution, and this
distribution is not captured by the upscaled model, as shown in Fig. 12b, where the upscaled
results are unchanged when increasing the flow rates after reaching the plateau.

6.2 Upscaling Horizontally Layered Models with Gravity

In this subsection, we combine capillary and gravity forces and study the horizontally lay-
ered model with 20 layers. Three different density differences �ρ = ρw − ρo are used.
The upscaled relative permeability and capillary pressure curves are shown in Fig. 13. When
upscaling a gravity case, we observe how the gravity effect is included into both the upscaled
relative permeability and capillary pressure curves. For the largest density contrast, the result-
ing capillary curve is dominated by the effect of gravity. This largest density difference can,
however, not be considered realistic for petroleum reservoirs. Note that the horizontally lay-
ered model has alternate layers, starting with the high-permeable rock type at the top. The
results in this section would be slightly different if the layer ordering was switched, but for
as many as 20 layers, this difference is minimal.

The model is upscaled to a 1D grid of size 40× 1× 1, and then simulations are run on the
coarse scale. The total oil production after 0.8 PV water injected versus interstitial velocity
is shown in Fig. 14a. As expected, the solution for the relatively low density difference of
10 kg/m3 in Fig. 14a is similar to the solution without gravity in Fig. 12b. As the gravity
forces are increased, the shape of the transition changes.

To make Fig. 14a more readable, we do not include the viscous-limit coarse-scale results,
but as for the results without gravity, the viscous-limit upscaling do not reproduce the fine-
scale high-rate limit solution here either. The capillary-limit upscaling does, however, have a
good match with the fine-scale results from the low-rate limit and up the point where viscous
forces become dominant in the coarse simulations. Note that the low-rate limit is slightly dif-
ferent depending on the density difference, which reflects the change in the balance between
gravity and capillary forces at this limit. At high rates, the coarse simulation reproduces ver-
tical equilibrium, which seems to correspond to the top of the fine-scale simulation curves.
Viscous influence on fluid distribution normal to the flow direction is not captured by the
upscaled models; thus, the transition from vertical equilibrium to the high-rate limit solution
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Fig. 14 Total oil production after injection of 0.8 PV of water injection for the model with 20 horizontal
layers with capillary pressure and gravity for different fluid density differences �ρ = ρw − ρo. Fine-scale
results are shown in solid lines, and capillary-limit upscaling results are shown in dashed lines. Note that the
fine-scale solutions are the same in both figures, but the coarse-scale results are different, a Default upscaling,
b Disregarding gravity in pcow-upscaling

is not captured by the upscaled models. Depending on the size of the density difference �ρ,
the coarse results match the fine-scale results up to around 0.01−1m/day.

To illustrate the effect of including the effect of gravity in the capillary pressure upscaling,
the coarse results are shown in Fig. 14b where gravity has been disregarded when upscaling
pcow, but still included when upscaling relative permeability. We observe how the coarse
models do not match the low-rate limit as the density difference increases, and the transi-
tions toward higher flow rates are not matching the fine-scale simulations. This shows the
importance of including gravity also in the capillary pressure upscaling.

7 A More Complex 2D Example

As the homogeneous and layeredmodels are highly simplified, wewould also like to consider
a more complex model and see if we can generalize our conclusions. To this end, we consider
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Fig. 15 SPE10 model 1. a Permeability field. b Rock types with R = 4 different types

model 1 of the 10th SPE Comparative Solution Project (Christie and Blunt 2001). The model
has 100×1×20 cells and physical dimensions 762×7.62×15.24m. To avoid any upscaling
effects of the wells, extra cells with homogeneous porosity and permeability are added to
both sides of the domain and the wells are then placed in these padding cells. The wells are
shown together with the permeability field in Fig. 15. The porosity is φ = 0.2 everywhere.
The fluids are incompressible, with densities ρo = 700 kg/m3 and ρw = 1025 kg/m3, and
viscosities μo = 1 cP and μw = 0.5 cP.

