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ABSTRACT 
Mechanical analyses of sediments are studied by comparison with other analyses. Both 

graphical and numerical methods of comparison are in use, each kind having its limitations. 
Two terms of a Gram-Charlier series, expressed in Krumbein's phi units, represent the data 

in many types of analyses, thus enabling them to be reduced to three numerical values or 
parameters. Graphical methods are given for recognizing such analyses, for obtaining the 
parameters, and for evaluating the extent to which they summarize the analytical information. 
A general procedure is outlined for systematic interpretation of mechanical analyses. The 
advantages of this method of interpretation are shown by considering in detail the information 
that can be deduced from the graphical study of a sieve analysis of a dune sand. 

INTRODUCTION 

Mechanical analyses are studied and 
evaluated by comparing them either with 
analyses of type sediments or with those 
of a related group. Both graphical and 
numerical methods are employed. The 
former seek similarities in geometrical 
form between graphs of two or more 
analyses. When two or more analyses 
give the same graph, it is usually inferred 
that the environment affecting parti­
cle diameter composition is essentially 
the same. Although entire analyses are 
used in most graphical comparisons, the 
methods are by no means equally effi­
cient; histograms, for example, not only 
may fail to disclose pertinent informa­
tion, but may even suggest erroneous 
comparisons (10, p. 68). 

Numerical methods of comparison (9, 
11) attempt to reduce each mechanical 
analysis to a set of numerical values or 
parameters that summarize the informa­
tion. These numerical values may be ob­
tained by computation or by graphical 
methods. Sets of numerical values are 
compared with those of type sediments 
or with others of the same series. Close 

* Published with permission of the Soil 
Conservation Service, U. S. Dept. of Agri­
culture. 

numerical agreement between two or 
more sets is generally taken as evidence 
of similarity in the environment affecting 
mechanical composition. 

Such methods further presume that 
the parameters chosen to represent the 
mechanical analysis are capable of re­
producing essentially all information in 
the analysis except sampling fluctuations. 
When the parameters are incapable of 
doing this, potential information is there­
by lost. Consequently, it is not correct 
to infer that the environment affecting 
mechanical composition is essentially 
the same merely because a convenient 
set of parameters happens to have the 
same numerical values for a series of 
samples. 

Numerical values which contain the 
essential information in a mechanical 
analysis may beca lled the relevant param­
eters.1 However, interpretation of me-

1 This definition was suggested but not 
explicitly stated by R. A. Fisher (3, p. 6) . 
Fisher distinguishes between statistics and 
parameters, the former being used to denote 
values computed from measurements on 
samples and the latter to denote the cor­
responding true values of the parent popula­
tion from which the samples were drawn. In 
this paper paramPter has its ordinary mathe­
matical meaning. 
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chanica) analyses is not complete when 
each analysis has been reduced to rele­
vant parameters which have been com­
pared with each other or with those of 
type sediments. Complete interpretation 
includes correlation of the parameters 
with the physical environment in which 
the sediment was formed. 

MATHEMATICAL PROPERTIES OF 

MECHANICAL ANALYSES 

Certain mathematical properties of 
mechanical analyses deserve mention: 

1. Particle diameter is a property in 
which the ratio of change, rather than 
the amount of change, is fundam ental 
(13, pp. 85-90; 9). Use of a logarithmic 
measure of diameter such as the phi 
unit (10, p. 76) and the parameters based 
on it (9, 11) avoids many rational dif­
ficulties in the interpretation of mechani­
cal analyses. 

2. Mechanical analyses are usually 
expressed in weight percentages instead 
of number percentages. This fact com­
plicates application of sampling error 
theory, but does not prevent using 
statistical methods for condensing the 
data. 

3. A particle has many kinds of diame­
ters (4, 5; 17, 13 , pp. 93-95; 6), while 
very different looking particles might 
correctly be said to have the same diame­
ter. 

4. Unless the samples are collected 
with proper consideration to the mecha­
nism of deposition (14), the size distribu­
tion may be complex. 

5. Small percentages at both ends of 
the analysis have physical significance; 
for instance, one ~er cent of clay in a fine 
sand will greatly alter cohesion and 
plasticity. Consequently, such statistics 
as the median and quartile deviation (9), 
which are virtually unaffected by changes 
at the ends of the distribution, cannot 
efficiently measure the dependence of 
these properties on the mechanical com­
position. 

The parameters based on the first few 
logarithmic moments (11) of a mechani­
cal analysis are computed from the entire 

analysis and always contain much of the 
information in it. In order to determine 
whether they are the relevant param­
eters, it is usually necessary to know 
the frequency function or mathematical 
law which expresses the distribution of 
particle diameters. Such functions have 
not yet been derived from consideration 
of the environment of deposition. How­
ever, two terms of a Gram-Charlier 
series2 expressed in phi units, have proved 
suitable for a wide variety of sediments 
deposited in relatively simple environ­
ments. In such cases the three parameters 
of this function contain the essential 
information in the analysis and are thus 
the relevant parameters. For many other 
sediments the deviations of their analyses 
from this frequency fun ction can be ac­
counted for by considerin g subordinate 
environmental factors and differences in 
the mechanical composition of the several 
layers from which the field sample was 
taken. 

