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ABSTRACT

A general model which approximates the effect
of cross-flow has been developed to give a practical
methad for predicting the waterflood behavior of
a stratified reservoir. The model is based on a
modification of Dietz's theory and allows for
variations in both the permeability and bydro-
carbon pore volume.

In the particular cases considered, it is assumed
that the permeability can be characterizéd by a log-
normal distribution and the bydrocarbon pore volume
by a normal distribution. A simple graphical method
which enables the practicing engineer to predict the
bebavior of a stratified system is presented. The

results obtained by the proposed method are compared

with those obtained by the Dykstra-Parsons method.
As aresult of this study the following conclusions
have been draun: (1) The effect of cross-flow in a
stratified system can be appreciable, particularly
at very favorable or very unfavorable mobility
ratios; (2) Under normal conditions, the effect of
variations in the hydrocarbon pore volume can be
neglected; and (3) The failure to use all of the
available permeability data can lead to large
errors in the prediction of the bebavior of a stratified
reseryoir, ' .

INTRODUCTION

Various methodshave beenproposedto characterize

_and to predict the waterflood behavior of a stratified
‘teservoir, Most of the methods assume that the

reservoir is composed of discrete homogeneous
continuous layers. With this model, the degree of
stratification can be measured by several parameters
based on core-analysis data, Among these are the
Lorenz coefficient! and the variation of a log-
normal -~ permeability distribution.

The behavior of -stratified systems s usually

. predicted by ‘the Stiles,” Dykstra-Parsons® method

or some modification of these., In both of these

methods the reservoir is dxvxded into dxscrete
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homogeneous layers with no cross-flow between
layers. In the Stiles method the mobility ratio is
assumed to be equal to unity while in the Dykstra-
Parsons method it is allowed to take on any value.

Other predictive methods have been proposed;.

Hiatt’sS method allows for cross-flow between the
beds and a method by Schmalz and Rahme 6 correlates
the recovery directly with the Lorenz coefficient.

In this new approach, which is essentially a
continuous analog of Hiatt’s method, the effects of
both mobility ratio and cross-flow between the beds
have been included. It is assumed that the permea-
bility can be represented by a log-normal distribution
and the hydrocarbon pore volume or porosity by a
normal distribution. These types of distributions
have been observed by several authors,?4 and
most field data seem to confirm their observations;
e.g., if these distributions are assumed and there
is a I1:1 correspondence between porosity and
permeability sanples, the commonly encountered
linear relationship between porosity and the log of
permeability is obtained.

e
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Since, in many field cases the permeability and
porosity data are truncated or cut-off at predetermined

upper and/or lower values, the effect of discarding -

part of the data was investigated with the proposed
method. A better technique for truncatmg the data
is suggested.

THEORY

In the derivation of the method to be described in
this paper the following assumptions are made:

" 1. Capillary forces are ‘negligible per se;  their

effects are only manifest in the relative permea-
bility curves.

2. The fluids are immiscible, incompressible and
homogeneous.

3. The reservoir is horizontal and uniformly thick;

i . t e
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4. The reservoir is composed of discrete layers,

each having its own permeabxhty, porosity and -

connate water saturation; each layer is homogeneous,
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isotropic and uniform in thickness, The permeability
can be represented by a log-normal distribution and
the hydrocarbon pore volume by a normal distribu-
tion.

5. Despite differences in absolute permeabxhty,
the same relative permeability curves, based on
the hydrocarbon pore volume, apply to all layers.

6. The displacement process can be represented
by the movement of a sharp pseudo-interface; only
oil flows on one side of the-interface and only
water flows on the other.

7. The porous medium is quasi-linear, i.e., the
cross-sectional area normal to the flow can be
represented as a function of the distance travelled
by the front,

B. The gravitational effects are negligible
relative to the viscous effects.

9, The ‘displacement efficiency and mobility
ratio remain constant throughout the life of the
project. -

With these assumptions,* it is shown in the

-Appendix that the fractional flow of displacing
. phase [pis given by
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and the average reduced saturation (vertical sweep)
by

i.