The original SPE10 model does not contain any capillary pressure data. As we want
consider the balance between capillary, viscous and gravitational forces, capillary pressure
curves are added into the model. We will compute the capillary pressure from the same
Leverett J-function as before. This J-function is given as tabulated data, and the resulting
pcow curve for a rock type with φ = 0.25 and K = 1000mD is shown in Fig. 4. Now, to
obtain different curves, the domain is divided into R rock types based on the value of

√
K/φ,

which is a factor in the capillary pressure function (13). For each cell i , we first define the
number qi = log10(

√
Ki/φi ), then let �q = (max(qi ) −min(qi ))/R, and finally define the

bins
Qr = [

min(qi ) + (r − 1)�q,min(qi ) + r�q
]
,

for r = 1, . . . , R. Then, we let cell i be of rock type r if qi ∈ Qr . The capillary pressure
of each rock type is computed from (13) with permeability taken as the log average and
porosity as the average of all cells which is part of that rock type. We consider both the case
of a single rock type (R = 1) and four different types (R = 4). The relative permeability is
the same in the whole model and are quadratic Corey-type curves with end points kro(0) = 1
and krw(1) = 0.5.

Similar to what was done for the simpler models, we run the SPE10 model on the fine
scale for a range of injection rates. Then, the model is upscaled both to a coarse grid with
25 × 1 × 1 cells and one with 25 × 1 × 5 cells, and the coarse models are then run for the
same range of injection rates as the fine-scale model. Plots of the total oil production after
0.8 PV of water has been injected is shown in Fig. 16, both with a single capillary pressure
curve (R = 1) and with four different curves (R = 4).

The first observation we make is that for both models, the fine-scale simulations and the
upscaled capillary-limit simulations converge to the low-rate limits, as anticipated. The fine-
scale solution converges to the low-rate limit for a velocity about 10−5 m/day and to the
high-rate limit just below 102 m/day. We note that both these convergence rates and also
the shape of the curves are quite similar to the homogeneous 2D case with quadratic relative
permeability and �ρ = 100 kg/m3, as shown in Fig. 6b, though the gravitational forces are
now larger as �ρ = 325 kg/m3.

The difference between a 1D coarsemodel and a coarsemodel with five cells in the vertical
direction is clearly shown in Fig. 16. The 1D model does not include gravity in the coarse
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Fig. 16 Total oil production after injection of 0.8 PV of water for the SPE10 model 1, both upscaled to coarse
grid with nz = 1 cell in vertical direction and nz = 5 cells. a A single pcow curve (R = 1). b Four different
pcow curves (R = 4)
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Fig. 17 Water saturation for SPE10 at the point of water breakthrough for different interstitial velocities and
different models. The second row is the fine-scale results, averaged in each coarse block

simulation. In particular, this causes the viscous-limit upscaled model to be independent
of rate when plotted versus injected volume, as seen before. The 1D capillary-limit coarse
model behaves similar as for the upscaled horizontally layered model in Fig. 14a, following
the fine-scale simulation from the low-rate limit and up to a point, before flattening out to
a constant for higher velocities. Increasing the vertical coarse resolution to five cells, the
match improves for both viscous- and capillary-limit coarse models. The saturation at water
breakthrough is compared for these models in Fig. 17, where we observe that the gravity
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tongue now is reproduced in the coarse models. Here, we also see how the coarse capillary-
limit results match the fine-scale better than the viscous-limit coarse results for the lower
flow rate, while they are more similar for the higher flow rates.

8 Conclusion

In this article,wehave introduced a semi-analytical solution for low-rate (capillary andgravity
dominated) flooding of a reservoir. Together with the high-rate (viscous-dominated) limit,
they give the solutions for the rate-dependent flooding process in the limit of vanishing or
very large flow rates. For all models considered in this article, the fine-scale rate-dependent
simulations converge to both the low-rate limit and the high-rate limit solutions, which
indicates correctness of our semi-analytical low-rate solution. The rate-dependent simulations
also showsmooth transitions between these limits, though the transitions in general are neither
trivial normonotonic.Also, in all caseswehave considered, either the low-rate or the high-rate
limit provides a lower bound for the solution. However, the limits do not in general provide
an upper bound. It is seen in Virnovsky et al. (2004) that there is a non-monotonous transition
between the upscaled relative permeability curves in the capillary limit and viscous limit. In
this paper, we observe that the fine-scale simulation results have a similar non-monotonicity.

The limit solutions allow us to understand when the rate-dependent simulations become
close to the point where some forces are negligible and are in this way a useful tool in
the discussion of force balance. Others have used dimensionless numbers to quantify when
simulation results are close to the force balance limits and when simplified equations could
be used, e.g., in Coats et al. (1967, 1971). Further work can be envisioned where the full
transition from low-rate to high-rate limit solutions is used to validate dimensionless numbers,
e.g., where such numbers are situated in the transition, and if they can be related to the length
of the transition.