THE PHI PROBABILITY GRAPH 

The phi probability graph is a modifi­
cation of the logari thmic probability 
graph invented by Hazen (7) in which 
cumu lative percentage is plotted against 
the logarithm of the independent vari-

' In the form adopted in this paper the 
parameters and limits of integration are ex­
pressed entirely in phi units; thus, from the 
point of view of ordinary units of length, the 
series is a logarithmic one. It is of the usual 
type as far as computation and actual reason­
ing are involved. In the integral form the 
first two terms may be expressed as follows: 

Y= 
1~ J' e-lz2dz- lOOk4> [1-(1-z2)e-l•'] 

V 2,- o 6v' 27r 

where Y =cumulative percentage (area) be­
tween the phi arithmetic mean di­
ameter and diameter q,. 

q,-M<I> 
z=--­

U<f> 

M4> =phi arithmetic mean diameter. 
u <I>= phi standard deviation. 
k4> =phi skewness= Krumbein's a 3 or 

twice his Sk<l> (11, p. 40). 
q, =any diameter defined by the ex­

pression q, = -log,~, where t is the 
diameter in millimeters. 
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able. Such graphs have been used for 
several kinds of mechanical analyses (8; 
13, p. 189; 6; 4). On phi probability 
graph paper, the phi scale of diameter re­
places the logarithmic scale; extra scales 
are added for obtaining certain parma­
eters directly in phi terms. Such graphs 
without the parameter scales have been 
used by Krumbein (12) and Rouse (16, 
p. 349) for analyses which plot as 
straight lines. This paper extends the 
use of phi-probability graphs to other 
types of mechanical analyses. A method 
of constructing the graph paper, together 
with mathematical proofs, is given in the 
appendix. 

Figure 1 shows a plain sheet of the 
graph paper. To accommodate the wide 
range in particle diameter of natural 
sediments, three sets of diameter scales 
have been placed on the same sheet, two 
of which possess a diameter interval 
twice as large as the third. Thus, the 
scales marked DIAMETER SCALES 
FOR SAND are used for sediments whose 
particles range from .044 mm to 4 
mm. The scales labelled DIAMETER 
SCALES FOR CLAY AND SILT ex­
tend from 1/2048 mm to 4 mm; those 
labelled DIAMETER SCALES FOR 
GRAVEL extend from 1/ 16 mm to 512 
mm. 

Horizontal lines on the graph cor­
respond to grade sizes in common use by 
geologists and engineers in the United 
States. The interval between lines cor­
responding to the left-hand scales is l cp. 
The openings of the widely used Tyler 
sieves possess dimensions of very nearly 
t ncp, where n is an integer, so that the 
horizontal lines closely approximate 
sieve sizes. For either right-hand set of 
scales, the interval between horizontal 
lines is t cp. If the grade-size boundaries 
come at t cp intervals, intermediate lines 
are drawn as needed by connecting the 
pairs of short guide lines located along­
side the .03 and 99.97 per cent vertical 
lines. Cumulative percentages are shown 
by the vertical lines of the graph spaced 
according to the probability scale at the 
bottom of the graph. 

PLOTTING THE ANALYSIS 

Plotting the analysis is expedited if the 
data are arranged as in table 1. This 
analysis is plotted on Fig. 2, where, for 
simplicity, only those scales are shown 

TABLE 1. Sieve analysis of dune sand from 
Palm Springs, California 

1 2 3 4 

Diameter of Equiva- Percent- Per-
sieve lent phi age re- centage diam- tained openings eter on sieve finer 

1.65 mm - .75 100 .00 
1.17 - .25 .07 99.93 

.833 .25 .43 99.5 

.589 .75 5.4 94.1 

.417 1.25 14.5 79 .6 

.295 1. 75 23.5 56 .1 

.208 2.25 27.6 28.5 

.147 2.75 15.6 12.9 

. 104 3.25 7.1 5 .8 

.074 3 . 75 2 .7 3.1 
pan 3.1 

which are used in the study of the analy­
sis; many percentage lines are also 
omitted. The procedure is as follows: 

Find in column 4 the percentage 3.1 
corresponding to the smallest sieve 
diameter, .074 mm(cp =3.75), in column 1 
of table 1. Select the horizonta l line on 
the graph corresponding to cp =3.75 and 
locate the circle one-fifth of the distance 
between the 3.0 and 3.5 per cent lines. 
Locate the next percentage, 5.8, on the 
line cp =3.25. Since in this analysis the 
ratio interval between sieves is constant 
and equal to t cp, place each succeeding 
percentage on the next unaccented line. 
(The 100 per cent point cannot be plot­
ted, which is in accord with the fact that 
a larger sample generally has still larger 
particles.) Fit a smooth curve to the 
data, preferably first connecting the 
points with straight line segments. In 
fitting the curve, remember that points 
based on fewer than 20 particles in a 
grade are subject to large sampling errors 
and that for fine grades in amounts less 
than .5 per cent the laboratory technique 
is seldom good enough to benefit from 
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the large number of particles actually 
present. In general, the fitted curve may 
depart from any point by an amount as 
large as the combined laboratory errors. 