5= 5p + (1-£p)/(dfp/dSp). . .(3)
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where

Ep = displacement efficiency

“iaem - The -displacement-efficiency -E-p-is-the—fraction... —

of the total volume of oil which is:displaced from

the volume of oil which is affected by the injected
fluid. In this application of the modified Dietz
method, fp, the fractional flow of the displacing
phase, represents the ratio of the displacing flow to
the total flow across any vertical plane perpendicular
to the direction of flow. The reduced displacing
phase saturation Sp is the integrated reduced
saturation in any vertical plane; and, the average
reduced displacing phase saturation Sp is the
integrated value of Sp behind the front — the
vertical sweep. If the hydrocarbon pore volume, ¢
of ¢’ (1~ S§,0), is assumed to be constant, then

fn—l-!--'-[lF’(,] ce D

Sp= Sp+(1-£5)/(dfp/dSp). . . .(8)

where

SD=I-PU()' D ) '(9)

‘and

dfp  MKexpl-5a%)

- s (10)
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Furthermore, if the hydrocarbon pore volume is
assumed constant and the permeability data are

truncated at a lower value Ky, and .-an upper value
Ky,

fp= !

.l+ﬂ‘[7"(/r2)—7(lﬂ] A
Sp=8, +(1-£)/(dfy1dSp). | (12)

where

*It is epparent’ that any displacement process which
satisfies these assumptions can be described by thz derived

equations; e.g., cycung performance.
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It is now possible, by using the above equations,
to predict the behavior of a stratified system. How-
ever, before the calculations can be performed,
values of P(K), F(K) and M have to be determined.

The distribution function P(K) can be characterized
by its variation V. The variation can either be
determined graphically from the permeability data
or from its Lorenz coefficient L., The Lorenz

coefficient is related to the variation V by the |

following expression:
L=erf (170-¥). . . .. .. (14

A graph of this function is given on Fig. L. If
the harmonic average and the arithmetic average of
the permeabilities are known, the variation V
can be approximated by

VE I-exp (-VIn{Kq/K)) - - .
and the mean permeability by
KT VKgky

The first moment F(K) of the permeability data
can be obtained from P(K) by a simple gzaphical
technique which is demonstrated in the secnon
‘entitled "Example Problem?’.

The mobility ratio M which is assumed to remain

" constant throughout the life of the project is given
by

. (15)

where k5 is the average relative permeability to
the displacing phase behind the front. It can be
- approximated by the value of &,y at the average
reduced saturation determined from a Buckley-
Leverett calculation. If p,/pp < 20 and the Naar-
Henderson’ approximations (imbibition) are used
“for relative -permeability then - - :

VERTICAL SWEEP (3
o

The displacement efficiency E ) also has to be
determined. Stahl® suggests that Ep be based on
the difference between the initial and residual
saturations; however, this gives an upper limit for

“the recovery. A lower limit on Ep can be obtained

by using the average reduced saturation at break-
through from a Buckley-Leverett calculation, If
#o/iup < 20 and the Naar-Henderson approximations
for relative permeability are used, then the dis-
placement efficiency Epis equal to 0.5,

DISCUSSION OF RESULTS

The new method of predicting the behavior of a
stratified system was compared with the Dykstra-
Parsons (DP) method. The basis of comparison
was that used by Stahl.? In this comparison the
coverage C from DP method was compared with
Sp since both quantities indicare the vertical
sweep efficiency. The results are shown in Fig,
2 for a permeability variation of 0.8. For unfavor-
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FIG. 2 — COMPARISON OF PREDICTIVE .METHODS
(VARIAT!ON V = 0.8).




able mobxlu:y rétios, the new method gives a lower
5 p at a given water-oil ratio than the DP method.
For a mobility ratio of unity, the two methods
coincide, but for favorable ratios, the new method
gives a higher §p at a given water-oil ratio.

The apparent anomaly is caused by cross-flow.
At unfavorable mobility ratios, the pressure dis-
tribution is such that cross-flow occurs in the
direction which tends to cause the flood front to
become unstable; hence, the recovery is lower.
At favorable mobility ratios, the reverse is true;
cross-flow tends to stabilize the front and improves
the recovery, Fig. 3 shows the results for a variation
of 0,5. The trend of the results is the same as

those at higher variation, but the differences between
the methods are reduced,

Figs. 4 through 6 show the effect of truncating
the permeability data. The solid curve on Fig. 4
shows = log-normal permeability. distribution with
a median value of § md and a variation of 0.705.
The usual method of truncating the data is first to
select the cut-off values, and then determine the
distribution.