When considering a homogeneous 1D model, we only have driving forces in the flow
direction. Our 1D model was clearly viscous dominated for realistic reservoir flow rates for
model lengths down to 20m. The cases considered indicate that for realistic flow parameters,
viscosities, and flow rates, we cannot assume capillary equilibrium in the flow direction. We
also suggested a dimensionless capillary number to describe the ratio of viscous to capillary
forces in the flow direction, which also accounts for the model length. The capillary number
was seen to be reasonable for the considered homogeneous 1D model.

To include the effect of gravity, we used homogeneous 2D models. It was seen that
gravity forces were important at realistic reservoir rates, but they were not dominant. For
quadratic relative permeabilities, we observed a non-trivial transition fromgravity-dominated
to viscous-dominated flow. This was explained by gravity having a positive impact on the
production by reducing the oil saturation behind the water front. When capillary forces were
included, the positive impact of the gravity was reduced as capillary forces were increased.
Capillary forces counteract gravity segregation, so for large capillary forces relative to gravity,
the displacement front becomes piston-like. This gives a transition which resembles the 1D
model case.

The effect of capillary versus viscous forces for redistribution normal to the flow direction
was investigated in horizontally layeredmodels, wherewe disregarded gravity and used linear
relative permeability curves to remove viscous cross-flow. The force balance in the direction
of flow was similar to the 1D homogeneous case; thus, for realistic rates it was viscous
dominated. Also, the force balance in the flow direction was not affected by the size of the
layering, which is in contrast to the force balance normal to the flow direction. As lengths in
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the direction normal to flow commonly are several orders of magnitude smaller than lengths
in the direction of flow, the force balance normal to the flow direction is typically close to
capillary equilibrium, while viscous forces dominate the force balance along the direction
of flow. At which thickness viscous forces start to influence the force balance normal to the
flow will depend on different parameters, such as fluid properties and flow parameters.

Whenupscaling the horizontally layeredmodels using capillary-limit upscaling, the coarse
results reproduce the transition from the low-rate limit to vertical equilibrium.Thus, capillary-
limit upscaling has validity outside the low-rate limit solution. For higher flow rates, the
solution equals the vertical equilibrium solution. It was observed that for thin layers the
capillary upscaling works well up to realistic flow rates, as the fine-scale solutions then are
close to vertical equilibrium. Capillary-limit upscaling procedure thus seems fair for most
situations when going from a lamina scale to a bed scale.

In the horizontally layered case, viscous-limit upscaling failed to capture theflowdynamics
because the assumption of constant fractional flow was not valid. Though not included in
this paper, we have investigated the upscaling of a vertically layered model. In this case,
the fractional flow is constant in the direction normal to the flow, and we have seen that the
viscous-limit upscaling reproduced the high-rate limit for such a model.

In general, the viscous-limit upscaling can be applied in cases where the fractional flow
is relatively constant within each coarse grid block, away from the water front. When this
assumption of constant fractional flow holds is highly case dependent, and is difficult to pre-
dict a priori for general models. For a horizontally layered model, the viscous-limit upscaling
would be accurate if all the layers are resolved by the coarse grid resolution. In the case where
layered heterogeneities are not resolved, the viscous-limit upscaling could still be applicable
if the permeability contrast is small enough.

We also considered a horizontally layered model where gravity was included in addition
to capillary forces. Depending on the fluid density difference, the capillary-limit upscaling
was able to reproduce the transition from the low-rate limit and up close to realistic flow
rates. The capillary-limit upscaling is applicable for highest flow rates when the gravitational
forces are insignificant, e.g., upscaling to coarse blocks with limited vertical length.

Finally,we investigated themore complexSPE10,model 1,whereweconsideredupscaling
both to a one-dimensional coarse model and to a coarse model with five cells in vertical
direction. Even with the heterogeneities of the model, similar results were seen as for the
simpler models. The capillary-limit upscaling is able to reproduce the low-rate limit, as well
as the transition up to flow rates where capillary and gravity forces no longer dominate the
distribution of fluids normal to the flow direction. It was also observed that we can improve
the coarse models by increasing the vertical grid resolution, as the coarse model is then able
to capture more of the gravity effects.
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