The phi probability graph greatly re­
duces curvature in graphs of most analy­
ses, as shown by contrasting the con­
ventional plot in Fig. 3 with that in Fig. 
2. Extrapolation is less uncertain, both 
for this reason and because the small 
percentages at both ends of the analysis 
are represented with an accuracy equal 
to the best analytical technique. 

/ 
71 I 

I 
1/ 

I 
/ 

___.-/ 
~ 1 15 2 .4 ~ .6 .8 I 1.~ Z a t f f uu 

FIG. 3.-Semi-logarithmic graph of same 
analysis shown in Figure 2. 

If the fitted curve resembles any curve 
in Fig. 4, it is probable that the two­
term series given on page 63 summarizes 
the information in the analysis. The 
numerical values of the parameters may 
then be obtained graphically; but these 
values, especially the skewness, should 
not be accepted without fitting the 
theoretical curve as explained later. If 
the curves do not resemble any in Fig. 4, 
proceed to the section, SYSTEMATIC 
INTERPRETATION OF ANALYSES. 
(Curves A and B of Fig. 5 are common 
types not represented by two terms of a 
Gram-Charlier series.) 

FIG. 4.-Graphs of a two-term Gram­
Charlier series showing effect of changes in 
the parameters. 
Curve M</> U<f> k<t> Curve M<t> U<f> k<t> 

1 1 1 +1 5 -2 .5 0 
2 1 2 +1 6 -2 .5 +1 
3 1 2 -1 7 3 1 + .3 
4 0 1 + 1 8 4 1 -1.2 

GRAPHICAL DETERMINATION OF 

PARAMETERS 

To obtain M<l>: Draw a straight line 
AB (fig. 2) connecting the intersections 
of the fitted curve and the 15.9 and 84.1 
per cent dotted lines. These lines are 
identified by three small horizontal ar­
rows. Where the 50 per cent line crosses 
the line AB, draw a horizontal line CD 
intersecting the diameter scale used in 
plotting the analysis. Read off the value 
of M<f>, 1.88¢, on the arithmetic phi 
scale and the corresponding geometric 
mean diameter, .272 mm, from the other 
side of the intersection. 

To obtain u<l>: Draw a line EF parallel 
to line AB through the center of the 
small circle near the middle of the 
graph. Extend the line EF to the phi 
standard deviation scale on the same 
side of the graph as the scale used for 
plotting the analysis. The phi standard 
deviation scales are labelled O"<f> and are 
the slant-line scales along the upper right 
and lower left corners of the graph. Read 
the value of U<f>, .75¢, atE at the inter­
section of the line EF with the scale. 
The lower left scale labelled FOR SAND 
is graduated in intervals of .05¢ and the 
other scale (see fig. 1) in intervals of .1¢. 

To obta in k<l>: Set a pa ir of dividers to 
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FIG. 5.-Graphical comparison of sieve analyses typical of beach and dune sands. 

Location of Samples 
A. West of Dune Point, Los Angeles County, California. 
B. Daytona Beach, Florida. Sample collected following several days of offshore winds. 
C. North end of Mustang Island, Texas, at Aransas Pass. 
C'. Same sample after removing shells with dilute acid. 
D. Eight miles South of Aransas Pass, Mustang Island, Texas. 
E. Opposite highway bridge over Whitewater Wash, North of Palm Springs, California. 
F . Ripple mark crests in the lee of a barchane in the dune complex West of Yuma, California. 
G. Lee slope of above barchane. 
H. Crest of active dune area near Oxnard, California. 
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the length GH on the vertical 4 per cent 
line between its intersection with the 
line EF and the horizontal line passing 
through the circle at the middle of the 
graph. The point G is indicated by two 
small arrows at right angles to each other. 
When u.p is read from the right hand 
scale (Fig. 1), use the 96 per cent line 
instead of the 4 per cent line; the point 
corresponding to G is indicated as before. 
Next, lay off the distance DI, equal to 
GH, on the SO per cent line starting at its 
intersection with the line AB. From 
point I draw a horizontal line IJ inter­
secting the fitted curve. Read the per­
centage, 97.1, at the intersection. On the 
k.p scale near the lower right corner of 
the graph read the value of the skewness, 
.36, corresponding to the percentage just 
obtained. 

The algebraic sign of the skewness 
depends on what is assumed to constitute 
a negative deviation from the phi arith­
metic mean. The convention used by 
Krumbein (11, p. 40) is adopted here: 
those phi values algebraically larger 
than M.p or the assumed mean are 
considered positive; similarly, that part 
of the distribution coarser than M.p is 
considered negative. If a straight line 
fits the plotted points, the skewness is 
zero. In this case the fitted straight line 
takes the place of the line AB. The re­
maining procedure for obtaining M.p and 
u.p is the same as described above. 

GRAPHICAL CONSTRUCTION OF THE 

THEORETICAL ANALYSIS 

In the previous section, it was as­
sumed that two terms of a Gram­
Charlier series form an adequate fre­
quency function for representing the 
mechanical analysis. If this assumption 
is correct, the theoretical curve computed 
from these parameters should coincide 
with the curve drawn through the ob­
served points. The amount of divergence 
thus furnishes a qualitative estimate of 
fit. Computation of the theoretical curve 
is tedious, however, and the results so 
obtained are not here suitable for ap­
plying the quantitative Chi Square te ... t 

of goodness of fit (1, pp. 264-267), be­
cause mechanical analyses a re expressed 
in weight percentages. A rapid graphical 
method was therefore developed for 
comparing the theoretical analysis with 
the observed data. Either calculated or 
graphically obtained values of the param­
eters may be used. 