For example, in the above case, if the data are
truncated at K = 1 and K = 25 the dashed curve is
obtained. Now, if the best straight line is drawn
through these points, a variation of 0,615 is obtained,
Thus, if the data are truncated in this manner,
errors will be introduced. Actually, exponential and

10 = 1) linear distributions can be represented as de-
Me'S. LS .

9 generate forms of log-normal distributions which

result from truncation.

8 The correct method of truncating data is to use
w7 all the available data to construct the permeability
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distribution curve, to select the points of crunca'ti.on,
and to use Egs. 11, 12 and 13 to predict the behavior.

The results obtained using proper truncation are.

shown in Figs. 5 and G; in both cases, the points
of truncation were chosen at P(K) = 0.1 for the
lower value and P(K) = 0,9 for the upper value.
Fig. 4 indicates results for a variation of 0.8 and
various values of mobility ratio M. In all cases the
truncated data indicate a higher recovery. Truncating
the data increases the calculated recovery; this is
particularly true for high values of the variation
because in these cases the high permeability

values are eliminated, thus retarding the advance

of the flood front. This effect is greatly reduced
as the variation decreases; which is demonstrated
in Fig. 6 for a variation of 0.5.

The effects of a variable hydrocarbon pore volume
are shown in Figs, 7 through 9. These figures show
the results for various combinations of hydrocarbon
pore volume, variation of the permeability data
and mobility racios. For all the cases considered,
the effect of changes in the hydrocarbon pore
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'FIG. 7 — EFFECT OF VARIABLE HYDROCARBON

PORE VOLUME (V = 0.8, MOBILITY RATIO = 5)

volume could be neglet.:ted.n If the porosity and
connate water saturation can be expressed as
functions of permeability and if constant values of
porosity and connate water are to be used, the
appropriate values are those which occur at the
rcxlledian or the geometric mean of the permeability
. data.

Finally, it should be pointed out that if the system
is assumed to have a constant permeability (this
value of permeability should be the median or

. geometric mean value of the core samples) and

gravity effects are included, behavior similar to
that of a stratified system can be obtained. Thus,
field behavior resembling that described in this
paper does not necessarily indicate that the-
reservoir is stratified.

EXAMPLE PROBLEM

In the example problem it will be assumed that
the porosity is constant, that the permeability
data which are tabulated in increasing order in
Table 1 and a mobility ratio of 2,04 are given. The
procedure to be employed is the following:

CHARACTERIZE PERMEABILITY
DISTRIBUTION

L Plot .permeability data on log-probability
paper (Fig. 10); this is the P(K) curve.
2, Calculate the variation V which is given by

V= (K84.1%‘K50%/K84. 1%

_ 550~252 -
550

= ,542

.3. Calculate the standard deviation og.
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TABLE 1 — PERMEABILITY DISTRIBUTION TABLE 2 — CALCULATED VALUES
FOR FIRST MOMENT CURVE, F(K)
hft Zh Kup P{K) (% less than) o
R e B S N w n o
J " = ‘ 95 05 70 008 996 048 = 249
! 5 83 8 N o1 92 02 990 0 J135 974 99
: 3 100 10 8 2 130 05 975 JI97 0 927 29
7 07 12 7 3 168 09 954 1266 873 21
': 8 4 , % N 4 28 . ,15 921 351 825 116
‘2 10 19 16 5 N} 252 022 879 458 764 7,26
3 13 140 T 20 o4 - 309 30 826 H16 682 4,75
1% 160 2 3 o7 379 +40 754  .855 588 31
3 i o P 2 8 485 .52 653 1277 .72 1.8
2 y n 32 d 9 690 .69 478 27 .93 52
3 2 210 e 05 .95 900 .80 338  3.602 234 51
1 25 250 48
) : 0 ,
A R — |
2 31 3 " 58 P(¢) = distribution function for hydrocarbon pore
¥ ] 3 y P
5 36 330 - 62 volume data, dimensionless,
;. % :?g ;ﬁ ¢4 = arithmetic mean hydrocarbon pore volume,
1 n 500 ' 80 dimensionless,
2 43 520 82 ag = standard deviation of hydrocarbon pore
; 32 ggg gg volume data, dimensionless,
4 50 . 730 92 K = permeability, L2,

Note: K values are not given at equal h increments. There-
fore, when computing per cent less than, the data must be
welgh!ed accordingly; l.es, for K = 170, per_cent less than

=g ¥ Y00 = 32 per cent.