If calculated values are used, plot the 
analysis on phi probability graph paper 
and draw a horizontal line intersecting 
the curve at the position of the phi 
arithmetic mean diameter and label this 
line z = 0. This line coincides with the 
line CD when the parameters have been 
obtained graphically. Moreover, the 
vertical distance between A and B in 
Fig. 2, when laid off along the proper phi 
scale starting at .p =0, corresponds 
numerically to 2u.p. Consequently, to 
obtain a distance equal to u.p/2, set a 
pair of dividers to a length on the phi 
scale corresponding to one-half the 
numerical value of u.p or to one-fourth 
the vertical distance between A and B. 
Now set one point of the dividers where 
the line, z = 0, intersects the SO per cent 
line; lay off successive intervals of the 
distance corresponding to u.p/ 2 along the 
SO per cent line. These distances corre­
spond to intervals of !z in the Gram­
Charlier equation. Label the points as 
indicated in Fig. 2: - !z, - z, -3 /2z, 
- 2z, etc. above the line z = 0 and 
+!z, +z, +3/2z, +2z, etc. below the 
line z = 0. Draw horizontal lines inter­
secting the plotted curve and passing 
through these points. 

Table 2 gives the corresponding cumu­
lative percentages of the theoretical 
curve for skewness intervals3 of .lk.p. 
Select the column corresponding most 
closely to the value of k.p. Thus ifk.p = .36, 
select the column marked k.p = .4. Start­
ing with the lowest percentage given in 
that column, plot this percentage on the 
horizontal line (fig. 2) whose z value is 
the same as that given in the table. Plot 
the next higher percentage in the table 

• An interval of .1 was adopted because re­
peated analyses of the same field sample often 
show larger deviations. 



TABLE 2. Cumulative percentages of the theoretical analyses based on two terms of a Gram-Charlier series 

k~ 
z 

+ .1 +.2 + .3 +.4 + .5 + .6 + .7 + .8 + .9 +LO +1.1 

-3 . 99 .924 99.983 
-2 .5 99 .53 99 .69 99 .839 
-2 . 98 .00 98 .26 98.54 98.80 99 .08 99 .34 99 .62 99.885 
-1.5 93 .59 93 .86 94 .13 94.40 94 .67 94.94 95 .21 95.48 95 .75 96.02 96.29 
-1. 84.1 84.1 84 .1 84 .1 84 .1 84 .1 84.1 84.1 84 .1 84 .1 84.1 
- .5 68.7 68.3 67 .8 67 .4 66.9 66 .5 66 .1 65 .6 65 .2 64 .7 64 .3 

0 49 .3 48 .7 48 .0 47 .3 46 .7 46 .0 45 .3 44 .7 44.0 43.4 42 .7 

+ .5 30.4 30.0 29 .5 29 .1 28.7 28 .2 27 .8 27.3 26 .9 26 .5 26 .0 
+1. 15.9 15 .9 15 .9 15.9 15.9 15 .9 15 .9 15 .9 15 .9 15 .9 15 .9 
+1.5 6.95 7.22 7.49 7.76 8 .03 8 .30 8 .57 8 .84 9 .11 9 .38 9 .65 
+2 . 2.54 2.82 3.08 3.36 3.62 3.90 4.16 4.44 4.70 4 .98 5.24 
+2 .5 .77 .93 1.08 1.23 1.39 1.54 1. 70 1.85 2.00 2.16 2.31 
+3 . .194 .25 .31 .37 .43 .49 .55 .61 .67 . 73 . 78 
+3 .5 .039 .056 .072 .088 .105 .122 .138 .154 .171 .187 .20 
H. .006 .010 .013 .016 .021 .024 .027 .030 .034 .037 .040 

-.1 - .2 - .3 -.4 - .5 -.6 - .7 - .8 - .9 -1.0 -1.1 

-4 . 99 .994 99 .990 99.987 99 .984 99 .979 99 .976 99 .973 99.970 99 .966 99 .963 99.960 
-3 .5 99 .961 99 .944 99.928 99 .912 99 .895 99.878 99 .862 99.846 99.829 99 .813 99.80 
-3 . 99 .806 99.75 99.69 99.63 99 .57 99 .51 99.45 99.39 99 .33 99 .27 99 .22 
-2 .5 99 .23 99 .07 98 .92 98.77 98.61 98.46 98 .30 98.15 98 .00 97 .84 97 .69 
-2 . 97.46 97 .18 96 .92 96.64 96 .38 96.10 95 .84 95 .56 95.30 95.02 94.76 
-1.5 93 .05 92 .78 92.51 92.24 91.97 91 .70 91.43 91 .16 90 .89 90 .62 90 .35 
-1. 84 .1 84.1 84 .1 84 .1 84 .1 84 .1 84 .1 84 .1 84 .1 84 .1 84 .1 
- .5 69.6 70 .0 70.5 70 .9 71.3 71.8 72 .2 72.7 73 .1 73 .5 74 .0 

0 50 .7 51.3 52 .0 52 .7 53 .3 54 .0 54 .7 55 .3 56 .0 56.6 57 .3 

+ .5 31.3 31.7 32 .2 32 .6 33.1 33.5 33 .9 34.4 34.8 35.3 35 .7 
+1. 15 .9 15 .9 15 .9 15 .9 15 .9 15.9 15 .9 15 .9 15 .9 15 .9 15 .9 
+1.5 6.41 6 .14 5.87 5 .60 5 .33 5 .06 4 .79 4.52 4.25 3 .98 3.71 
+2. 2.00 1. 74 1.46 1.20 .92 .66 .38 .115 
+2 .5 .47 .31 .161 
+3 . .076 . 017 

+1.2 

96 .56 
84 .1 
63 .9 

42.0 

25 .6 
15 .9 
9.92 
5.52 
2.46 

.84 
. .22 

.044 

-1.2 

99 .956 
99.78 
99 .16 
97 .54 
94.48 
90 .08 
84 .1 
74.4 

58.0 

36 .1 
15 .9 
3.44 

z 

-3 . 
-2 .5 
-2 . 
-1.5 
-1. 
- .5 

0 

+ .5 
+1. 
+1.5 
+2. 
+2 .5 
+3 . 
+3 .5 
+4 . 

-4. 
-3 .5 
-3. 
-2 .5 
-2 . 
-1.5 
- 1. 
- .5 

0 

+ .5 
+1. 
+1.5 
+2 . 
+2 .5 
+3 . 

~ 
0 

c;) 
~ 
0 
~ 
c;) 
~ 

~ 
0 ...., 

d 
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on the next higher z line on the graph, 
continuing until all the values (shown by 
triangles in fig. 2) have been plotted. 

Compare the theoretical curve cor­
responding to these points with that ob­
tained from the analysis. The allowable 
amount of deviation depends on the 
magnitude of the laboratory errors and 
of the fluctuation in mathematical form 
of a series of closely spaced field samples. 
The fit obtained in Fig. 2 is generally 
typical of samples from single sedi­
mentation units. 

SYSTEM A TIC INTERPRET AT ION 

OF ANALYSES 

Until frequen cy functions representing 
size distribution can be derived mathe­
matically for specific environments, the 
interpretation of mechanical analyses 
will necessarily be a comparative study. 
Consequently, the interpretation of a 
single analysis is best made by comparing 
it with analyses of other samples de­
posited under somewhat different, but 
definitely known, field cond itions. Cer­
tain ideal types, which serve as norms of 
comparison, can generally be deduced. 
Any deviation therefrom which is greater 
than sampling and laboratory errors de­
serves explanation. The interpretation 
of related analyses, such as those of an 
environmental pattern s.tudy, should 
involve not only explanation of numerical 
changes in the parameters, but also 
changes in mathematical form of the 
frequency functions that represent the 
distributions of particle size. 

Figure 5 shows nine analyses typical 
of beach and dune sands. Single samples 
of beach and dune sands cannot consist­
ently be distinguished from each other 
by comparing their histograms or ordi­
nary cumulative curves. Because the phi 
probability graph is sensitive to slight 
differences in mechanical composition of 
the end fractions, it is helpful in studying 
sediments of diverse origin but similar 
mechanical composition. Each sample 
used in Fig. 5 was collected from part 
of a sedimentation unit (14). Curves 
F, G, and H are typical of dune sands 

low in heavy minerals; such curves are 
concave downward and generally ap­
proach an upper limit of particle diame­
ter when large samples are employed to 
determine the small percentages in the 
coarsest grades. Curve E is a micaceous 
dune sand resorted by a gravity slide on 
a steep mountain slope; the straight-line 
tendency is common in sediments sorted 
by gravity. Curves A, B, C, C' and D 
are typical beach sands. They tend to be 
concave upward unless there are com­
plications in density and shape of par­
ticles, such as in curve B, for which the 
sand consists of rounded quartz grains 
and platy shell fragments. Curves C and 
D show notably different histograms, 
yet the only physical difference between 
the sediments is a moderate one in aver­
age diameter. On the graph this is shown 
by their similar shape and different posi­
tion. Curves C and C' look alike on the 
histograms but are readily distinguished 
on the graph because they differ con­
siderably in skewness. Complete criteria 
for distinguishing beach and dune sands 
cannot, of course, be developed from 
these few analyses alone, for they fail to 
illustrate many complicating factors, but 
these curves do give a simplified sum­
mary of an extensive study following the 
plan outlined in the remainder of the 
paper. 

This plan for systematic interpretation 
was tested on four different environ­
mental patterns, the time required being 
well repaid by the gain in geological in­
formation that otherwise might have re­
mained undiscovered. No assumptions 
have been made concerning field sam­
pling technique. However, if samples are 
collected without regard to sedimenta­
tion units (14), disappointingly few 
analyses may be amenable to the mathe­
matical treatment described above. 
Thus, extremely variable types of analy­
ses are obtained when the samples con­
sist of only a few laminae or a small 
number of sedimentation units differing 
greatly in average diameter; on the other 
hand, when a large number of sedi­
mentation units is included in each 
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sample, the mechanical analyses may 
again show striking uniformity with re­
spect to mathematical type. 