™7 7Ty

=ln—L-=.784
1~V

CONSTRUCT THE FIRST
-MOMENT  CURVE, F(K)

1. Read the permeability value K at P(K) =

50 per cent from Fig. 10. " .
2, Calculate Kggo exp (02%) S .
3. Plot Ksog, exp (o) at P(K) 50 per cent. L S OV S T N T e i
4. Draw lme parallel to P(K) curve through this BT SN WWT R TR mi e

point. This isthe F(K) curve,Now, with the P(K) and FIG. 10 ~— PERMEABILITY DIS';&;{IBUTION FOR

F(K) curves, it is possible to predict the behavior EXAWPLE PROBL

of the system using Egs. 7, 8.and 9.
The  calculated results are listed in Table 2 and
Fig. 711.

CONCLUSIONS

As aresult of this study, the following conclusions
can be drawn, .
-+ «--. -1« The effect-of cross-flow in a stratified system
" - can be appreciable particularly at very favorable
or very unfavorable mobility ratios.
2. Under normal conditions, the effect of varia-
tions in the hydrocarbon pore volume canbe neglected.
3. The failure to use all available permeability
data can-lead-to large errors in the prediction of the o ) . o
““Belavior of " Seratified Teservoir T T e T i e s e oo e e
: . 0 ] 50 T 100
NOMENCLATURE WATER-OIL. RATIO (W.Q.R.)

- FIG."11 — PREDICTION FOR EXAMPLE PROBLEM
. ¢= hyd’°°a‘b°“ pore volume = ¢° (1 S - {7 = 0.342, MoBILITY RATIO = 2,04},

VARIATION (V) = .542
MOBILITY RATIO = 204

VERTICAL SWEEP ( D’
o P o O
1
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P(K) = dlstnbunon function of permeability data,
dimensionless,

FK) =
Ky = geometric mean of permeability data, L2,
Ky = harmonic mean of the permeability data, L?

- ok = standard deviation of permeability data,

first moment of P(K), dimensionless,

. dimensionless,
fp = fractional flow of displacing phase, dimen-
sionless,
{o = viscosity of oil, M/LT,
pp = viscosity of displacing phase, M/LT,

k,, = relative permeability to oil, dimensionless,

k,p = relative permeability to displacing phase,
dimensionless,

k,p = average relative permeability to displacing

. _ phase, dimensionless,
k
M =—2Fo pobility ratio, dimensionless,
k_ra #D

Sp = integrated reduced . saturation in any plane
perpendicular to direction of flow,

- dimensionless,

Sp = average reduced saturation behind the dis-
placing front (vertical sweep), dimen-
sionless, - |

Ep = dxsplacement efficiency for hydrocarbon
pore volume, dimensionless,

R = recovery, dimensionless,

S,c = connate water saturation, dimensionless,

L = Lorenz coefficient, dimensionless,

V = variation, dimensionless,

U, = oil rate, L 3/'I', _

Up = displacing phase rate, L3/T,

U = total rate, L3/T, _

Pp = pressure in displacing phase, M/LT?

P, = pressure in oil phase, M/L T%

. b = reservoir thickness, L,

~ X = coordinate parallel to flow, L,

y = coordinate perpendicular to flow, L,

Y = fraction of reservoir thickness invaded by
displacing phase in a plane perpendicular
to flow, dimensionless,
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APPENDIX

The model proposed in this paper is shown
schematically in Fig. 12. The actual displacement
front may be irregular (fingering) but when it is
averaged over the cross-section a smooth front is
obtained. The distribution function® for the -
permeability P(K) is given by

Pk = & [l+erf (Unt/ K Ve/'Z ] 1

and that for the porosuy or hydrocarbon pore volume
by

' *
Pig) = 1+ erf (@-GaVog V)] (20

Now, since there is a 1:1 correspondence between
the porosity and permeability samples

P(K)zP(m. v, e ---0- . (33)
and
W (K1Ky) (@-B4)
% = ‘g
or .