The steps recommended for systematic 
interpretation are as follows: 

1. Classify the mechanical analyses ac­
cording to mode of deposition. For ex­
ample, in a study of windblown deposits 
along a desert wash where it leaves the 
mountains and debouches on the desert 
floor, sediments such as the following 
should be distinguished: waterborne 
sand and gravel in the wash (the source 
of the windblown deposits), lag sand and 
gravel, dune sand, dune sand resorted by 
gravity on steep mountain slopes, rock 
talus mixed with dune sand , and sandy 
loess deposited around clumps of vegeta­
tion. 

2. Plot analyses of typical samples of 
each kind of sediment on phi probability 
graph paper, using a single sheet for each 
sediment type. Wherever possible, plot 
one or two analyses of sediment deposited 
under essentially constant conditions and 
consisting entirely of minerals of the 
same density and shape characteristics.4 

These samples may be from any locality, 
provided the environment of deposition 
is definitely known to be similar and pro­
vided comparable kinds of particle 
diameter are employed in both sets of 
analyses. 

3. Note whether most of the curves on 
any one sheet can be classified into one or 
two distinct geometrical types. Thus, com­
pare the analyses included in each type 
with analyses of those samples which 
represent the simplest environment of 
deposition, and ascertain whether the 
differences can be assigned qualitatively 
to specific complicating factors in the 
environment. In this way, factors affect­
ing mechanical composition are dis­
covered that otherwise might remain 
unnoticed even with detailed field work. 

4. If the curves resemble those in Fig. 4, 
fit two terms of a Gram-Charlier series to 

4 Shape is often correlated with particle 
diameter in sand and gravel deposits; such 
variations are permissible. The combination 
of platy and well-rounded grains in the same 
sample is to be avoided. 

representative analyses by the methods 
described above. If the fit is poor or if the 
curves are obviously different from those 
in Fig. 4, consider whether the environ­
ment of deposition is such that the re­
sulting sediment is actua ll y a mixture of 
two separate distributions deposited 
simultaneously or a lternately. Sand de­
posited from a muddy stream is such a 
sediment, since silt and clay settle out 
between the sand particles immediately 
following deposition of the sand; such 
analyses show a long "tail" of fine sizes. 
Experiments in progress indicate that the 
phi probability graph provides a rational 
quantitative approach to many two­
component sed iments. 

5. Plot the remaining analyses on phi 
probability graph paper and classify the 
curves according to the types previously 
deduced. These graphs are conveniently 
drawn o n 8! X 11 sheets of arithme tic 
probability paper, such as Codex #312 7, 
if a phi scale is la id out a long the equ i­
spaced rulings; for classification purposes 
only straight line segments need be fitted 
to the points. Now indicate the types on 
a map showing sample locations, a lso 
noting any transitional types and highly 
irregular analyses. 

6. Obtain sets of relevant parameters 
whenever practicable. If only a few 
analyses are reducible to sets of relevant 
parameters, compute only those param­
eters based on the first t hree moments. 
Graphically determined parameters are 
preferable for studies of major factors 
affecting mechanical composition, be­
cause secondary effects are considerably 
reduced by the cu rve fitting process and 
the non-use of the extreme ends of the 
curve in the graphical constructions. In 
studies involving correlation of physical 
properties with mechanical composition, 
computed parameters are preferable, 
since they more truly reflect the influence 
of secondary characteristics of the me­
chanical analysis. Thus, a "tail" con­
sisting of two per cent silt and clay in a 
mechanica l analysis of fine sand may be 
unimportant in a study seeking to deter­
mine the principal factors controlling 
average diameter and sorting; yet the 
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same amount would considerably affect 
such a property as porosity. 

7. Prepare areal contour maps of the 
parameters, noting those computed from 
analyses not sat£sfactorily represented by 
the frequency function. In drawing the 
contours, an erratic value may be ignored 
if it is reasonably certain that the devia­
tion was caused by defective field sam­
pling. If the parameters consistently fail 
to form relevant sets, it should be kept in 
mind that conclusions drawn from the 
contour maps alone may be erroneous. 

8. From the contour maps, and from the 
map showing locations and types of curves, 
select one or more sets of analyses which 
show the change in mechanical composition 
from the source of the sediment to the highly 
sorted end products. The analyses in each 
set should form a logical geographical 
group. Visual study of these graphs often 
reveals what is happening to the param­
eters, and as well to the frequency 
function itself, during the transportation 
process. 

9. Determine how much variation in ap. 
pearance of the curves and what range in 
parameter values can reasonably be attrib­
uted to combined effects of field-sampling 
fluctuations and laboratory errors. Field­
sampling fluctuations include cyclical 
changes too local to be included in a 
regional investigation and also those 
fluctuations which remain unpredictable 
even after numerous closely spaced 
analyses have been studied. Laboratory 
errors include those deviations which 
can be evaluated by successive analyses 
of the same sample. 

A usable estimate of the combined 
effect of these errors may be obtained 
from analyses of eight or more samples 
selected from an area one-fourth as large 
as that represented by the samples used 
in the regional study. If the environment 
changes rapidly in one direction and 
slowly in another, as along a coastal 
strip, take the sample from an elongated 
area or line parallel to the direction of 
minimum regional change. A set of such 
samples is required from each distinctly 
different environment of deposition. Plot 
the analyses on a single sheet and draw 

dotted lines tangent to the outermost 
deviations as in Fig. 6. Usually the curves 
cross each other without apparent sys­
tem; failure to do so may indicate rapid 
regional changes or the presence of some 
cyclical variations of considerable magni­
tude. In a regional study two analyses 
are probably significantly different if 
their graphs show differences in position 
greater than the divergence between the 
dotted lines. 

FIG. 6.-Sieve analysis of eight closely 
spaced samples of beach sand from Daytona 
Beach, Florida. The area between dotted 
lines indicates the amount of variability as­
signable to local sampling errors and labora­
tory errors combined. 

10. If a frequency function is found that 
satisfactorily represents mechanical com­
position where complicating environmental 
factors are fewest, examine all poorly repre­
sented analyses for specific environmental 
factors capable of causing the deviations. 
Thus, in Fig. 2, the theoretical curve 
agrees well with the plotted curve except 
for the finest 5 per cent and the coarsest 
.5 per cent. From other dune-sand 
analyses, it appears that two terms of a 
Gram-Charlier series give a close ap­
proximation to the frequency function if 
the sand consists entirely of quartz and 
feldspars and if the samples are from one 
sedimentation unit. 

The sample used in Fig. 2 was collected 
from the full thickness of one sedimenta­
tion unit. The coarsest grade contained 
only thin, weathered biotite flakes; other 
grades contained quartz and feldspars 
with subordinate mica. During trans-
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portation, thin mica flakes behave like 
quartz particles of smaller sieve diameter. 
Consequently, the sieve analysis shows 
coarser diameters than the theoretical 
analysis indicates. The sand was dusty 
when collected, for it was derived from 
nearby \Vhitewater Wash and was de­
posited in the lee of a rock hill. During 
moments when wind velocities are too 
weak to transport sand, silt settles be­
tween the interstices of the sand grains 
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and is buried by sand transported over 
the hill during succeeding gusts of wind. 
Consequently, the sand is a mixture of 
two sediments, dune sand and loess, with 
the former greatly predominating, so 
that very fine sand and silt are present in 
greater amounts in the sample than in 
the dune sand alone. Another factor of 
similar tendency is the coating of fine 
silt weakly cemented to most sand grains. 
Such cementation occurred as the wash 
dried up, thus increasing the grain size, 
the relative effect being much greater on 
the finer grains. During sieving, many of 
these particles were knocked off and col­
lected in the pan, thereby making the 
pan percentage greater than expected. 

The purpose of step 10 is to systema­
tize knowledge of secondary character-

istics of the a nalysis a nd to help locate 
environmental factors which otherwise 
might be ignored as "unimportant." 
Emphasis here is on a specific mathe­
matical type of curve deduced from a 
comparison of many analyses, whereas in 
step three no assumptions are made con­
cerning the frequency fun ction which 
represents the analyses, the object being 
to ascertain the geometric form of the 
basic type of curve and to test the type 
selected by inquiring whether deviations 
from it can be explained in terms of 
environment alone. 
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APPENDIX 

Principles on which the graph paper is 
based. In the following expression F(q,) gives 
the percentage of particles whose diameters 
lie between diameters M.p and ¢: 

The notation and convention concerning the 
sign of k.p are given on pages 5 and 9. Figure 7 
shows the graph of the frequency function, 

dF(q,) 
--, for M .p =1, cr.p =1, and k.p=+l. By 

dq, 
substituting a new variable for </>, 

q,-M.p 
z=-- then d.p=cr.pdz (2) 

cr.p 

the above integral takes the following form, 
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for which tables are available: 

F(q,)= 
100 J" e-l .. dz 

'\1'211" 0 

-
100

k41 [1-(1-z2}e-l .. ]. (3) 
6yi2,.-

The first term is the integral of the normal 
curve of error; when k41=0, the second term 
vanishes. 

By means of a table for the first term and 
elementary calculus for the second, it is 
readily shown that the percentage of particles 
finer than M<t> is 50-6.649 k.p and that the 
percentage of particles finer than M.p but 
coarser than M.p+u.p is 34.134-6.649 k.p . The 
percentage finer than M.p+u.p (fig. 7) is 
then: 

(50 -6.649 k.p)- (34.134 -6.649 k.p) = 15.866. 
Therefore, the cumulative percentage at one 
phi standard deviation finer than the phi 
arithmetic mean diameter wilJ always be 
15.866 per cent, regardless of the value of the 
skewness, if two terms of a Gram-Charlier 
series represent the analysis. Similarly the 
percentage finer than diameter M 41 -u.p is 
always 84.134 per cent. 