¢

It ls obvious that this relati
tion since the range of is 0 5,

ahip is only an g|pproximas
<1 rather than — o0 < P <o

£ .0chS0:316. D
we have the following lnquallty

0,999 < [py ~P@] < 1.000
. Thua, the approximate distr!but!on function is acceptable if
O¢ 0.3 ¢ A

s
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F1G, 12 ~— PROPOSED MODEL.
Q=R +logl/ax)n(K/Ky). .. (42)

Let us consxder the flow across any plane through
the interface, Owing to the assumptions concerning
the dominance of viscous forces, the displacing
fluid will enter the most permeable layers first;
and, the reduced dlsplacmg phase saturation can
be obtained by mtegzatmn, €8

sz ﬁ_[ ﬂﬂy/h). e o s (52)

Bue,

Y= P(0)=P(K)

Thetefore, the followmg expressxon obtains:
S5, f o 2P aa

_ O, alternatively,

dP(R)
sp-"-g;'[wa d, dﬂu. . (65)

Using the moment generating function,

E - g .
dPi®) o 2 dP(@)
[ma i mp(m gl
Consequently,

Sp=1 ~-L [g‘ p(m ,.” !.".’..(ﬂ] . (72)
From 3a and 4a, Sp can be defined as follows:

G 1P e (
A “() ""'hg.m 20

....;......-(Sa')

The flow rates can now be obtamed in a similar

el

n (K12 ) :

An equivalent form is that which follows:

- 0
[/
Also, ' ,
[ Aro. y de» 9. (108
Yo=-|Ta ) ¥ K ax

From continuity of volume, we have

p . 2 (sp@y) - e (19

QX ar
and,
95‘;‘;-»:, (-850 @) + - -+ - (122)

Since the fluids are incompressible and capillary
effects have been neglected '

U= Uo + Up
and
aPp = aPo
X rra
Therefore,
s —‘-IQ- P R - 2
fp T - ‘m/‘p [Z] ..o (13a)
K0 Ho ' .
where ’

/ALt
j:l( K ax

Zs=

-}
f x—‘—ﬁ," K-
” ' .

Let the first moment of a log-normal distribution.
F(K) be defmed as follows:

f K22 g
F(I() s =
A AP (K)

4, K oK K
Therefore, ‘ S
z= LK)

1-F(K)

And, the fractional flow of the displacing phase’
is given by .

R -manner- by -integrating_aver. the,cxoss-sec:ion, PR

u,,:-[_"z_ fm,,,,]

' ... 14
fp = " [F(K) (4e)
F i- F(lﬂ
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By analogy with the Buckley-Leverett theory, the
average reduced displacing phase saturation or
vertical sweep can be obtained; i.e.,

Sp= Sp+ (I-f)/(dfy1dSp) « (152)

where

!!2_ dfp dF (/( )
a5 dF(W

dK  dPK) aK
PRy dK  d5p

The derivatives can be evaluated to give the
following:

a1,
EE
_MKexp(-. 50 2) i
[w-w-nF ] x,,[ﬂc,/(e,,g,,)m(mx,,j
..... A g L)

From the definition of fp,

WOR =/ (1-f)

For those cases in which hydrocarbon pore

volume has a constant value,

0:%
Then -
f* ! R § £
. '|+-L ~EAK)
* I-F(K)
Sp = 1-P(K), N ¢ LV
- Bl
dfp MK exp(-.5¢%) . (192)

T Tu- -0 F Uy '

sp =85+ (1~ )/(dfp/dsa) . (20a)

For those cases in which the permeability data
are truncated at a lower value Ky and an upper
value Kj, let us define a new permeability dis--
tribution function,

P{K)-PIK)
s ML, . . (21a)
PR = BTy R :
Then.
fp= ! - “ e w0 kZZa)

F (K -FK)
VW Fie-F

PK)-P (X)) |
Sp= - [ AT ’)] Ce e (230)

dfp _ M(F(Kz,TF(/ﬁ)jKelP(-.5c§()(Pw1@
055 [mruey + -mFun-Fuei,

8, = Sp +(1~fp)/dlp/dSp). . . (25%)

*hkh
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