These two cumulative percentages, 15.866 
and 84.134, are loci of intersection of the 
family of curves formed from (3) by varying 
k.p while M.p and u.p are held constant. Appli­
cation of the principles of analytical geometry 
to equation (2} shows that varying the value 
of M.p affects merely the relative position of 
the curve on the graph (fig. 4, curves 1 
and 4). Variations in u .p affect the scale of the 
graph (fig. 4, curves 1 and 2}. Only varia­
tions in k.p cause changes in the shape of the 
curve. These statements are independent of 
the kind of graph used, provided particle 
diameter is expressed in phi units. 

Construction of the lines of the graph and the 
diameter scales. The vertical phi scales and 
horizontal lines of the graph are ordinary 
equal interval scales. The corresponding 
logarithmic miliimeter scales are constructed 
as described by Croxton and Cowden (2, pp. 
105-107). The vertical, cumulative percentage 
lines are so located that the integral in the 
first term of (3) will plot a straight line. This 
is accomplished by spacing the percentage 
lines proportional to their corresponding z 
values (7). In other words, each percentage 
line (denoting area under the normal curve) 

is spaced proportional to the numerical value 
of its abscissa. 

In a graph extending from .01 to 99.99 per 
cent, the median or 50 per cent line lies mid­
way between; furthermore, the lines on the 
left half of the graph are mirror images of 
those on the right half. Pearson (15, pp. 2-10) 
gives a table showing the values of the ab­
scissae of the normal curve as a function of 
the frequency or cumulative percentage ex­
pressed as a decimal. In this table the ab­
scissa is denoted by x and the cumulative 
percentage by H1+a.,). 

The z value corresponding to 99.99 per 
cent is 3.719. For a graph 28.5 inches wide, 
one z unit is represented by a length of 
14.25/3.719=3.832 inches. Since the z value 
for the 80 per cent line is .842, it is located 
.842 X3.832 inches to the right of the 50 per 
cent line. The 20 per cent line is the same 
distance to the left. Similar computations are 
made for each pair of lines. 

Theory and construction of the phi standard 
deviation scale. When equation (1) represents 
the analysis, it has been shown that there are 
two loci, located at 15.9 and 84.1 cumulative 
per cent, which are always one standard 
deviation on either side of Mq,, regardless of 
the value of k.p. On the graph the vertical 
distance between these points, measured by 
the distance between their intercepts on the 
phi scale, is thus equal to two standard devia­
tions. Consequently, if a uq, scale were laid 
out along the 15.9 per cent line starting at the 
horizontal line q, =0, the values of u.p and the 
spacings would be identical with those of the 
regular q, scale. Since the phi standard devia­
tion is proportional to the tangent of the 
slope of the line connecting the two loci, the 
scale can be transferred to any convenient 
line by means of similar triangles. 

In constructing the scale, points are located 
on the 15.9 and 84.1 per cent lines at a dis­
tance equal to two phi units below and above 
the horizontal line passing through the smalJ 
circle. A line is drawn through these points 
intersecting the vertical line selected for the 
standard deviation scale. The distance from 
the horizontal line to this intersection is then 
divided into the correct number of divisions 
and the scale is drawn radialJy, using the 
smalJ circle as a center. 

Because this construction fixes the origin, 
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it is necessary always to translate the origin 
from the observed mean diameter to the circle 
by drawing the lineEF parallel toAB (fig. 2) . 

Theory of the determination of M .p. When 
k.p is zero, the phi median and the phi arith­
metic mean diameter coincide, so that both 
are obtained from the intersection of the 
straight line graph with the 50 per cent line. 
Since the family of curves formed by varying 
the skewness while M.p and u.p are held con­
stant have two points of common intersect ion, 
the straight line graph when k.p is zero in­
cludes these points. Consequently, to obtain 
M.p when k.p is not zero, simply draw a straight 
line through the loci at 15.9 and 84.1 cumu­
lative per cent and determine M.p as above. 

Theory and construction of the skewness 
scale. When equation (1) represents the analy­
sis, the curvature of the graph is caused by 
the skewness a lone. Consequently, the skew­
ness can be measured by determining the 
cumulative percentage at which the graph 
crosses some multiple of the standard devia ­
tion, z, provided z is not equal to 1. Values of 
z are measured a long the vertical scale of the 
graph starting a t M.p and expressed as mul-

tiples of the standard deviation in accordance 
with equation (2). For r eliable determination 
of the skewness, the extreme ends of the dis­
tribution a re unsatisfactory on account of 
sampling errors. Values near z = ± 1 are too 
insensitive. A z value of 1. 75 gives a good 
compromise and conveniently corresponds 
almost exactly to 4 and 96 cumulative per 
cent for the normal curve. Since the spacings 
of the vertical percentage lines a re propor­
tional to their corresponding normal curve z 
values, it follows from the geometry of the 
right triangle that the distance GH on figure 2 
is 1. 7 5 times the scale value of one standard 
deviation. The lines DI and IJ merely enable 
this value of 1.75 z to be measured from M.p. 
The percentage finer than M.p-1.75u.p is 
equal to the percentage finer than M.p plus 
the percentage between M.p and M.p-1.75u.p; 
from eq uation (3) these values are: 
(50-6.649 k.p)+(45.994+9.615 k.p) 

=95.994+2.966 k,p. 
By substituting values of the skewness, the 
corresponding percentages a re found which 
are then marked off to form the skewness 
scale. 
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